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Preface 
Preface to first edition 

Using this book. 
This textbook provides material for a one-year graduate course on condensed 

matter physics. It contains introductions to classic subjects, and it also presents 
topics I believe will continue to occupy the field in the future. The book teaches 
not only about the effective masses of electrons in semiconductor crystals and band 
theory, but also about quasicrystals, dynamics of phase separation, why rubber is 
more floppy than steel, electron interference in nanometer-sized channels, and the 
quantum Hall effect. 

It is arranged in six parts, convenient for dividing into two semesters or three 
quarters. However, there is more material than can reasonably be covered in one 
year. My experience suggests that an instructor should aim to cover roughly two-
thirds of the material in each part. The remainder is available for reference. Ev-
ery instructor will find that some of the topics are very elementary and others are 
quite advanced. However, instructors with different backgrounds will disagree to 
a surprising extent on which are which. The web site associated with the book, 
h t t p : / / c h a o s . p h . u t e x a s . edu/~cmp, contains sample syllabi, as well as 
corrections, and other information. 

Each chapter is followed by a collection of problems. Some are brief deriva-
tions, but many introduce new topics and are fairly lengthy. An instructor's manual 
is available to aid in decisions on what to assign. Whether in academic or industrial 
posts, experimentalists and theorists must all become fluent in manipulating data 
and symbols with the computer. Therefore, many of the problems involve numeri-
cal work, ranging from no more than plotting graphs to a series of linked exercises 
that produces a simple band structure code. 

The book presumes a working knowledge of quantum mechanics, statistical 
mechanics, and electricity and magnetism. I decided to exclude many-body Green 
functions, which become such an absorbing formal world of their own that they too 
easily drive physical reasoning out of an introductory course. However, as the book 
proceeds I do begin to employ second quantization, and it becomes quite common 
by the time of the section on magnetism. 

If simple arguments explain a phenomenon, I present them, but I also have paid 
some attention to the actual historical process by which ideas were accepted, and I 
try to explain in detail some of the calculations and experimental data that actually 
convinced the specialists. Not all the subjects discussed in this book are closed; 
even simple questions do not always have answers; and theory and experiment do 
not always completely agree. The topics that can today be presented only within a 
distressing cloud of uncertainty are precisely the ones most likely to remain central 
to the development of condensed matter physics. 
References to original literature. There are two attitudes toward references to 
original literature. One is that it is ridiculous to "cite the original work of Maxwell, 
for example, which nobody bothers to look up anyway" [Aharoni (1996), p. vii]. 

xix 



XX Preface 

Maxwell himself disagreed. He believed that it "is of great advantage to the student 
of any subject to read the original memoirs on that subject, for science is always 
most completely assimilated when it is found in its nascent state" [Maxwell (1904), 
p. xi]. While it would be impossible to cite all papers responsible for the develop-
ment of condensed matter physics without having reference lists longer than the 
remainder of the book, I have cited some of the most influential papers for two 
reasons. First, anyone who is part of research today knows how strongly all au-
thors feel about having contributions recognized, and it hardly seems fair to have 
older generations drift entirely out of consciousness simply because they are no 
longer around to defend themselves. Second, original papers on difficult topics 
sometimes provide clearer explanations than anything that ever follows. Review 
articles quickly race over elementary points so as to provide comprehensive cover-
age of current developments, while textbooks easily make assertions, ignoring the 
complex web of evidence that eventually produced a consensus. 

To try to ensure that major portions of the field were not left unrepresented, I 
somewhat arbitrarily chose three series of review articles and included a reference 
to almost every article with a bearing on condensed matter physics in the last 30 
years. These are: Solid State Physics: Advances in Research and Applications, 
Reviews of Modern Physics, and Physics Today. Some of these articles have a very 
narrow focus, but the degree of difficulty can happily be estimated with little effort 
by using Ziman's "coefficient of non-specifìcity, calculated as follows: transform 
the title into a succession of A adjectives qualifying S substantives, omitting re-
dundant words like 'physics', 'effects', 'properties', 'materials', etc. Then take 
the ratio A/S. Inspection ... shows quite clearly that if the coefficient is greater 
than 3 the article is too specialized The optimum seems to be in the range 
1 < A/5 < 2" [Ziman (1961)]. 
Origin of the field. The discovery of quantum mechanics raised the hope of ex-
plaining the familiar world from equations at the atomic scale. In early stages this 
enterprise was largely restricted to metals in crystalline form. The field began as 
"metals physics," but the term excluded widely studied solids such as ionic crystals. 
"Solid state physics" was adopted instead, with creation of the Division of Solid 
State Physics by the American Physical Society in 1947. A decade later even "solid 
state" was becoming too restrictive for a field tackling liquid metals, liquid helium, 
liquid crystals, and polymer melts. In 1963, Busch began editing ajournai called 
Physik der Kondensierten Materie/Physique de la matière condensée/Physics of 
condensed matter. The daring term gained usage slowly. The American Physical 
Society Division of Solid State Physics voted in April 1978 to change its name to 
the Division of Condensed Matter Physics. 

Having set itself the modest goal of explaining the whole material world, in-
cluding structural and electronic properties of solids and liquids, the field of con-
densed matter physics has become enormous. It overlaps statistical physics, ma-
terials physics, and fluid and solid mechanics. The diversity in topics obscures a 
unity of approach. 

Experiments play a crucial role. The systems studied by condensed matter 
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physics are far too complicated for anyone to deduce their qualitative behavior 
from atomic scale considerations. Only once experience has determined the nature 
of the qualitative problem does theory have a chance of explaining it. On the 
other hand, most experiments are impossible to interpret quantitatively without 
theoretical support. 

Condensed matter theories search for relations between separate levels of de-
scription. The fundamental underlying equations are largely useless, so theories of 
condensed matter are largely based upon equations whose form is guessed rather 
than derived, and in which parameters or methods of approximation are constrained 
by symmetry and determined by experiment. Often there is a friendly competition 
between simple models, employed for conceptual understanding, and attempts at 
realistic computation. There is sometimes a tendency to speak a bit contemptuously 
of the simple models. However, "for many purposes a theory whose consequences 
are easily followed is preferable to one which is more fundamental but also more 
unwieldy" [Thomson (1907), p. 2]. 
Acknowledgements. In the course of preparing this manuscript, I received gen-
erous assistance from dozens of people who supplied figures, answered queries, 
and took the time to debunk anecdotes that not only seemed to good to be true, but 
were in fact too good to be true. Some who wrote comments include Martin Bazant, 
Hans Bethe, Danita Boonchaisri, Steve Girvin, Stefan Hiifner, David Lazarus, Neil 
Mathur, David Mermin, George Sawatzky, and John Ziman. Lynn Boatner, Janie 
Gardner, and Douglas Corrigan of Oak Ridge National Laboratory contributed the 
micrograph appearing on the front cover. At The University of Texas at Austin, I 
was particularly helped by Alex de Lozanne, John Markert, Jim Erskine, Ken Shih, 
and Hugo Steinfink. Bob Martinez was the first person after me to try teaching 
from the text. Ted Einstein of the University of Maryland, Sokrates Pantelides of 
Vanderbilt University, and Rashmi Desai of The University of Toronto have also 
taught from draft versions, and they found embarrassing errors that I am perfectly 
glad to see disappear with the drafts. Roberto Diener trapped many additional er-
rors. Caryn Cluiss assisted in the task of organizing permissions from numerous 
publishers. 

As part of writing the book, I wanted to learn about band structure calcula-
tions. My colleague Len Kleinman helped with a steady supply of physical in-
sight, provocative commentary, and warnings about the method of successful ap-
proximations, where twiddling hidden parameters stops as soon as one obtains 
an expected answer. Hans Skriver kindly supplied me with a copy of the code de-
scribed in Skriver (1984). Roland Stumpf supplied improved versions of the plane-
wave pseudopotential code described in Stumpf and Scheffler (1994), and he also 
answered interminable series of questions. Most recently, calculations were per-
formed using VASP (Vienna ab-initio simulation program) developed at the Institut 
für Theoretische Physik of the Technische Universität Wien by Kresse and Hafner 
(1993), Kresse and Hafner (1994), Kresse and Furthmüller (1996b), and Kresse 
and Furthmüller (1996a). 

I owe special thanks to Qian Niu. On many occasions I found myself baffled 
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by an apparently simple point, and I asked one expert after another without finding 
a resolution. When all other avenues failed, I took the stairs one flight down to 
Qian's office, where after a brief smile he explained matters to me with perfect 
clarity. 

The Exxon Education Foundation and the National Science Foundation gave 
me the means to buy a laptop computer, which in turn allowed me to continue 
thinking about condensed metaphysics in unexpected places. My thanks to the cit-
izens of Gavdos for allowing me to use cast-off solar panels, to Elias Kyriakopoulos 
for repairing a 12-volt power inverter when all seemed hopeless, and to Nikos Pa-
panicolaou for unquestioning hospitality at the University of Crete whenever life 
without a library became just too difficult. Last thanks of all to my wife Elpida, 
without whose quiet encouragement and example of determination I would never 
have had the courage to complete this book. 

Austin, Texas MICHAEL MARDER 
September, 1999 
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Preface to second edition 

The goal of this second edition is to consolidate thousands of changes suggested 
by readers since the first was published, to improve presentation of several topics, 
and to add a small number of new ones. 

Minor typographical errors were originally very numerous, and over 40 indi-
viduals from all over the world contributed corrections. The top 5 error-finders 
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found so many that they deserve special recognition: Roberto Diener read the 
book cover to cover, checked every derivation, and found 244; Dominic Holland 
found 33; Erkki Thuneberg found 20; Dale Kitchen found 15; Qian Niu found 
11. Particularly extensive and detailed comments arrived from Wesley Matthews, 
Sasha Chernyshev, and Vincenzo Fiorentini. 

The primary reason for many students to learn Condensed Matter Physics is for 
the topics of electron and phonon band structures. The presentation of these topics 
had been rushed, and the new presentation is slower, working out one-dimensional 
examples before proceeding to the full three-dimensional and abstract formula-
tions. 

The entire discipline of condensed matter is roughly ten percent older than 
when the first edition was written, so adding some new topics seemed appropriate. 
For the most part, these new topics were ones whose importance is increasingly 
appreciated, rather than material first derived in the last few years. They include 
graphene and nanotubes, Berry phases, Luttinger liquids, diffusion, dynamic light 
scattering, and spin torques. 

The world in which this edition was produced is slightly different from that of 
the previous one. The first edition required many, many days walking up and down 
library stacks searching for articles. Now almost all academic publications are 
available through the internet in the world's most remote corners. Laptop comput-
ers were a rare luxury twelve years ago. Now they are a common commodity. The 
discipline of condensed matter physics itself underlies these technical advances. 
The benefits of instant connection everywhere to everything are partly offset by the 
corresponding demand to respond instantly to everyone everywhere about every-
thing. I thank the National Science Foundation for sustained support that allowed 
me some periods of peace where I could finish this book. 

Phalasarna, Crete MICHAEL MARDER 
June, 2010 
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1. The Idea of Crystals 

1.1 Introduction 

From the point of view of the physicist, a theory of matter is a policy 
rather than a creed; its object is to connect or co-ordinate apparently 
diverse phenomena, and above all to suggest, stimulate and direct exper-
iment. —Thomson (1907), p. 1 

The goal of condensed matter physics is to understand how underlying laws 
unfold themselves in objects of the natural world. Because the complexity of con-
densed matter systems is so enormous, the number of atoms they involve so great, 
and the possibility of solving all underlying equations in full detail so remote, the 
laws of greatest importance are principles of symmetry. 

A first step is to describe how atoms are arranged. As a mental image of ar-
rangement, the idea of the crystal has emerged out of an obscure class of minerals 
to dominate thought about all solids. Here is symmetry with a vengeance. A small 
group of atoms repeats a simple pattern endlessly through the stretches of a macro-
scopic body. The most precise experiments and the most detailed theories of solids 
are all carried out in perfect crystals. Yet the world is neither a collection of crys-
tals, nor a collection of solids wishing to be crystals but falling short of perfection. 
Principles of symmetry more general than crystalline order still function in struc-
tures bearing no resemblance to the perfect lattice, while a rigid insistence upon 
considering only solids in crystalline form would force one to abandon most natu-
rally occurring substances and technologically important materials. Nevertheless, 
the science of condensed matter physics begins with the crystal, its single most 
important structural idea. 

In Greek, the word κρύσταλλος originally referred to ice. In the middle ages, 
the word "crystal" first referred to quartz, and later to any solid whose external 
form consisted of flat faces intersecting at sharp angles (Figure 1.1). The first law 
of crystal habit, discovered by Steno (1671), and illustrated in Figure 1.2, states 
that corresponding faces of quartz always meet at the same angle. The second law 
of crystal habit (see Problem 9 in Chapter 2), discovered by Haiiy (1801), states 
that if one takes three edges of a crystal as coordinate axes and then asks where the 
planes of other faces intersect these axes, the three intersection points are always 
rational multiples of one another. Haiiy explained this law by assuming, as many 
other scientists had done since around 1750, that crystals were built of vast numbers 
of identical units, perhaps small polyhedra, stacked together in a regular fashion. 
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4 Chapter 1. The Idea of Crystals 

Figure 1.1. (A) Naturally occurring crystals of iron pyrite, showing the intersection of flat 
faces at definite angles that characterizes the external appearance of all crystals. (Cour-
tesy of J. Sharp, University of Texas.) (B) Small equilibrium crystals of gold at 1000 °C, 
roughly 5 μιη in diameter, showing alternating smooth and faceted surfaces. [Source: 
Heyraud and Métois (1980), p. 571.] (C) Equilibrium crystal of solid 4He at 0.8 K. (Cour-
tesy of S. G. Lipson, Technion; see Lipson (1987).) 

Figure 1.2(A) shows one of his diagrams, the earliest published image of crystalline 
arrangement. 

As the nineteenth century progressed, an elaborate mathematical theory of 
symmetry developed, showing that observed symmetries of natural crystals could 
be identified with the symmetries of regular lattices. The complete enumeration of 
all possible classes of crystals was completed in 1890, waiting for the discovery of 
X-ray scattering two decades later that would make it possible to specify crystals 
down to atomic detail. 

1.1.1 Why are Solids Crystalline? 

Crystalline order is the simplest way that atoms could possibly be arranged to form 
a macroscopic solid. Small basic units of atoms repeat endlessly, one placed next 
to the other, so the whole solid can be described completely by studying a small 
number of atoms. It is remarkable that this simple structural model can be used to 
understand so much. 

Why are low-energy arrangements of atoms so often periodic? No one really 
knows. A simple explanation is that if there is some optimal neighborhood for 
each atom, then the lowest energy state for a large number of atoms gives this same 
neighborhood to every atom. One might try to check this idea by imagining how 
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Figure 1.2. (A) The first published picture of the structure of a crystal. [Source: Haiiy 
(1801).] (B) The first law of crystal habit states that when various crystals can be oriented 
so that their faces can be placed in one-to-one correspondence, with all corresponding faces 
parallel, then all angles between the faces are the same. The sketches of red copper oxide 
(Cyprus oxide, CU2O) are taken from Haiiy (1801), Plate 71. A comprehensive catalog of 
such diagrams was compiled by Groth (1906-1919). 

the energy of a collection of atoms depends upon their relative locations, writing 
down an energy functional, and then minimizing the functional with respect to all 
atomic positions (Problem 5). Such a calculation is a serious oversimplification, 
mainly because it ignores most of the complexities of quantum mechanics, but 
even in this context there is no theorem to prove that periodic arrays provide ground 
states. Nevertheless, for almost all the elements and for a vast array of compounds, 
the lowest energy state is crystalline. The only exception among the elements is 
helium, which remains liquid at zero temperature and standard pressure. 

Equilibrium lattice structure are functions of temperature and pressure. Even 
at temperatures where vibrations about a particular state are small, the entropy 
associated with the vibrations may be enough to cause the ions to switch from one 
configuration to another. This switch is possible because the differences in energy 
between different crystalline configurations can be very small: according to Table 
11.9, as little as one part in 104. Examining a source such as Emsley (1998) shows 
that most elements change crystal structure several times before they melt. In some 
cases, more than one crystalline form of an element or compound may be stable at 
a given temperature and pressure; such compounds are allotropie. Carbon at room 
temperature is stable both as graphite and as diamond, while tin comes as gray 
tin or white tin, the first of which is a semiconductor and the second of which is 
a metal. Only one of these states can be a true equilibrium state, yet the time to 
transform spontaneously from one to the other is so immense that this possibility 
may safely be neglected. 

Even should it eventually be proved that the lowest energy state of assemblages 
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Figure 1.3. (A) Two dimensional crystal of carbon just one atom thick, in the form of 
graphene, hanging freely from a metal scaffold [Source: Meyer et al. (2007), p. 60]. (B) 
Theoretical image of the honeycomb lattice of graphene at the atomic scale. The spheres 
represent carbon atoms, and the rods indicate attractive bonds between nearest neighbors. 

of atoms really is crystalline, it does not follow that perfect crystalline structures 
will always appear in nature or provide the greatest interest for study. The world 
is largely constructed of solids whose crystalline order is defective, or absent alto-
gether. 

1.2 Two-Dimensional Lattices 

A crystal is a solid where the atoms are arranged in the form of a lattice. A lattice 
is an arrangement of points where the same pattern repeats over and over again. If 
one were to move from place to place over a lattice taking photographs it would 
be impossible to tell one part of the lattice from another. Two-dimensional lattices 
are much easier to picture and understand than their three-dimensional counter-
parts. Therefore, all the central definitions for lattices will first be introduced in a 
two-dimensional setting. Two-dimensional lattices are not mathematical fictions. 
They naturally occur as surfaces and interfaces of three-dimensional crystals, and 
sometimes are created free-standing in their own right (Figure 1.3). 

1.2.1 Bravais Lattices 

The simplest type of lattice is called a Bravais lattice. In a Bravais lattice the 
neighborhood of each and every point is exactly the same as the neighborhood of 
every other point. In two dimensions, the location of every point in such a lattice 
can be described in the form 

R = n\d\ + «2«2 , "l and «2 are integers. ( 1 . 1 ) 

where the two-dimensional vectors 5/ are called primitive vectors and must be 
linearly independent. The choice of primitive vectors is not unique—one makes 
choices that are as simple as possible or that have some nice symmetry to them. 
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Example: Hexagonal Lattice. To create a hexagonal lattice, take 

(X\ = a{\ 0 ) a ' s t n e lattice spacing illustrated in Figure ( 1 . 2 a ) 

*2 = * ( ^ ) - 0-2b) 

To illustrate that this choice is not unique, one can equally well choose 

^ = * ( ^ ) · d-3b) 

One way to make a mistake is to choose a set of vectors that is not linearly inde-
pendent. For example, trying to build the hexagonal lattice out of the three vectors 

α" = α(1,0) (1.4a) 

<=·(ΊΤ) (K4b) 

% = <■({ ψ ) (1.4c) 

would constitute an error since a'[ = a" ~ a'j. 

1.2.2 Enumeration of Two-Dimensional Bravais Lattices 

In two dimensions there are five Bravais lattices, shown in Figure 1.4. 

Square Lattice: The square lattice is symmetric under reflection about both x and 
y axes and with respect to 90° rotations. 

Rectangular Lattice: When compressed along one axis, the square lattice loses 
the 90° rotational symmetry and becomes the rectangular lattice. 

Hexagonal Lattice: The hexagonal (or triangular) lattice is invariant under re-
flections about the x and y axes as well as with respect to 60° rotations. 

Centered Rectangular: The centered rectangular lattice results from a compres-
sion of the hexagonal lattice and loses the 60° rotational symmetries. 

Oblique Lattice: Finally, an arbitrary choice of a\ and a2 with no special symme-
try results in an oblique lattice. This lattice still possesses inversion symmetry, 
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Figure 1.4. The five two-dimensional Bravais lattices. Note that the centered rectangular 
lattice can be built by repetition of the structure in the hollow box, which shows how it 
obtains its name. The figure also shows Wigner-Seitz cells for each lattice. One constructs 
them by choosing some point 0 in the lattice and then drawing the perpendicular bisec-
tor of the line between 0 and each of its neighbors. The Wigner-Seitz cell is the region 
surrounding 0 contained within all these perpendicular bisectors. 
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1.2.3 Lattices with Bases 

It is important to emphasize that the neighborhoods of all particles must be iden-
tical under translation in order for a structure to qualify to be a Bravais lattice. 
Most lattices occurring in nature are not Bravais lattices, but are lattices with a 
basis. Lattices of this type are constructed by beginning with a Bravais lattice, but 
putting at each lattice site an identical assembly of particles, rather than a single 
rotationally invariant particle. 

Example: Honeycomb Lattice. The honeycomb lattice, shown in Figure 1.5, is 
a lattice with a basis. One can construct it by starting with a hexagonal lattice with 
primitive vectors of Eq. (1.2) and then decorating every lattice point with basis 
particles at 

%)2 = ü ( 0 1 . The basis vectors are being described in ( 1 . 5 b ) 
y 2 v / 3 / Cartesian coordinates. 

Another way to describe basis vectors is in terms of a non-Cartesian coordinate 
system, where the coordinates refer to multiples of the primitive vectors: 

U, = ( 1 / 6 1/6) since2I/6 + %/6 = e ( ^ 0 ) = i i 1 . ^ ^ 

u2 = ( - l / 6 -1 /6 ) . (1.6b) 

The left- and right-hand particles in each cell find their neighbors off at different 
sets of angles. Notice, however, that the neighborhood of every particle is identical 
if one is allowed to rotate it through π/3 before making comparisons. While this 
fact does not make the honeycomb lattice a Bravais lattice, it means that the qualita-
tive arguments explaining why one expects crystalline ground states for interacting 
particles work just as well for lattices with bases as they do for true Bravais lattices. 

Selective Destruction of Symmetry by a Basis. Once one decorates a lattices 
with a basis, its symmetries change. Adding a basis does not automatically destroy 
the rotational and reflection symmetries of the original lattice; in general, these 
symmetries can be destroyed selectively by adding basis elements of various types. 
For example, if one builds a triangular lattice and then decorates it as shown in 
Figure 1.6, the rotational symmetries of the original triangular lattice are preserved, 
but the reflection symmetries are gone. 

1.2.4 Primitive Cells 

Because lattices are created by repeating small basic units over and over throughout 
space, the full information of a crystal can be contained in a small region of space. 
Such a region, chosen to be as small as it can be, is called a primitive unit cell. For 
example, for the square lattice, a square can be used as a primitive cell, as shown 
in Figure 1.7 (A). 
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(C) 

Figure 1.5. One may construct the honeycomb lattice by beginning with a hexagonal 
lattice (A), and replacing the single point in the center of each cell with a pair of points, as 
shown in (B). The honeycomb lattice is more obviously visible in (C). Because the top and 
bottom particles in each cell do not have identical neighborhoods, the honeycomb lattice 
is a lattice with a basis, and not a Bravais lattice. The dotted line is a glide line; the lattice 
is invariant when translated horizontally by a/2 and reflected about this line, but is not 
invariant under either operation separately. 

< 4 4 4 ^ ^ 
H * < * < * 

^ Λ( * -i * t 

H < < -i < * 
-y * ^ -y Λ( ^ 

k H * Λ? ^ -y 

Figure 1.7. Two primitive 
cells for the square lattice: 
one cell has a particle at the 
corner, while the other has a 
particle at the center. 

Figure 1.6. A triangular lattice dec-
orated with chiral molecules so as to 
lose reflection symmetries. 
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Primitive cells are not unique, as one can see by comparing Figures 1.7(A) and 
1.7(B). However all different choices must have exactly the same area. The reason 
is that in a Bravais lattice the primitive cell contains exactly one particle, while the 
primitive cells put end to end fill the crystal; therefore the volume of the primitive 
cell is exactly the inverse of the density of the crystal. Cells are free to have rather 
peculiar shapes, as in Figure 1.8, just so long as they fit together properly. In two 
dimensions, one says they form a tiling or a tessellation. 

1.2.5 Wigner-Seitz Cells 

It is convenient to have a standard way of constructing the primitive cell, and it 
is valuable to have a primitive cell invariant under all symmetry operations that 
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leave the crystal invariant. Such a construction is provided by the Wigner-Seitz 
primitive cell. It is built by associating with each lattice point all of space which 
is closer to it than to any other lattice point. Because this relation does not change 
under any operation that leaves the lattice invariant, the Wigner-Seitz cell displays 
the full symmetry of the lattice. The Wigner-Seitz cells for the symmetrical two-
dimensional Bravais lattices are shown in Figure 1.4, where their construction is 
also described. 

Figure 1.8. An unusual tiling of the 
plane, as discussed by MacGillavry 
(1976). 

Frequently a convenient way to display the full structure of a crystal is by draw-
ing a nonprimitive unit cell: one that contains several particles and that produces 
the full crystal upon repetition. The rectangular box used in Figure 1.4 to illustrate 
the construction of the centered rectangular lattice provides an example. 

1.3 Symmetries 

The word symmetry has been used casually in discussing the two-dimensional Bra-
vais lattices, but before continuing to the three-dimensional lattices, it is best to 
make it a bit more precise. 

One motivation for studying crystal structure from the point of view of symme-
tries is that these are intimately bound up with the experimental observations one 
is able to make. In the case of scattering, to be studied in Chapter 3, the intensities 
of peaks result from hosts of details, but the fact of sharp peaks is exclusively the 
result of lattice symmetries; to understand what a scattering experiment means, one 
must understand what crystalline symmetries are possible. Equally important is the 
fact that solutions of Schrödinger's equation in Chapter 7 for electrons in periodic 
crystals will only be possible when simplifications resulting from symmetry are 
fully employed. 

1.3.1 The Space Group 

The general view of symmetries begins from the observation that one is interested 
in picking the lattice up, moving it rigidly, perhaps rotating or reflecting it, placing 
it back down, and finding that all the points following this operation overlap the 
original points. That is, problem is to find the complete set of ways that a given 
crystal can be transformed so that the distances between all points are preserved, 
and the crystal perfectly overlap itself after the transformation. Most rigid motions 
can be composed from simpler ones, so the real goal is to find a minimal set of 
transformations. Rigid motions include not only translations and rotations, which 
can be accomplished by twisting a body around in space, but also inversions. 
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Rigid motions can be described as a translation a plus a rotation Jl: 
Explicit expressions for 31 in terms of angles and rota-

/~> _ jt _i_ <T> (-p f. n\ tion axes appear in books on classical mechanics such as ( i n\ 
yy u^i-J\\r,n,u). M a r i o n a n d Thornton ( 1988) or Goldstein ( 1980) under V ; 

the heading of Euler angles. 

3?(r, n, Θ) produces a rotation through Θ around axis h passing through point r. 
Operators 3? that invert or reflect the crystal are also allowed. 

The complete set of rigid motions that take a crystal into itself is called the 
space group. It is a group (formally defined in Section 7.3) because it consists 
of a set of operations (rigid motions) with a natural product (perform a first rigid 
motion, then another—the combined result is still a rigid motion). The unit element 
consists of doing nothing. 

1.3.2 Translation and Point Groups 

Two subgroups of the space group deserve special mention. The translation group 
consists of translations through all lattice vectors of the form n\a\ +«2^2 · . ·, and 
by definition it leaves the crystal invariant. The point group consists of those op-
erations that leave the crystal invariant and which in addition map some particular 
Bravais lattice point onto itself. It might seem that the space group is simply a prod-
uct of the point group and the translation group. This is true for Br-avail lattices, 
but not for crystals in general, since there can exist combinations of translation 
and reflection or rotation that leave a crystal invariant when used together but not 
separately. The honeycomb lattice (Figure 1.5C) is invariant when translated hori-
zontally by a/2 and then reflected about a glide line. Screw axes, where a lattice is 
invariant under a combination of translation and proper rotation neither of which is 
itself a symmetry, first appear in three dimensions. A nanotube with symmetry of 
this type is shown in Figure 1.9. 

Figure 1.9. The points on this nanotube map back onto themselves after translation through 
a and rotation through % but neither of these operations alone is a symmetry of the nan-
otube. 

Does the point group of a lattice define the lattice? The answer is no. Different 
lattices can be invariant under precisely the same set of point symmetry operations. 
For example, the rectangular and centered rectangular lattices shown in Figure 1.4 
have many symmetries in common: 

Translational symmetries: The two crystals can be translated along arbitrary mul-
tiples of their two primitive vectors. 
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Point group symmetries: Choose any lattice point as the origin. Both rectangular 
and centered rectangular lattices can be reflected about the x or y axes, and 
each is invariant under a 180° rotation. 

Because the rectangular and centered rectangular lattices share the same point 
group symmetries, they are said to belong to the same crystal system, but they 
are not the same lattice. 

One might protest that the rectangular and centered rectangular lattices are ob-
viously different because their primitive vectors are different. However, making 
this argument would lead one to conclude that two square lattices of different size 
are different as well. The correct question to ask in determining if two lattices 
are the same is whether one structure can be deformed continuously into the other 
without losing symmetries along the way. For example, if one lattice is twice the 
size of another, but otherwise the same, one would want to call them the same. Al-
though centered rectangular and rectangular lattices share point group symmetries, 
they are different lattices and have different space groups. They are different be-
cause there exists no way to deform the first continuously into the second without 
temporarily destroying some symmetries, as indicated in Figure 1.10. 

Mirror plane. ..broken.. ...and restored 

Rectangular ^ Centered Rectangular 

Figure 1.10. In deforming the rectangular lattice into the centered rectangular lattice, 
reflection symmetry about the y axis is destroyed. 

A more formal expression of this same idea uses the idea of a change of co-
ordinates. Suppose one has a first group of symmetry operations, G = 5i + a and 
a second group G' — Jl' + a'. Then the two groups are equivalent if there exists a 
single matrix S (change of coordinates) such that 

S~l3lS + S~lä = 3i' + a. (1.8) 

In other words, G and G' must be the same up to linear changes of coordinate 
systems. This definition of equivalent lattices is the same as the previous one, 
because once one has the matrix S, then there is a family of matrices 

S, = ( ! - / )+» , (1.9) 
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which varies smoothly between the unit matrix and S as t varies between 0 and 
1. It generates explicitly a smooth deformation of one lattice into the other while 
preserving the group operations. 

1.3.3 Role of Symmetry 

Perhaps symmetry is more important for physicists to understand the world than it 
is for the world itself. Most of the exact statements in physics result from symmetry 
arguments, and often symmetry provides the only path to making any substantive 
statement about complicated assemblies of matter. Its importance persists in con-
densed matter physics, although the discipline's domain includes disordered and 
noisy systems. Helpful books on the formal theory of symmetry in physics include 
Heine (1960) and Tinkham (1964). 

Problems 

1. Honeycomb lattice: 

(a) Verify that the honeycomb lattice described by Eq. (1.5) has properly been 
constructed so that the distance between all neighboring points is identical. 

(b) From Table 2.1, the lattice spacing of graphene is 2.46Â. Find the distance 
between nearest neighbors (Figure 1.3). 

(c) Find the density of graphene in gm/cm2. 

2. Hexagonal lattice: 

(a) The hexagonal lattice may be viewed as a special case of the centered rectan-
gular lattice. Referring to Figure 1.4 and to the conventional unit cell depicted 
there, find the ratio c/a for which the centered rectangular lattice would be-
come hexagonal. 

(b) Enumerate the symmetries of the hexagonal lattice, and compare them with 
the symmetries of the centered rectangular lattice. 

3. Nanotube structures: To form a single-walled nanotube, one rolls up a sin-
gle atomic layer of graphite, graphene, as shown in Figure 1.11. Referring 
to Figure 1.11 (A) and (B), all nanotubes can be indexed with two integers m 
and n where c = ma\ + nai and a\ and a.2 are primitive vectors; one created 
in this way is an (m, n)-nanotube. 

(a) Are all structures labeled by distinct pairs of integers m, n G (—oo, oo) dif-
ferent from each other? 

(b) What are the indices for the nanotube appearing in (C)? 
(c) Suppose that the atoms of a two-dimensional crystal lie at locations R, and 

that the crystal is rolled into a cylinder by pulling together two atoms sepa-
rated by vector c as shown in Figure 1.11 (A). Write down an explicit expres-
sion for locations of atoms after the sheet has been rolled into a tube. 
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Figure 1.11. How to roll a sheet of graphene into a nanotube. 

4. Allowed symmetry axes: 

(a) Consider a two-dimensional Bravais lattice that is left invariant after rotation 
by angle Θ around the origin. Suppose the lattice to have points at (0, 0) and 
(a, 0). By requiring the image of (a, 0) under rotations through ±θ to be in the 
Bravais lattice, find a simple expression that implicitly specifies all possible 
rotation axes. 

(b) Prove that the only allowed axes are twofold, threefold, fourfold, and sixfold. 
In particular, it is impossible for a Bravais lattice to have a fivefold rotation 
axis. 

5. Two-dimensional ground states: Portions of this problem are most easily 
carried out with the aid of a computer algebra program or brief compiled 
programs. 

(a) Consider a collection of particles in two dimensions whose energy is 

«w 
where 

^(r) = <Uoexp(-r)(^-l) if r < 1.5 ( U 1 ) 

I 0 else, 

and r,j is the distance (measured, say, in Â) between particles / and j . Find 
the crystal structure in Figure 1.4 which provides a minimum energy state for 
this potential, and the equilibrium lattice spacing, assuming no particles are 
at a distance less than 1. The potential has been chosen so that only nearest 
neighbors interact in the ground state. Do not check all crystal structures 
explicitly, only the square and hexagonal lattices. 
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(b) Suppose that φ is replaced by 

4>(r) = \ &>exp(-r)(—-1) i f r < 1.5 ( L 1 2 ) 
I 0 else. 

Show that particles would collapse into a state of high density. It is not nec-
essary to perform sums numerically: Consider what happens when particles 
are so closely spaced that they can be thought of as constituting a continuous 
distribution. 

(c) Taking for φ 

φ(ή = φο^χν(-ή(^-ή (1.13) 

and assuming that the ground state is a lattice of the same symmetry as in part 
(a), find the equilibrium lattice spacing and energy per particle within 10%. 
This sum does need to be performed numerically. 
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2. Three-Dimensional Lattices 
2.1 Introduction 

In order to classify the crystalline solids found in nature, one must study three-
dimensional lattices. While the subject involves few concepts not already present in 
the two-dimensional case, the number of possible structures is bewilderingly large. 
Fortunately, a large number of the elements adopts particularly simple structures. 
On the other hand, alloys and compounds explore countless different forms, of 
which over 400,000 have now been cataloged; these cannot be summarized in any 
neat way despite the aid provided by the theory of symmetry. 

There are 32 distinct point groups consistent with crystalline symmetry in 
three dimensions, which were first enumerated by Hessel (1830), spurred on by 
the desire to classify the shapes of naturally occurring rock crystals. The three-
dimensional Bravais lattices were first correctly enumerated by Bravais (1850); 
solution of this problem may seem easier than that of finding all point groups, but 
it is more abstract, since crystal surfaces are visible, while lattices are deduced as 
an economical explanation for their appearance. Listing of lattices with bases was 
begun by Sohncke (1879), who found 65 lattices. The full number is 230, and 
these were enumerated by Fedorov (1895) and Schonflies (1891). Fedorov had 
priority in most respects, but only following correspondence between the two sci-
entists were the final errors corrected; in one of Schönflies' early papers, 227 space 
groups appear. Many other historical details are related by Ewald (1962), Phillips 
(1971), and Hoddeson et al. (1992). 

This chapter is designed more for reference than for recreational reading. At 
first the listing of crystal structures may appear more like a dull catalog of animals 
in some distant land than basic physics. Yet knowledge of crystal structures is 
the foundation on which much of the rest of condensed matter physics rests. The 
detailed calculation of electronic and mechanical properties of solids depends on 
knowing where the atoms lie. 

Distribution Among Elements. 
A comprehensive account of everything known about crystal structures cannot 

be confined to one volume, or ten, let alone a chapter. Still, it is worth giving a 
sense of the types of information available, first the elements and then some of 
the more common compound structures. The low-temperature crystal structures of 
the elements are shown in Table 2.1. Room-temperature crystal structures of the 
elements are shown in the periodic table inside the front cover. Not all structures 
are known with certainty; boron has a huge unit cell that continues to resist precise 
determination. The crystal structures mentioned in the chart and in the periodic 
table are defined in the following sections. 
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li Chapter 2. Three-Dimensional Lattices 

Table 2.1. Low temperature crystal systems and crystal structures of the ele-
ments 

Element 
Ac Actinium 
Ag Silver 
Al Aluminum 
Am Americium 
Ar Argon 
As Arsenic 
Au Gold 
Ba Barium 
Be Beryllium 
Bi Bismuth 
B Boron 
Br2 Bromine 
C Carbon 
C 
Ca Calcium 
Cd Cadmium 
Ce Cerium 
Ce 
Cl2 Chlorine 
Co Cobalt 
Co 
Cr Chromium 
Cr 
Cr 
Cs Cesium 
Cu Copper 
Dy Dysprosium 
Er Erbium 
Eu Europium 
F Fluorine 
Fe Iron 
Fe 
Ga Gallium 
Ge Germanium 
Gd Gadolinium 
H2 Hydrogen 
He Helium 
Hf Hafnium 
Hg Mercury 
Ho Holmium 
I2 Iodine 
In Indium 
Ir Iridium 
K Potassium 
Kr Krypton 
La Lanthanum 
La 
Li Lithium 
Lu Lutetium 
Mg Magnesium 
Mn Manganese 
Mn 
Mn 

# Lattice a c or a 
89 CUB 
47 CUB 
13 CUB 
95 CUB 
18 CUB 
33 RHO 
79 CUB 
56 CUB 
4 HEX 
83 RHO 
5 TET 
35 ORC 
6 CUB 
6 HEX 
20 CUB 
48 HEX 
58 CUB 

HEX 
17 ORC 
27 CUB 

HEX 
24 CUB 

CUB 
HEX 

55 CUB 
29 CUB 
66 HEX 
68 HEX 
63 CUB 
9 
26 CUB 

CUB 
31 ORC 
32 CUB 
64 HEX 
1 HEX 
2 HEX 
72 HEX 
80 RHO 
67 HEX 
53 ORC 
49 TET 
77 CUB 
19 CUB 
36 CUB 
57 CUB 

HEX 
3 CUB 
71 HEX 
12 HEX 
25 CUB 

CUB 
TET 

fee 5.31 
fee 4.09 
fee 4.05 
fee 4.89 
fee 5.26 

4.13 54° 
fee 4.08 
bec 5.02 
hep 2.29 3.58 

4.75 57° 
8.74 5.03 
6.67 4.48 

dia 3.57 
2.46 6.70 

fee 5.58 
hep 2.98 5.62 
fee 5.16 
hep 3.65 5.96 

6.24 4.48 
fee 3.55 
hep 2.51 4.07 
bee 2.88 
fee 3.68 
hep 2.72 4.43 
bec 6.05 
fee 3.61 
hep 3.59 5.65 
hep 3.55 5.59 
bec 4.61 

bec 2.87 
fee 3.59 

4.51 7.86 
dia 5.66 
hep 3.56 5.80 
hep 3.75 6.49 
hep 3.57 5.83 
hep 3.20 5.06 

2.99 71° 
hep 3.58 5.62 

4.79 9.78 
bet 3.24 4.94 
fee 3.84 
bec 5.23 
fee 5.72 
fee 5.30 
hep 3.75 6.07 
bec 3.50 
hep 3.50 5.55 
hep 3.21 5.21 

8.89 
6.30 

fct 3.77 3.53 

At 4.2 K. 
Unit cell has 2 atoms. 

Unit cell has at least 50 atoms. 
6=8.72. At 123 K. 8 atoms in unit cell. 
Diamond. 
Graphite.planar structure. 

£=8.26. At 113 K. 8 atoms in unit cell. 

At5K. 

At 49 K. 

b axis 1.001 times a axis. 

hep lattice formed by H2 molecules. 
At 2 K and 26 atm pressure. 

At5K. 

b=l.25. Unit cell has 8 atoms, set in pairs. 

At5K. 
At 58 K. 

Unit cell has 58 atoms. 
Unit cell has 20 atoms. 

(Continued) 
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Element 
Mo Molybdenum 
Mo 
N2 Nitrogen 
Na Sodium 
Nb Niobium 
Nd Neodymium 
Ne Neon 
Ni Nickel 
Ni 
Np Neptunium 
O2 Oxygen 
Os Osmium 
P Phosphorus 
P 
Pa Protactinium 
Pb Lead 
Pd Palladium 
Po Polonium 
Pr Praseodymiurr 
Pr 
Pt Platinum 
Pu Plutonium 
Rb Rubidium 
Re Rhenium 
Rh Rhodium 
Ru Ruthenium 
S Sulfur 
Sb Antimony 
Sc Scandium 
Sc 
Se Selenium 
Si Silicon 
Sm Samarium 
Sn Tin 
Sn 
Sr Strontium 
Ta Tantalum 
Tb Terbium 
Te Tellurium 
Th Thorium 
Ti Titanium 
TI Thallium 
Tl 
Tl 
Tm Thulium 
U Uranium 
V Vanadium 
W Tungsten 
Xe Xenon 
Y Yttrium 
Yb Ytterbium 
Zn Zinc 
Zr Zirconium 

# Lattice 
42 CUB 

CUB 
7 CUB 
11 CUB 
41 CUB 
60 HEX 
10 CUB 
28 CUB 

HEX 
93 ORC 
8 ORC 
76 HEX 
15 ORC 

CUB 
91 TET 
82 CUB 
46 CUB 
84 CUB 

1 59 CUB 
HEX 

78 CUB 
94 MON 
37 CUB 
75 HEX 
45 CUB 
44 HEX 
16 ORC 
51 RHO 
21 CUB 

HEX 
34 HEX 
14 CUB 
62 RHO 
50 CUB 

TET 
38 CUB 
73 CUB 
65 HEX 
52 HEX 
90 CUB 
22 HEX 
81 HEX 

CUB 
CUB 

69 HEX 
92 CUB 
23 CUB 
74 CUB 
54 CUB 
39 HEX 
70 CUB 
30 HEX 
40 HEX 

bcc 
fee 

bcc 
bcc 
hep 
fee 
fee 
hep 

hep 

bet 
fee 
fee 

fee 
hep 
fee 

bcc 
hep 
fee 
hep 

fee 
hep 

dia 

dia 

fee 
bcc 
hep 

fee 
hep 
hep 
fee 
bcc 
hep 
bcc 
bcc 
bcc 
fee 
hep 
fee 
hep 
hep 

a 
3.15 
4.16 
5.64 
4.29 
3.30 
3.66 
4.43 
3.52 
2.65 
4.72 
5.50 
2.74 
3.31 
7.17 
3.93 
4.95 
3.89 

5.16 
3.67 
3.92 
6.18 
5.59 
2.76 
3.80 
2.70 

c or a 

5.90 

4.33 
6.66 
3.82 
4.32 
10.5 

3.24 

5.92 

10.97 

4.46 

4.28 
10.47 24.5 
4.50 
4.54 
3.31 
4.36 
5.43 
9.00 
6.49 
5.82 
6.08 
3.31 
3.60 
4.45 
5.08 
2.95 
3.46 
4.84 
3.88 
3.54 
3.47 
3.02 
3.16 
6.20 
3.65 
5.49 
2.66 
3.23 

58° 

5.27 
4.93 

23° 

3.17 

5.69 
5.91 

4.69 
5.53 

5.55 

5.73 

4.95 
5.15 

At 4 K. Unit cell has 8 atoms. 

At4K. 

6=5.87. Unit cell has 4 atoms. 
At3K. 

Black Phosphorus, 6=4.38, unit cell has 8 atoms. 
White phosphorus. 

6=4.82, a=102°, 16 atoms in unit cell. 
At5K. 

6=12.9. Unit cell has 128 atoms. 
Unit cell has 2 atoms. 

Unit cell has 3 atoms forming spiral chains. 

Unit cell has 3 atoms. 
Gray tin. 
White tin. Unit cell has 4 atoms. 

Unit cell has 3 atoms forming spiral chains. 

At 58 K. 

CUB=cubic, TET=tetragonal, ORC=orthorhombic, MON=Monoclinic, TRI=Triclinic, 
HEX=hexagonal, RHO=Rhombohedral. Source: Wyckoff (1963-1971), vol. 1. 
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2.2 Monatomic Lattices 

Monatomic lattices are those formed from entirely from atoms of a single element. 
In the simplest of these, the atoms form a Bravais lattice. This means that atomic 
positions are given by sums over three primitive vectors, which must be linearly 
independent: 

R = n\a\ + «2^2 + «3«3· "i- "2· a n d "3 a r e i n t eg e r s - T h e subscripts on the (2 .1 ) 
vectors a, do not refer to components of the vec-
tors, but to three separate three-vectors. 

2.2.1 The Simple Cubic Lattice 

Figure 2.1. The simple cubic lattice, showing the lattice spacing a. To view the stereo pair, 
hold the image at a distance of around half a meter, cross eyes until left and right images 
overlap, and focus on the combined image. 

The simple cubic (sc) lattice is described by primitive vectors 

a\=a{\ 0 0), a2 = a(0 1 0), α3 = α(0 0 I) (2.2) 

and pictured in Figure 2.1. The only element ever to choose this structure as its 
ground state is polonium, partly because the simple cubic lattice has large holes 
in it, and most elements prefer to take advantage of the fact that other configura-
tions pack space more efficiently. However, the simple cubic lattice does provide a 
starting point for constructing more common structures. 

2.2.2 The Face-Centered Cubic Lattice 

The conventional unit cell of the face-centered cubic lattice (fee) is constructed by 
putting atoms on the corners of a cube and then putting an atom on each face, as 
shown in Figure 2.2. A set of primitive vectors describing an fee lattice of spacing 
a is 

2i = | ( l 1 0), 32 = | ( 1 0 1), 33 = | ( 0 1 1). (2.3) 

Notice that the lattice spacing, or lattice constant a describes the distance between 
adjacent corners of the cube. It does not give the distance from an atom to its 
nearest neighbor. The Wigner-Seitz cell is shown in Figure 2.2 (B). 
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Figure 2.2. (A) The conventional unit cell of the fee lattice, showing primitive vectors 
and lattice spacing a (stereo pair). (B) Wigner-Seitz cell of the fee lattice. (C) If spheres 
in an fee lattice are given radii a/(2\/2), they pack together. (D) The fee lattice can be 
constructed by stacking two-dimensional triangular lattices in a regular sequence (stereo 
pair). 

The fee lattice is sometimes referred to as cubic close-packed, because if the 
fee lattice is composed of balls with radius a/(2\/2), they stack neatly together, as 
shown in Figure 2.2(C). Within the planes normal to the vector [1,1,1], the atoms 
of an fee lattice lie in a two-dimensional triangular lattice, and one can view the 
lattice as being built from layers of triangular lattices stacked one upon the other, 
as shown in Figure 2.2(D). Primitive vectors to construct the lattice from this point 
of view are the subject of Problem 2. 
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Figure 2.3. (A) The conventional unit cell of the body-centered cubic lattice (stereo pair). 
(B) Wigner-Seitz cell of the bcc lattice. 

The conventional unit cell of the fee lattice is four times as large as a primitive 
unit cell, as one may determine by considering the fee lattice as a cubic lattice with 
a basis (Problem 1). 

More than twenty of the elements adopt the fee lattice, including copper, silver, 
gold, and the noble gases at low temperatures. 

2.2.3 The Body-Centered Cubic Lattice 

The conventional unit cell of the body-centered cubic (bcc) lattice is constructed 
by putting atoms on the corners of a cube and then putting an atom in the middle 
to fill up the big hole in the center, as shown in Figure 2.3(A). A symmetrical set 
of primitive vectors for a lattice of spacing a is 

«i = | ( 1 1 - 1 ) , «2 = | ( - 1 1 1), «3 = | ( 1 " I 1), (2-4) 

and the Wigner-Seitz cell appears in Figure 2.3 (B). As in the case of the fee lattice, 
the lattice constant a refers to the distance between corners of the cube, not to the 
distance between nearest neighbors. 

The conventional unit cell of the bcc lattice is twice as large as a primitive 
unit cell (Problem 1). Sixteen elements adopt the bcc structure at low temperature, 
including iron and uranium. 
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2.2.4 The Hexagonal Lattice 
A hexagonal lattice is pictured in Figure 2.4. This structure does not occur among 
the elements, except as the starting point for the hexagonal close-packed structure. 

Its primitive vectors are 

ai = (αλ/3/2 a/2 0), a2 = (aVÌ/2 -a/2 0), a3 = (0 0 c), (2.5) 

Figure 2.4. Hexagonal lattice described by lattice constants c and a (stereo pair). 

2.2.5 The Hexagonal Close-Packed Lattice 

The hexagonal close-packed (hep) structure, a common ground state among the el-
ements, is like the honeycomb lattice a lattice with a basis. As shown in Figure 2.5, 
it is formed by creating a triangular lattice of lattice constant a in two dimensions. 
Then a copy of this lattice is stacked vertically over the first one, in such a way that 
particles of the second lattice are directly over centers of triangles of the first one, 
at height c/2. A new copy of the original triangular lattice is now stacked directly 
over the first one, at height c, and the stacking sequence begins over again. One 
way to demonstrate that the hep lattice is not a Bravais lattice is to view it from the 
top as in Figure 2.16 (Problem 5); from this angle it appears to be a honeycomb 
lattice, so it must be described as a lattice with a basis. 

To construct the hep lattice, begin with the primitive vectors in Eq. (2.5) and 
supplement them with basis vectors 

( 0 0 0 ) (a/y/3 0 c / 2 ) In Cartesian coordinates. ( 2 . 6 a ) 

( 0 0 0 ) ( 1 / 3 1 / 3 1 / 2 ) . In coordinates described by multiples of the ( 2 . 6 b ) 
primitive vectors, as in Eq. (1.6). 

There is no necessary relation between the lattice constants c and a. However, 
if c = ^/8/3a, the atoms are in just the right location that if expanded to a radius of 

Figure 2.5. Hexagonal close-packed lattice, produced by two interlaced hexagonal lattices 
(stereo pair). 
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a/2, they form a perfect close-packed structure. The difference between this close-
packed structure and the one formed by the face-centered cubic lattice lies in the 
way that successive triangular layers are stacked upon one another. In Figure 2.5, 
notice that one has two choices as to where to put the topmost layer of atoms. In 
the hep lattice, the layers are stacked so that the structure repeats, after two layers, 
while to produce the fee lattice, one stacks them so that they repeat after three, as 
in Figure 2.2(D). More than 25 elements adopt the hep lattice, including zinc and 
titanium. 

2.2.6 The Diamond Lattice 

The diamond lattice is constructed by taking the fee lattice described by Eq. (2.3) 
and making a copy of it, displaced relative to the original by (a/4 a/4 a/4). 
Every atom in the structure has precisely four nearest neighbors, symmetrically 
organized around it, as shown in Figure 2.6. Only four elements commonly assume 
this structure — carbon, silicon, germanium, and tin — but the cultural status of 
diamond and technological importance of silicon make this a structure of great 
significance. 

Figure 2.6. Diamond lattice. Each atom has four nearest neighbors, a structure produced 
by removing four atoms from the bec structure, as shown in the lower left, and then assem-
bling these tetrahedra as shown in the stereo pair to the right. 

2.3 Compounds 

Compounds are crystals made of more than one element. Since at least two types 
of atoms are involved in their construction, they cannot be Bravais lattices, and all 
must be described as lattices with a basis. Hundreds of thousands of different crys-
tals have been cataloged, and only a few common arrangements are listed below. 
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2.3.1 Rocksalt—Sodium Chloride 

The sodium chloride structure (NaCl) alternates sodium and chlorine on points of 
a simple cubic lattice, as shown in Figure 2.7. This structure can be described as 
an fee lattice of lattice constant a, with a basis of a sodium atom at (000), and a 
chlorine atom at a/2(\ 0 0) (see Table 2.2). 

Figure 2.7. The sodium chloride structure can be viewed as a simple cubic lattice in which 
two different atoms alternate, or as two interpenetrating fee lattices (stereo pair). Figure 
11.3 provides an alternate view of NaCl, showing the sizes conventionally attributed to the 
two ions. 

Table 2.2. Crystals with the sodium chloride structure 

Crystal 
AgBr 
AgCl 
AgF 
BaO 
BaS 
BaSe 
BaTe 
CaS 
CaSe 
CaTe 
CdO 

a 
5.77 
5.55 
4.92 
5.52 
6.39 
6.60 
6.99 
5.69 
5.91 
6.35 
4.70 

Crystal 
CrN 
CsF 
FeO 
KBr 
KC1 
KF 
KI 
LiBr 
LiCl 
LiF 
LiH 

a 
4.14 
6.01 
4.31 
6.60 
6.30 
5.35 
7.07 
5.50 
5.13 
4.02 
4.09 

Crystal 
Lil 
MgO 
MgS 
MgSe 
MnO 
MnS 
MnSe 
NaBr 
NaCl 
NaF 
Nal 

a 
6.00 
4.21 
5.20 
5.45 
4.44 
5.22 
5.49 
5.97 
5.64 
4.62 
6.47 

Crystal 
NiO 
PbS 
PbSe 
PbTe 
RbBr 
RbCl 
RbF 
Rbl 
SnAs 
SnTe 
SrO 

a 
4.17 
5.93 
6.12 
6.45 
6.85 
6.58 
5.64 
7.34 
5.68 
6.31 
5.16 

Crystal 
SrS 
SrSe 
SrTe 
TiC 
TiN 
TiO 
VC 
VN 
ZrC 
ZrN 

a 
6.02 
6.23 
6.47 
4.32 
4.24 
4.24 
4.18 
4.13 
4.68 
4.61 

Lattice constants a in Â. Source: Wyckoff (1963-1971), vol. 1. 
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2.3.2 Cesium Chloride 

The cesium chlonde structure (CsCI) alternates cesium and chlorine on the points 
of a body-centered cubic lattice, as shown in Figure 2.8. This structure can be 
described as a simple cubic lattice of lattice constant a, with a basis of a cesium 
atom at (000), and a chlorine atom at a/2(l 1 1) (see Table 2.3). 

Figure 2.8. The cesium chloride structure can be viewed as a body-centered cubic lattice 
with an atom of a second type inhabiting the interior of the cube, (stereo pair). 

Table 2.3. Crystals with the cesium chloride structure 
Crystal a Crystal a Crystal a 
AgCd 3.33 CsCÎ 4TÏ2 NÎÂÎ ÏM 
AgMg 3.28 CuPd 2.99 TiCl 3.83 
AgZn 3.16 CuZn 2.95 Til 4.20 
CsBr 4.29 NH4C1 3.86 TISb 3.84 

Lattice constants a in Â. Source: Wyckoff (1963-1971), vol. 1. 

2.3.3 Fluorite—Calcium Fluoride 

The calcium fluoride structure (CaFl2) may be described as a simple cubic lattice 
with basis (in units of the lattice spacing a and Cartesian coordinates) 

(0 0 0) (0 1/2 1/2) (1/2 0 1/2) (1/2 1/2 0) (2.7) 

of a first type of atom (calcium) and 

(1/4 1/4 1/4) (1/4 3/4 3/4) (3/4 1/4 3/4) (3/4 3/4 1/4) (2.8a) 
(3/4 3/4 3/4) (3/4 1/4 1/4) (1/4 3/4 1/4) (1/4 1/4 3/4) (2.8b) 

of a second (fluorine) (see Figure 2.9 and Table 2.4). 
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Figure 2.9. The calcium fluoride structure (stereo pair) can be viewed as a face-centered 
cubic lattice made from a first type of atom (calcium), with the center of the cell inhabited 
by a cubic arrangement of the second type of atom (fluorine). 

Table 2.4. Crystals with the calcium fluoride structure 
Crystal a Crystal a Crystal a 
BaF? 
CaF2 
CdF2 

Ce02 
Cm02 

6.20 
5.46 
5.39 
5.41 
5.37 

CoSi2 5.36 
Hf02 5.12 
Li20 4.62 
Li2S 5.71 
Mg2Pb 6.84 

Mg2Si 
Mg2Sn 
Na2S 
SrCl2 

uo2 

6.39 
6.77 
6.53 
6.98 
5.47 

Lattice constants a in Â. Source: Wyckoff (1963-1971), vol. 1. 

Figure 2.10. The zincblende structure can be viewed as a diamond lattice, in which alter-
nating lattice points are occupied by two alternating elements, (stereo pair). 

2.3.4 Zincblende—Zinc Sulfide 

The zincblende structure (ZnS) is identical to diamond, except that two species of 
atoms alternate between sites (see Figure 2.10 and Table 2.5). 
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Table 2.5. Crystals with the zincblende structure 
Crystal 
Agi 
AlAs 
AIP 
AlSb 
BeS 
BeSe 
BeTe 
CdS 

a 
6.47 
5.62 
5.45 
6.13 
4.85 
5.07 
5.54 
5.82 

Lattice constants a in Â. 

Crystal 
CdTe 
CuBr 
CuCl 
Cui 
GaAs 
GaP 
GaSb 
HgS 

a 
6.48 
5.69 
5.41 
6.04 
5.63 
5.45 
6.12 
5.85 

Source: Wyckoff ( 1963--1971) 

Crystal 
HgSe 
HgTe 
InAs 
InP 
InSb 
SiC 
ZnS 
ZnTe 

, vol. 1. 

a 
6.08 
6.43 
6.04 
5.87 
6.48 
4.35 
5.41 
6.09 

2.3.5 Wurtzite—Zinc Oxide 

The wurtzite structure (ZnO) is an hexagonal lattice with basis 

( 0 0 0 ) ( α / 2 α / 2 ν / 3 c / 2 ) First species; Cartesian coordinates. ( 2 . 9 a ) 

( 0 0 Cu) (a/2 a/2V3 c/2 + eu) Second species; Cartesian coordinates. ( 2 . 9 b ) 

or 
( 0 0 0 ) ( 1 / 3 1 /3 1 / 2 ) ) First species; primitive vector ( 2 . 9 c ) 
v ' v ' ' ' " coordinates: see Eq. (2.5). 

( 0 0 u) ( 1 / 3 1 /3 U + l / 2 ) ) Second species; primitive vector ( 2 . 9 d ) 
v ' v ' ' ' " coordinates. 

When u = 3/8 and c/a = ^/8/3, every atom is equidistant from four neighbors; 
although these extra symmetries are not inevitable for the definition of the structure, 
natural crystals display them (see Figure 2.11 and Table 2.6). 

Table 2.6. Crystals with the wurtzite structure 
Crystal a c Crystal a 
A1N 
BeO 
CdS 
CdSe 
CuH 

3.11 4.98 
2.70 4.38 
4.13 6.75 
4.30 7.02 
2.89 4.61 

MgTe 
NH4F 
SiC 
ZnO 
ZnS 

4.52 
4.39 
3.08 
3.25 
3.81 

7.33 
7.02 
5.05 
5.23 
6.23 

Lattice constants a and c in Â. In all cases, u = 3c/c 
Source: Wyckoff (1963-1971), vol. 1. 

2.3.6 Perovskite—Calcium Titanate 

The perovskite structure (CaTiC>3) is built from three types of atoms. The calcium 
fill out a simple cubic lattice, the oxygens lie on the face centers, and titanium 
occupy body centers (see Figure 2.12 and Table 2.7). 
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Figure 2.11. The wurtzite (ZnO) structure is an hexagonal structure built with two types 
of atoms, and it allows each atom to have four nearest neighbors of the opposite type. It 
can be viewed as two interlaced hep lattices, just as the diamond and zincblende structures 
are built as two interlaced fee lattices (stereo pair). 

Figure 2.12. The perovskite structure is a simple cubic lattice of calcium, with oxygens 
occupying face centers, and titanium occupying the body center, (stereo pair). 

Table 2.7. Crystals with the perovskite structure 

Crystal 
BaTi03 

CaSn03 

CaTi03 

CaZr03 

CsCdBr3 

CsHgBr3 

a 
4.01 
3.92 
3.84 
4.02 
5.33 
5.77 

Crystal 
CsHgCl3 

CsI03 

κιο3 
KMgF3 

KNiF3 

KZnF3 

a 
5.44 
4.66 
4.41 
3.97 
4.01 
4.05 

LaA103 

LaGa03 

RbI03 

SrTi03 

SrZr03 

YA103 

3.78 
3.88 
4.52 
3.91 
4.10 
3.68 

Lattice constants a in Â. Source: Wyckoff (1963-1971), vol. 2. 
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2.4 Classification of Lattices by Symmetry 

There is a complete classification of lattices by symmetry, which includes no less 
than 230 distinct types and which will be discussed only briefly. 

2.4.1 Fourteen Bravais Lattices and Seven Crystal Systems 

There are precisely seven distinct point symmetry groups that arise when one con-
structs Bravais lattices out of identical point particles. They are called the seven 
crystal systems and are shown in Table 2.8. A related but separate question is how 
many distinct three-dimensional Bravais lattices can be built out of identical point 
particles. The answer is 14, and all are listed in Table 2.8. 

Cubic system: The first symmetry to strike the eye after inspecting the cube has to 
do with the square sides. However, the cubic symmetry class derives its name 
from three threefold axes about lines [1,1,1] between opposite corners of the 
cube. The cube is also invariant under rotations of 90° about any of three 
perpendicular axes, and under reflections about the three planes perpendicular 
to these axes. It has twofold rotation and mirror symmetries about the axis 
[1,1,0]. The three Bravais lattices possessing this set of symmetries are the 
simple cubic, face-centered cubic, and body-centered cubic lattices. 

Tetragonal system: If one stretches the cube to make four of the sides into rect-
angles, then one has an object with the symmetry of the tetragonal group: the 
threefold symmetry is lost, as well as the 90° rotation symmetry about two 
of the axes, but the solid is still symmetric under reflections about planes that 

Figure 2.13. (A) If one stretches a bcc lattice by a factor of y/2 along one of its axes, it 
becomes an fee lattice with lattice constant \[2 times larger, as shown by simply reconnect-
ing the lines between atoms. (B) Deforming tetragonal lattices along their axes produce 
the simple and centered orthorhombic lattices. (C) Deforming tetragonal lattices along 
diagonals produces base-centered and face-centered orthorhombic lattices. 
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Table 2.8. The seven crystal systems and fourteen Bravais lattices in three 
dimensions 

Simple Base- Body- Face-
Centered Centered Centered 
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bisect it. Stretching a simple cubic lattice produces a simple tetragonal lat-
tice, and stretching either a face-centered cubic or a body-centered cubic lat-
tice produces a centered tetragonal lattice. That one can produce only a single 
structure from deformation of the fee and bec lattices follows from the slightly 
surprising fact that an fee lattice can be obtained by expanding a bec lattice 
along one axis by a factor of \/2, as illustrated in Figure 2.13(A). Therefore, 
any distortion of the bec lattice could have equally well been produced by a 
distortion of the fee lattice. 

Orthorhombic system: Next, one can deform the top and bottom squares of the 
tetragonal solid into rectangles, eliminating the last of the 90° rotation sym-
metries. This solid has orthorhombic symmetry. Deforming the simple tetrag-
onal lattice along one of its axes produces a simple orthorhombic lattice, and 
deforming the centered tetragonal lattice produces a body-centered orthogo-
nal lattice, as in Figure 2.13(B). There are two additional orthorhombic lat-
tices, however, which can be produced by stretching the two tetragonal solids 
along face diagonals, as illustrated in Figure 2.13(C). Deforming the simple 
tetragonal lattice in this way produces the base-centered orthorhombic lattice, 
while deforming the centered tetragonal in this way produces a face-centered 
orthorhombic lattice. 

Monoclinic system: One generates a solid with monoclinic symmetry by squeez-
ing a tetragonal solid across a diagonal so as to eliminate the 90° angles on the 
top and bottom faces, leaving the sides built out of rectangles. There are only 
two distinct monoclinic lattices. The simple monoclinic lattice results from 
distortion of the simple orthorhombic lattice, while the centered monoclinic 
lattice results from appropriate distortion of the face-centered, base-centered, 
and body-centered orthorhombic lattices. 

Triclinic system: Final in this progression is the triclinic symmetry which is pro-
duced by pulling the top of a monoclinic solid sideways relative to the bottom 
so that all faces become diamonds. The only symmetry now remaining is in-
version symmetry, and there is only one lattice of this type, the triclinic lattice. 

Rhombohedral or trigonal system: There are two crystal classes still missing 
from the list. If one starts with a cube and stretches it across a body diag-
onal, one gets a solid with rhombohedral or trigonal symmetry. Stretching 
any of the three cubic Bravais lattices in this way produces the same Bravais 
lattice, called the rhombohedral lattice or the trigonal lattice. 

Hexagonal system: Finally, one can form a solid with a hexagon at the base and 
perpendicular walls to illustrate the hexagonal symmetry. There is only one 
Bravais lattice of this type, the hexagonal lattice. 

In this way, one has 14 point groups for lattices built out of points with spherical 
symmetry. 
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2.5 Symmetries of Lattices with Bases 

2.5.1 Thirty-Two Crystallographic Point Groups 

The general task of finding all possible symmetries of lattices is far from finished 
because one must continue to discuss the symmetries of lattices with bases. 

Figure 2.14. A stereogram is a compact two-dimensional representation of the symmetries 
of a three-dimensional object, shown in (A). Identify all the symmetry planes and axes of 
the object and inscribe them upon a sphere, as shown in (B). Next, find the shadow of the 
symmetry planes and axes as shown in (C). This projection is the stereogram, shown in 
Table 2.9 as Td. 

First, one has to construct all the relevant point groups. There is a grand total 
of 32 crystallographic point groups, which are illustrated in Table 2.9. The conven-
tional way to describe these groups among crystallographers is through the use of a 
stereogram, whose construction is illustrated in Figure 2.14. Conventionally, stere-
ograms are decorated with symbols, shown in Table 2.10, that describe all possible 
symmetry axes. A dashed line in a stereogram denotes a plane that is not a mirror 
plane of the object. 

There are two sets of notation for the crystallographic point groups. The 
Schönüies notation appears in the upper part of each cell in Table 2.9. In some 
cases there are two versions of the Schönflies notation, and both are listed. 

C = Cyclic; allows successive rotation about main axis. 

D - Dihedral; contains two-fold axes perpendicular to main axis. 

S = Spiegel; unchanged after combination of reflection and rotation. 

T = Tetragonal. 

O = Octahedral. 
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Table 2.9. The 32 crystallographic point groups 

Triclinic Monoclinic Ortho- Trigonal Tetragonal Hexagonal Cubic 
rhombic 

Point groups are illustrated by stereograms that display the symmetry axes of each group. 
The symmetry axes are described by the symbols defined in Table 2.10. A solid line always 
describes a mirror plane, while a dashed line refers to a plane about which mirror symmetry 
is not present. 
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Table 2.10. Symmetry axes, together with their conventional symbols 

S c h ö n f l i e s International Operation 
Axis type Notation Notation o y 

The proper rotations are identical in the Schönflies and International systems. However, the 
improper rotations are conceived differently. For example, S3 directs one to rotate coun-
terclockwise by 120°, and then reflect across the mirror plane perpendicular to the rotation 
axis. This operation is the inverse of 6, which rotates by 60° and then applies an inversion. 
The two- to sixfold axes do not necessarily have perpendicular mirror planes. However, a 
twofold rotoinversion axis is identical to a mirror plane perpendicular to the axis, a threefold 
rotoinversion axis always includes an inversion center, and sixfold rotoinversion axes always 
have mirror planes perpendicular to the axis. 
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A subscript n = 1 . . . 6 denotes the order of a rotation axis, and subscripts h, 
v, and d denote the three types of mirror plane described in Table 2.10. 

International notation appears in the lower part of each cell in Table 2.9, with 
complete designations on the left, and conventional abbreviations to the right. The 
notation associates each group with a list of its symmetry axes, in accord with Table 
2.10. Notation such as 6m refers to a mirror plane containing a sixfold axis, while 
^ refers to a mirror plane perpendicular to a sixfold axis. 

Figure 2.15. A solid may have pentagonal symmetry, but one cannot tile the plane with it, 
so one cannot build a lattice with this symmetry. 

Table 2.9 is not a complete list of all possible point groups. Rather, it is a list 
of point group symmetries that can be exhibited by a lattice. Of course, one can 
build an object with a fivefold axis, as shown in Figure 2.15. But there is no way to 
build any sort of completely regular lattice that shares this symmetry, as shown in 
Problem 1.4. A lattice with a fivefold axis is crystallographically forbidden. See, 
however, Section 5.10. 

2.5.2 Two Hundred Thirty Distinct Lattices 

The grand total of distinct lattices with bases is 230, exhaustively discussed by 
Hahn and Cochran (1992) and Bradley and Cracknell (1972) or in a more peda-
gogical manner by Borchardt-Ott (1993). A first group of lattices, the symmorphic 
lattices, can be constructed by taking objects of the symmetries described in Ta-
ble 2.9 and placing them with various orientations at the lattice sites of the 14 
Bravais lattices. There are 73 lattices of this type. The remaining lattices are 
nonsymmorphic, which means that they contain symmetry operations in which a 
translation and rotation or reflection applied simultaneously leave a lattice invari-
ant, although neither the translation nor the rotation applied independently would 
do so. A structure containing a symmetry of this type was pictured in Figure 1.9. 
When a translation followed by rotation leaves the lattice invariant, one has a screw 
axis, while when a translation followed by reflection leaves it unchanged, one has 
a glide plane. Problem 5 shows that the hep lattice contains both glide planes and 
screw axes. 

Decorating lattice points with quantum-mechanical spins creates even more 
elaborate possibilities for symmetry groups, because a spin 1/2 particle acquires a 
phase of — 1 after rotation through 2π radians. The symmetry groups obtained in 
this way are called the Shubnikov, color, or magnetic groups; there are 1651 of 
them, and they are discussed by Vainshtein (1994) and Lifshitz (1997). 
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Large though the number of crystal space groups may be, it is small com-
pared to the number of distinct crystals realizing these symmetries, which is with-
out limit. Compilations of crystal structures may be found in Wyckoff (1963— 
1971) , Landolt and Börnstein (New Series), vols. 5-7, 10, and 14, and Pearson 
(1985). Computer automated hardware and software are making it progressively 
easier to analyze new and complicated crystal structures. The Cambridge Struc-
tural Database contains a listing of over 400,000 organic and metal organic com-
pounds. The NIST Crystal Data Base contains data for over 230,000 materials. 
These sources require a paid subscription. For the purposes of most physicists, the 
3500 minerals catalogued in the freely available American Mineralogist Crystal 
Structure Database will be sufficient. 

2.6 Some Macroscopic Implications of Microscopic Symmetries 

Sometimes symmetries of an object that are evident on a macroscopic scale can be 
used to restrict the possible lattices from which it could possibly be constructed. 
Here are a few examples. 

2.6.1 Pyroelectricity 

Pyroelectnc crystals, such as tourmaline, have a bulk dipole moment as a result of 
having a dipole moment in each unit cell. The rather problematic nature of these 
dipole moments will be discussed in Section 22.2. Under normal conditions, stray 
electrons in the environment shield this dipole, making it invisible, but upon heat-
ing or cooling, the ends of the crystal develop momentarily a measurable charge. 
Taking the dipole moment to point along the axis of maximum symmetry, one must 
rule out all point groups that contain a perpendicular mirror plane, or any sort of 
rotoinversion axis, because the dipole changes sign under any of these symmetry 
operations, or any rotation axis perpendicular to the main one. The cubic groups 
can also be ruled out because they all contain threefold axes that are incompatible 
with a dipole moment. Consulting Table 2.9, one sees that the only point groups 
remaining are C„ (n = 1 . . . 6), Cnv (n = 2 . . . 6), and Ci/,. 

2.6.2 Piezoelectricity 

The piezoelectric crystals have no dipole moment in their ground state, but acquire 
one upon application of a mechanical deformation in some direction. Quartz is the 
most common example displaying such behavior. Suppose that one deforms the 
crystal by moving each lattice point a small distance u(r), which varies smoothly 
as one travels through the crystal. The strain tensor is a matrix of deformations of 
the crystal defined by 

1 / dua dug\ 
g a = — 1 — · If βχχ is nonzero, the crystal has been stretched in ( 2 . 1 0 ) 

2 \ Örß drQ I the x direction, while if e^ is nonzero, the crystal 
^ ' has been sheared in the x — y plane. 
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it will be discussed at length in section 12.3. Assuming that the polarization P 
arises as a linear function of the applied strains, it must take the form 

ΡΊ = Σ'ΒαβΊβαβ, (2.11) 
aß 

where 23 is some tensor describing a general linear relationship between dipole 
moment and the strain. Now if one performs an inversion on the crystal, sending 
r —> — r, the strain tensor is invariant, but the polarization must change sign, and 
so therefore must Œ5. This means that if the crystal is invariant under inversion, B 
must vanish. All piezoelectric crystals must therefore be noncentrosymmetric, and 
their point groups exclude D„h and S2· 

2.6.3 Optical Activity 

Certain crystals, such as S1O2 (low quartz) are able to rotate the plane of incoming 
polarized light. Such behavior is only possible if the unit cells are chiral, meaning 
that there is a mirror image of the cell which cannot be related to it by any trans-
lation or rotation. Finding the point groups that have chiral unit cells is the subject 
of Problem 8. 

Problems 

1. Face-centered and body-centered cubic lattices: Consider the face-centered 
and body-centered cubic lattices to be simple cubic lattices decorated with a 
basis. 

(a) Determine the number of basis vectors that is necessary, and write down the 
basis vectors for each of these lattices. 

(b) Determine in each case the ratio of the volume of the conventional unit cell 
to the primitive unit cell. 

2. Face-centered cubic lattice as stacked triangles: 

(a) Let a\ and 02 be primitive vectors for a triangular lattice. Referring to Figure 
2.2 (C), find a third primitive vector that stacks two-dimensional triangular 
lattices so as to produce an fee lattice. 

(b) The cube shown in Figure 2.2(D) can be brought into the orientation depicted 
there by a first rotation around the y axis, followed by a rotation around the i 
axis. Find the two rotation angles. 

3. Fourfold coordination: What is the angle between neighboring bonds in the 
fourfold coordinated diamond and wurtzite lattices? 

4. Hexagonal close-packed lattice: 

(a) Verify that the basis vectors given by Eq. (2.6) result in placing atoms di-
rectly over the centers of triangles along the c axis. 
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(b) Verify that the hep lattice forms a close-packed structure when c/a = γ/8/3. 

5. Glide and screw axes: Let the lower left point in Figure 2.16 be the origin. 

Figure 2.16. Top view of an hep lattice. 

(a) The hep lattice contains a screw axis in the c direction. Referring to Figure 
2.16, describe the Cartesian coordinates of a point through which this axis 
can pass, so that the lattice remains invariant under translation along c by c/2 
followed by rotation through 60°. 

(b) The hep also has a glide plane, which is parallel to a plane containing both 
the a and c axes. Describe where this plane may be located, so that translation 
along c/2 followed by reflection about the plane leaves the lattice invariant. 

6. Packing fractions: It is difficult to avoid asking why elements choose the 
crystal structure they do. Without a quantitative theory of cohesion, developed 
in Chapter 11, this question cannot be answered in detail. However, simple 
arguments can explain a great deal. Many atoms are held together by isotropie 
attraction that favors packing them as closely as possible. The concept of 
packing can be addressed by setting the distance between nearest neighbors 
in a given lattice to 2, putting unit spheres on each lattice site, and asking 
what portion of space is occupied by the spheres. This number is the packing 
fraction and is displayed in Table 2.11. 

Verify the packing fractions listed in Table 2.11. The packing argument ex-
plains the great frequency of the hep and fee structures, although it cannot 
explain how crystals would choose between them. 

7. Three-dimensional ground states: Consider a collection of particles in 
three dimensions whose energy is 

ε = \ Σ Φ(Γν) with (2·12) 
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Table 2.11. Packing fractions for various crys-
tal structures 
Structure 
hep 
fee 
bec 
sc 
diamond 

Packing Fraction 
0.74 
0.74 
0.68 
0.52 
0.34 

0(r) = J 0 o e x p ( - r ) ( p 3 - l ) i f r < 1 . 5 ( 2 1 3 ) 

I 0 else, 

where r;;- is the distance (measured, say, in Â) between particles / and j . Com-
pare the energies of the bec, fee, and hep lattices. Find the lattice spacing 
leading to the minimum energy for each of these three lattices, and find the 
state of lowest overall energy. 

8. Optical activity: Find all the crystallographic point groups allowed for crys-
tals which rotate the plane of incoming polarized light. The group C\ is one 
of them; it is called asymmetric, and all the others are called chiral. 

9. Second law of crystal habit: 

Figure 2.17. Setting for the second law of crystal habit in two dimensions. 

The second law of crystal habit, or Haiiy's law of rational parameters, relates 
the possible faces of a crystal to a set of integers. The prescription, found 
empirically for real crystals follows: 

Pick any three linearly independent edges of a crystal (they will not generally 
be orthogonal) and use them as reference axes, a\, «2, and «3 (see Figure 
2.17). Take any face of the crystal and find the three points where it cuts 
the reference axes; call these points (p\, p2, PÏ). Next, take any other face 
of the crystal, and find again the three points (q\, q2, q-}) where this second 
plane cuts the axes. Then p\jq\ = n , p2/<?2 = >"2, and p^jq-i = r? are rational 
numbers, and the ratios between r\, ri, and rj can be written as the ratios of 
integers. 
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(a) Prove that the law of rational parameters holds for any two-dimensional crys-
tal that is created by drawing straight lines between points of a Bravais lattice. 

(b) Generalize the result to a three-dimensional lattice. 
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3. Scattering and Structures 

3.1 Introduction 

The scattering of X-rays from crystals provided information on the locations of 
atoms within solids that had been the object of speculation for centuries, and it 
rapidly led to a huge scientific enterprise of structure determination, but before the 
first careful experiments of 1912 it was far from obvious that anything could come 
of it at all. 

M. von Laue was struck in 1912 by the intuition that X-rays might scatter 
off crystals in the way that ordinary light scatters off a diffraction grating. This 
hunch preceded any mathematical attempt to quantify the size and character of the 
effect, and if it seems obvious in retrospect, one might keep in mind that neither 
the periodic character of crystals nor the wave nature of X-rays was known with 
certainty at the time. Laue discussed 

his idea with colleagues Sommerfeld, Wien and others with the result of 
encountering a strong disbelief in a significant outcome of any diffraction 
experiment based upon the regularity of the internal structure of crystals. 
It was argued that the inevitable temperature motion of the atoms would 
impair the regularity of the grating to such an extent that no pronounced 
diffraction maxima could be expected. —Ewald (1962), p. 42 

This argument against diffraction effects was in fact quite reasonable. Consider, 
for example, the prospect of scattering off NaCl. The study of elastic deformations 
was well developed in 1912, and salt crystals were known to be anisotropie, but 
characterized approximately by Young's modulus Y (defined in Section 12.3.2) of 
5-1011 ergs cm - 3 . The chlorine atom was known to have a mass of 35 g mole -1, 
and sodium 23 g mole -1; from salt's known density of 4.29 g cm~3, a charac-
teristic spacing of d = 2.5 · 10 - 8 cm between sodium and chlorine could be de-
termined. To account for the observed Young modulus, one would need a spring 
constant between atoms on the order of % = Yd =104 dyne cm - 1 . Making use 
of the equipartition theorem, the characteristic excursion of atoms due to thermal 
fluctuations should therefore be expected to be x = ^/2kßT/% ss 2 · IO -9 cm. This 
distance is fortunately smaller than the interatomic spacing; it has to be, otherwise 
the crystals would melt. However, the best estimate for the wavelength of X-rays 
based upon diffraction around small slits was also of order 10~9 cm. A diffraction 
grating whose vibrations are the same size as the incoming waves hardly seemed 
to pose a promising experiment, and Sommerfeld was reluctant to devote resources 
or personnel. The work was carried out by Friedrich et al. (1912) with equipment 
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pirated from elsewhere; it successfully produced diffraction spots from copper sul-
fate on only the second attempt, the first having failed when photographic plates 
were placed in front of the crystal in the mistaken expectation that reflected X-rays 
would produce the largest effect. Laue's mathematical theory for the directions of 
X-ray maxima followed only a few hours later. At first the theory did not encom-
pass the possibility of a lattice with a basis, with the result that some predicted 
spots were mysteriously absent from the experiment. 

There was some question, at first, about whether the spots observed on the 
photographic plate were truly due to diffraction from the crystal. The doubts were 
largely dispelled by a series of experiments which seemed to rule out any other 
possibility. First the crystalline sample was removed, and it was checked that the 
diffraction pattern disappeared. Second, the crystal was replaced by a powdered 
sample of the same material, and again distinct spots disappeared. Finally, the ori-
entation of the crystal was altered slightly, and the spots were observed slightly 
displaced on the photographic plate. Several years were to pass before it could cor-
rectly be explained why thermal agitation did not obliterate the X-ray interference, 
but by summer of 1912 the phenomenon was well on its way to wide acceptance 
throughout Germany. 

The discovery of X-ray diffraction contains many elements that have been ab-
solutely characteristic of important developments in condensed matter physics. 
The enterprise began with a theoretical notion to which, however, there were com-
pelling theoretical objections. The experiment rapidly encountered a highly regular 
set of phenomena with which theory agreed only uneasily in its first incarnation. 
A rapid simultaneous development of theory and experiment in concert then pro-
duced a new set of concepts and a powerful new experimental tool. 

3.2 Theory of Scattering from Crystals 

3.2.1 Special Conditions for Scattering 

X-rays created a world-wide sensation at the end of the nineteenth century because 
they could produce images of the interior of the human body. This means that 
they can travel through several centimeters of solid matter, attenuating weakly, and 
come out the other side. When X-rays travel through crystals this is usually what 
happens. 

However, there is an important exception. When the wavelength of the X-
rays is chosen precisely right, and simultaneously the orientation of the crystal is 
precisely right, there is constructive interference between the waves scattered by 
successive atoms. Intense narrow beams of X-rays emerge from the crystal in a 
finite number of special directions. Friedrich, Knipping, and von Laue were not 
so lucky as to stumble exactly upon the frequency of radiation needed to create 
the effect. Their X-rays contained a broad spectrum of radiation, and happened 
to contain the special waves (Section 3.3.1). The same considerations apply to 
neutrons and electrons, two other types of waves that can reveal atomic positions 
in condensed matter. Their interaction with matter is mainly linear, so it is enough 
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Figure 3.1. Geometry of a scattering experiment. Radiation of wave vector ko arrives at 
a sample, inducing a circular ring of radiation to depart from each atom. If ko is chosen 
just right, the scattered radiation from the atoms adds constructively in certain directions. 
It is detected at position r, which points in the same direction as the scattered radiation k. 
The Bragg angle Θ characterizing the scattering is half the scattering angle at which the 
radiation is observed. This figure shows the amplitude of the radiation field due to a square 
crystal composed of 25 atoms; the angular range of constructive interference becomes 
much narrower for larger crystals. Figure 3.2 contains a more precise characterization of 
the waves involved in this figure. 

Figure 3.2. Illustration of Bragg scattering at angle Θ — 26.56° from the (21) planes of a 
square lattice. The magnitudes of ko, k, and K are determined using Eqs. (3.38) and (3.39). 
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to pick a single incoming plane wave, study what happens, and build a theory of 
more elaborate scattering experiments by superposition. 

3.2.2 Elastic Scattering from Single Atom 

In a scattering experiment, a plane wave moves into a sample of condensed matter, 
travels through it, interacts, comes out, and is measured by detectors far away. In 
the simplest class of scattering experiments, the frequency of the outgoing radiation 
is the same as that of the radiation sent in, and the scattering is called elastic. This 
phenomenon is most easily explained by invoking wave-particle duality to view 
the incoming radiation as photons, neutrons, or electrons that bounce without any 
change of energy off atoms in the sample. 

Begin by considering a plane wave that collides with a single atom sitting at the 
origin and scatters off it. Whether the incoming wave is a neutron or an electron 
described by quantum mechanics, or an X-ray described by classical electromag-
netism, the scattered wave ψ takes a particularly simple form far from the atom: 

Jkor 
ψ « Ae~,u"[e'k°'r + f(f) 1, See, for example, Schiff (1968) p. 115 for the ( 3 .1 ) 

r ' quantum mechanical version, or Jackson (1999) 
Eq. (9.8) for the electromagnetic version. 

where the particle enters as a plane wave along ko, the scattering is measured at 
a distance r that is much larger than the range of interaction with the atom, at 
angle 2Θ relative to the ko axis, and / is a form factor containing details about the 
interaction between the scattering potential and the scattered wave. It is related to 
the differential scattering cross-section of the atom by 

/ . = = | f ( r ) | The intensity of scattered radiation into solid ( 3 .2 ) 
dÇl atom angle dii at distance r relative to the incom-

ing beam is dfi X da/dQ/r2. 

Forms for / will be given in Section 3.4, but for the moment assume / to be known. 
Next ask how Eq. (3.1) changes when the same incoming plane wave scatters 

off a particle located at R rather than at the origin. In this case, when the radiation 
arrives at point R, it has phase exp(i7? · ko) relative to what it would have had at the 
origin. On the other hand, to reach the observation point, it then has only to travel 
a distance \r — R\ rather than r as previously. Therefore 

- -, - _ - eikj\r—R\ 
ψ ~ Ae~iu}>eik(yR[eiko'^~R"> + / ( r ) — 1 . The leading exponential is ( 3 .3 ) 

\f ft\ unchanged from Eq. (3.1). 

For sufficiently large r, one may use the approximation 

ko\r-R\~k0r-ko--R. (3.4) 
r 

Using Eq. (3.4) and defining 
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- r 
k = KQ —, k points in the observation direction (3 .5 ) 

r r and has the same magnitude as k(>. 

and q = k.Q — k (3.6) 

gives 

- _ g'kor+il'R In the denominator of Eq. (3.3) one needs only the 
ψ ~ Ae~lu" [e °'r + /(f) ] . first term on the right side of Eq. (3.4). However, ( 3 .7 ) 

f within the exponential function, one has to keep 
all terms that are large compared to 2π, and re-
quires both terms on the right side of Eq. (3.4). 

Note that 
n = 2kn s in Θ. Square both sides of Eq. (3.6) and use the fact that ( 3 .8 ) 

ko-k = £Q cos 2Θ. 

The quantity hq describes the momentum transfer between the incoming and out-
going waves, and the angle Θ is called the Bragg angle. 

3.2.3 Wave Scattering from Many Atoms 

When one has a large assembly of scatterers, shown in Figures 3.1 and 3.2, the 
angular dependence of the scattered radiation is the product of two pieces. The 
first results from the fact that each individual scatterer emits radiation with differ-
ent intensities in different directions, described by the form factor f. The second, 
which modulates the first, results from interference between the radiation com-
ing from the various objects and therefore contains information about their spatial 
correlation. 

So consider a large collection of scatterers, placing the origin somewhere in 
the middle of them, and observe the scattering from far away. If the scatterers 
are dilute, then the total scattered radiation due to the collection will simply be a 
sum of the radiation due to each one. Ignoring the contributions that arise when 
the light which has scattered off one atom then scatters off of another one before 
being observed (multiple scattering), as well as ignoring contributions arising from 
changes in the state of the scatterer (inelastic scattering ), one has 

ψ-Αβ-^'Ιβ^ + ΣΜϊ) 
eik0r+iq-R, Ί 

Summing many terms of the sort that arise in (3 9 ) 
Eq.(3.7). 

The largest contribution to ψ comes from the incoming beam exp [iko · r], which also 
exits the sample as shown in Figure 3.1. However this bright spot is restricted to an 
outgoing angle of Θ = 0, so with the understanding that one will restrict attention 
to nonzero scattering angles it is possible to drop the first term on the right-hand 
side of Eq. (3.9). The intensity per unit solid angle divided by the intensity \A\2 of 
the incoming beam, / = \ip\2r2/A2 is then 

Σ ~ (R R ) R e C a " t h a t ' Σι C ' l 2 = Σ / / ' C ' C P- T h e functions /, 
fitfe'W·-"'''. still depend upon the scattering direction r, but the de- ( 3 . 1 0 ) 

. ., pendence is not made explicit. 
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This basic equation for weak elastic scattering applies to scattering off matter in all 
forms. The equation is posed in terms of intensity rather than amplitude because 
intensity is the quantity measured by experimental instruments. 

3.2.4 Lattice Sums 

Now ask what happens when all of the scatterers in the sum (3.10) are identical 
and arranged in a Bravais lattice. In this case, the scattering intensity is equal to 

/ = / a t o m V ^ e'Q(Ri-Ri'\ /alom is the scattering from a single atom, de- ( 3 . 1 1 ) 
^—' fined in Eq. (3.2). 

Inspection of Eq. (3.11) leads to a plausible guess for the wave vectors q that 
will produce strong scattering. If one could choose q so that exp(iq-R) = 1 for all 
R, then all terms in Eq. (3.11) would be one, and summing them would produce a 
large final result. Otherwise, one might expect terms in Eq. (3.11) to alternate in 
sign and to cancel out on average. 

This guess is correct, but to justify it one must understand sums of the type 
appearing in Eq. (3.11). Such sums determine the behavior of any waves interacting 
with a periodic lattice; they are important not only for X-ray scattering, but also for 
conduction electrons in lattices (Chapter 7). The mathematics of the sum is best 
explained in one dimension, and then generalized. 

One-Dimensional Sum. In one dimension, lattice points must be of the form 
la, where / is an integer and a is the interparticle spacing. So the relevant sum in 
Eq. (3.11) becomes 

Y>q = Y^eilaq. (3.12) 
/=o 

This sum is calculated in Appendix A, which yields the results 

JNaq _ i 
Σ« = 7 ^ τ ( 3 · 1 3 ) 

2 ÙÎNaqjl 
sin aq/2 

A plot of Eq. (3.14) appears in Figure 3.3. The graph contains a number of very 
sharp identical peaks, separated by regions where the scattering intensity is nearly 
zero. The locations of the peaks are determined by searching for the points at which 
the denominator of Eq. (3.14) vanishes. They occur whenever 

aq/2 = Ιπ =>■ q = 2πΙ/α. / is an integer. (3.15) 

Glancing back at Eq. (3.12), one sees that peaks in the sum Σ9 correspond exactly 
to the choices for q such that all terms in the sum (3.12) equal 1 and thus add 
coherently. For any other choice of q, the terms in the sum add with different 
phases and signs, giving a much smaller result. 
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JUL , i l , IL· i l 
2π 4π 6π 8π 
a a a a 

Wave number q 
Figure 3.3. Plot of |Σ9|2 from Eq. (3.14), for N = 30. Note the sharp peaks centered 
around points where q = 2πΙ/α. 

Because the peaks in Figure 3.3 are so sharp, it is natural to view Y,q as a sum 
of delta functions. However, because the delta function is defined to have unit 
area lying beneath it, one must find the area under each peak. It is calculated in 
Appendix A and is 2-KN/L. Thus one has the identity 

N—Ì OO n. 

Y^enaq= J2 Ν^δ(ς-2πΙ'/α). (3.16) 
/ = 0 /' = - o o 

3.2.5 Reciprocal Lattice 

Returning now to Eq. (3.11), one can state that the requirement for the sum to yield 
a sharp peak is that q be chosen such that 

q-R = 2nl (3.17) 

for all R in the Bravais lattice, and with / some integer depending upon R. Once q 
has been chosen in this fashion, all the terms in the sum (3.11) equal one and add 
together, producing a Bragg peak. Any scattering vector q with this property will 
be denoted by the symbol K, and the collection of scattering vectors K satisfying 

C\p[iK R] = \OTKR = 2πΙ The value of the integer / will depend upon ( 3 . 1 8 ) 
the choice of R and K. This equation de-
mands only that the dot product produce 2π 
times some integer. 

is called the reciprocal lattice. The importance of the reciprocal lattice is that it 
identifies the collection of wave vectors K for which coherent scattering can oc-
cur off a Bravais lattice. The strength of the scattering is given by the analog of 
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Eq. (3.16), which according to Eq. (A.25) is 

R K 

where V is the volume of the system. 

Bragg Planes. Why should there be any K that have property (3.18), and why do 
they form a lattice? First of all, notice that if one finds any two K that have this 
property, then their sum has it. Second of all, suppose that one has found a vector 
K so that 

KR = 0 (3.20) 

for at least three noncollinear Bravais lattice points R. The set of all r that satisfy 
K ■ r = 0 is a plane passing through the origin, so the R that satisfy Eq. (3.20) must 
lie in such a plane 1Ό (Figure 3.4), and K must be the normal to that plane. Thus the 
direction of every K corresponds to a plane containing points in the Bravais lattice. 
However, it is not enough to guarantee that K ■ R = 0 for R lying on the plane 7Ό; 
one needs Eq. (3.18) to hold for all R. To achieve this goal, it is essential to note 
that the whole Bravais lattice can always be constructed by taking the points that 
lie in the plane CPo, all of which are of the form 

ΙχΟ,-ι -\-ljfl2 Having chosen a plane, one can then find two ( 3 . 2 1 ) 
primitive vectors that span it. 

and stacking multiple copies of this plane next to one other, separated by a third 
primitive vector a-}, as shown in Figure 3.4. There is an infinite number of ways to 
decompose a crystal in this fashion into Bragg planes. 

Figure 3.4. Any Bravais lattice can be regarded as composed of parallel planes of points, 
the Bragg planes. In this case, a simple cubic lattice is built out of parallel planes normal 
to (110) (stereo pair). 

Choose the magnitude of K so that 

α3-Κ = 2ττ. (3.22) 
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Once Eq. (3.22) is satisfied, one has for any point in the Bravais lattice 

K-R = K-(llai+l2â2 + l3â3) =2π/3 . (3.23) 

The integer IT, simply counts by how many lattice planes the one containing R is 
distant from the origin. 

Because the magnitudes of the vectors K are not arbitrarily small according to 
Eq. (3.22) and because the sum of any two is another such vector, the set of K's 
must themselves form a lattice. One can find primitive vectors for the reciprocal 
lattice, by choosing any three primitive vectors a\, a2, and a3 for the Bravais lattice 
and then building three primitive vectors b\, b2, and b3 for the reciprocal lattice 
from 

- a? x «3 £ ι = 2 π ^ - ^ — — (3.24a) a\ -a2 x ατ, 

b2 = 2 v r ^ ^ — — (3.24b) 
a2-«3 xa\ 

a\ x a2 

a3-a\ x a2 

-* at x a2 
b3 = 2π ^ ^ \, (3.24c) 

3 
and in genera l K — ^ m\Î>i. T h e m are arbitrary integers. ( 3 . 2 4 d ) 

1=1 

This construction works because if one takes the dot product of b\ with any prim-
itive vector αιι, the result is either zero or 27Γ. Therefore, any vector in the direct 
lattice dotted into linear combinations of the è/'s gives an integer times 2π as re-
quired. 

Table 3.1 records the reciprocal lattices of four common Bravais lattices. The 
reciprocal lattice of a fee lattice of spacing a is, a bcc lattice of spacing 4π/α, the 
reciprocal lattice of a bcc lattice of spacing a is an fee lattice of spacing 4π/α, and 
the reciprocal lattice of an hexagonal lattice is another hexagonal lattice twisted by 
30°. 

3.2.6 Miller Indices 

A traditional notation describing reciprocal lattice vectors, lattice planes, and lat-
tice points is the Miller index. The notation is most commonly used for lattices of 
cubic and hexagonal symmetry. 

In cubic crystals, one begins by defining three perpendicular coordinate axes x, 
y, and z pointing along the edges of the conventional unit cell. 

• [ijk] refers to a direction 
ix + jy + kz (3.25) 

in the lattice specified by the three integers i, j , and k. 
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Table 3.1. Conventional primitive vectors of four common Bravais 
lattices and their reciprocal lattices. 
Lattice 

sc 

fee 

bec 

hex 

Lattice 
Spacing 

a 

a 

a 

a, c 

Primitive 
Vectors 

(10 0) 
(0 10) 
(0 0 1) 

( 2 2 ° ) 
( 2 0 2) 
(0 \ \) 

f i i _ i ) 
I 2 2 2> f_i i i ) 
V 2 2 2> f i _ i Ì) 
\ 2 2 2^ 

( 1 f o) 
H f o) 
( 0 0 1 ) 

Reciprocal 
Lattice 
Spacing 

2π 
a 

4π 
a 

4π 
a 

4π 2π 
\βα e 

Reciprocal 
Lattice 
Primitive 
Vectors 

(100) 
(0 10) 
(0 0 1) 
f i i _\\ 
l 2 2 2> f_i i ì) 
v 2 2 2 / f i _ i i ) 
\ 2 2 21 

( H o ) 
( i o Ì) 
(o è £) 
( f 20) 
(f-^o) 
(0 0 1) 

• (ijk) refers to a lattice plane perpendicular to the normal vector [ijk]. (ijk) 
may also refer to the reciprocal lattice vector of smallest magnitude perpen-
dicular to the plane (ijk). 

• {ijk} refers to the complete collection of lattice planes perpendicular to [ijk]. 

• ijk refers to the X-ray diffraction peak resulting from scattering off the lattice 
planes {ijk}. 

• Negative integers are denoted by / rather than — i. 

• (ijk) refers to the set of all lattice planes or reciprocal lattice vectors related 
to (ijk) by rotational symmetry. 

Examples. For a simple cubic lattice, the reciprocal lattice vector pointing along 
(2π/α, 0, 0) is called (100), while the one along (2π/α, 2π/α, 2π/α) is called 
(111) and the one along (2π/α, —2π/α, 2π/α) is called (111), and so forth. For 
an fee lattice, the smallest reciprocal lattice vector is (111), and it has magnitude 
2ν/3π/α. The collection of reciprocal lattice points referred to by (100) is (100), 
(010), (001), (TOO), (0Ϊ0), and (00Ϊ). 

Alternate Definition. An alternate prescription used by crystallographers to find 
the Miller index of a plane is to find a lattice point as near as possible to the plane 
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but not lying within it. Placing the origin at this lattice site, find the three points u, 
v, and w where the plane intersects the coordinate axes, measured in units of the 
lattice spacing a. The inverses / = 1/w, j = l/v and k = \/w of these intercepts 
are integers equal to Miller indices. This point of view is closely allied with the 
second law of crystal habit, and therefore rooted in the origins of crystallography 
(Problem 9 in Chapter 2). If the plane is parallel to one of the coordinate axes, one 
might for example get u = oo, leading to i = 0. 

Miller Indices for Hexagonal Lattices. In hexagonal lattices, Miller indices make 
use of four numbers (ijkl). The last integer, /, points along the z axis (the axis of 
three- or sixfold symmetry), while /, j , and k refer to three axes at 120° to one 
another, and conventionally 

k=-(i + j). (3.26) 
The precise meaning of i, j , and k is most clear if one uses the crystallographer's 
definition of the Miller indices as inverse distances along crystal axes, as illustrated 
in Figure 3.5. 

Figure 3.5. The (10 1 1 ) lattice plane illustrated for an hexagonal lattice. The distances 
to the plane along the coordinate axes are a, oo, —a, and —c, and the inverses of these 
distances, in units of the lattice parameters a and c, lead to the Miller indices. 

3.2.7 Scattering from a Lattice with a Basis 

The precise conditions for sharp scattering peaks are modified if the crystal is not 
a Bravais lattice, but is instead a lattice with a basis. In this case, every vector in 
the crystal can be written in the form 

R = U[+vi> (3.27) 

for some / and /', where w/ is a vector in a Bravais lattice and v\i is an element in 
the basis. Assuming all atoms to be identical, as in the diamond or hep lattices, 
scattering from such a lattice can be calculated by regrouping the basic sum. 

Σ S* = Σ <?i*(s'+ii'') (3.28) 
R "' 
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= ( E «**) ( E e*'") R-al, £„ , QD,, = ( Σ / Q) ( Σ , Ο,) ■ (3-29) 

=^/oc ( Σ e-^-W ) ( Σ e,?·^'"^5 ) · (3.30) 

The Bravais lattice vectors and basis vectors appear in a completely symmetrical way. 
However, the sum over Bravais lattice vectors might have 1023 elements while the 
sum on the basis might have 8, so the sums have qualitatively different character. 

The first term in Eq. (3.30) is precisely the sum over Bravais lattice vectors that 
appeared previously in Eq. (3.10), and it therefore is nonzero only for vectors a 
that lie in the reciprocal lattice K given by Eq. (3.18). However, the strength of the 
peaks is modulated by the function 

p-. = I \ Λ e I . Sum / over all vectors in the basis. ( 3 . 3 1 ) 

/ 

In some cases, the result may be that F$ vanishes, and certain peaks disappear 
altogether. These cases are called extinctions. 

Example: Diamond Lattice. The diamond lattice, described in Section 2.2.6, is 
built from the fee lattice with the basis 

£, = (0 0 0), V2 = ^(l 1 1)· (3-32) 

Because the reciprocal lattice of an fee lattice is bec with lattice spacing 4π/α, the 
reciprocal lattice vectors are 

— 4-TT 47Γ 4"7T 
K = h— (1 1 -\)+h — ( -1 1 \) + h — {\ - 1 1). SeeEq.(2.4). (3.33) 

2a 2a 2a 

Therefore, 
v2-K=^{h+h + h), (3.34) 

and the modulation factor F^ is 

F£ = |l+£>('»+/2+/3)/212 (3.35) 

'4if/1+Z2 + *3 = 4, 8, 12, . . . 
2 i f / ,+/2 + /3isodd (3.36) 
0 i f / i + / 2 + /3 = 2, 6, 10, 

So some of the peaks are four times as bright as they were before the basis, some are 
twice as bright, and some have disappeared. The latter are examples of extinctions. 

3.3 Experimental Methods 

It remains to determine the implications of these calculations for scattering experi-
ments, and it is probably best to begin by summarizing the mathematical results so 
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far. Radiation with wave vector ko impacting a crystal produces a scattered wave 
along direction k, where the magnitudes of k and ko are the same, but only if the 
wave vector q = ko — k equals one of the reciprocal lattice vectors K of the crystal. 
The reciprocal lattice vectors are completely determined by the underlying Bravais 
lattice of the crystal, and any decoration of the Bravais lattice with a basis serves 
only to modify the strengths of the scattering peaks, not their positions. 

The prescription for a successful experiment at first seems clear. Shine a 
monochromatic X-ray source at a crystalline sample, put a camera behind it, and 
start clicking the shutter. But a moment's reflection shows that this brilliant idea 
will not work. Each point on the photographic paper catching a scattered X-ray 
corresponds to a single scattering direction k, so the experiment scans through a 
two-dimensional space of scattering vectors. However, the reciprocal lattice is a 
discrete set of points in three dimensions, and it is therefore exceptionally unlikely 
that any given two-dimensional surface will cut through any of them. In order to 
visualize this point, it is convenient to look at the Ewald construction, shown in 
Figure 3.6. 

The Ewald construction has the first advantage of showing the necessary scale 
for the wavelength of incident radiation. In order to resolve atomic structure, its 
k vector should be comparable to the spacing of reciprocal lattice points, although 
somewhat larger. One therefore needs wavelengths on the order of an angstrom, 
which for electromagnetic waves requires the X-ray portion of the spectrum. It also 
permits one to imagine strategies by which to carry out scattering experiments; 

Figure 3.6. For incoming radiation ko there will be outgoing radiation along direction k 
only if q = k — ko = kor — ko lies in the reciprocal lattice. For a fixed orientation of a crystal 
and wave number ko, all an experiment can do is scan over observation directions r. This 
produces candidate <f s in a spherical shell shown at the left (called the Ewald sphere; a 
two-dimensional cross-section appears on the right), and all the reciprocal lattice vectors 
K are shown as dots. For the direction and magnitude of incoming radiation displayed here, 
an attempted scattering experiment would end with an unexposed piece of film, because 
there are no intersections of the spherical shell with the reciprocal lattice vectors. This 
graphical representation of Eq. (3.18) is called the Ewald construction. 
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there are three traditional solutions to the problem that monochromatic radiation 
generally does not produce sharp scattering peaks after contact with a fixed crystal: 
the Laue method, the rotating crystal method, and the powder method. 

3.3.1 Laue Method 

The first solution is the Laue method, found as an accidental offshoot of the manner 
in which the first X-rays were generated. X-rays were produced by bombarding 
a tungsten anode with electrons accelerated through about 5 1 0 4 eV. A slightly 
higher voltage would excite sharp lines in the tungsten spectrum, corresponding to 
ionization energies of inner core electrons, but at this voltage the X-ray spectrum 
is continuous, resulting from multiple collisions, and looks as in Figure 3.7(A). 
X-rays generated in this fashion are called Bremsstrahlung ("braking radiation"). 

1.0 

(B) 

Figure 3.7. (A) Schematic indication of the continuous spectrum resulting from electron 
collisions upon tungsten at around 50 keV. (B) Ewald construction. The gray points are the 
scattering peaks that would be visible when incoming radiation has a wave vector between 

The continuous component of the radiation was essential to the success of the 
experiment. As shown in Figure 3.7, if the incident radiation spans a range of wave 
vectors, the chance that some intermediate wave vector will actually satisfy condi-
tion (3.18) becomes considerable. The particular frequency of incoming radiation 
needed to cause scattering can be obtained from Eq. (3.6) by setting q = K and 
writing 

kl = kl-2k0-K + K2 (3.37) 
K2 

=/■ KQ = —^ z7, Because K = q when scattering occurs. (3.38) 
2k0-K 

while the relation between the Bragg angle Θ and the reciprocal lattice vector K is 
K lc 
— - ^ = Sin Θ Using Eq. (3.6) (3.39) 
Kko 

The Laue method is not a good method for precise structure identification, 
because the intensities of spots depend upon both the intensity of incoming X-

10 
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rays at varying frequency and properties of the scattering sample. However, for 
a substance whose lattice parameters are known, it provides an excellent means 
of orienting the sample. For this purpose, one needs to be able to identify the 
reciprocal lattice vectors corresponding to spots observed on a photographic image. 
One way to simplify the task is with the Mauguin abacus, which is a ruler whose 
marks are graduated to indicate D tan Θ to the left of the origin and D(tan 20 — 
tan Θ) to the right of the origin, where D is the distance between sample and film. 
The reason for this choice is illustrated in Figure 3.8. 

D tan 2Θ 

D tan0 

Figure 3.8. The parallel lines within the crystalline sample indicate a set of Bragg planes. 
If they were extended, they would contact a backing piece of film at height D tan Θ, but the 
radiation bouncing off the planes hits at height D tan 2Θ instead. This observation provides 
a simple geometrical way to deduce Bragg angles Θ from Laue photographs. 

3.3.2 Rotating Crystal Method 

A second method is the rotating crystal method. In contrast to the continuous ra-
diation used for a Laue pattern, this method relies upon an intense monochromatic 
beam. A crystal is rotated about one or more axes, and in the course of rotation a 
variety of scattering peaks is recorded on a cylindrical film, as shown in Figure 3.9. 
Because all the scattering spots on the film result from one frequency of incoming 
radiation, the intensity of the scattering is meaningful, and the size of the spots 
recorded on the film can be used for quantitative analysis. 

The scattering geometry shown in Figure 3.9 is not employed in practice, in 
part because reciprocal lattice vectors parallel to the rotation axes cannot be im-
aged, and in part because scattering spots all cluster tightly on parallel lines on the 
film, and the results are difficult to decipher accurately. Instead, there is a vari-
ety of experimental arrangements where the sample and flat plates of film rotate 
simultaneously. The operation of one of these, the precession camera, is indicated 
schematically in Figure 3.10(A). Spots appear on the film whenever film and sam-
ple are rotated through a Bragg angle Θ, and the image of the spots on the film 
provides an undistorted projection of the reciprocal lattice. 

^0 

k ^ ^ 

D 
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Figure 3.9. When a crystal is rotated about a fixed axis, numerous reciprocal lattice vectors 
generate scattering peaks when they intersect the Ewald sphere. (A) The geometry of the 
experiment. (B) The rotation axis comes out of the page, and scattering occurs whenever a 
reciprocal lattice point intersects the Ewald sphere. 

(A) 

Figure 3.10. (A) Schematic description of a precession camera. The lines in the sample 
indicate Bragg planes, from which incoming radiation reflects to hit the film in a specular 
fashion. Whenever both film and sample are rotated through the Bragg angle Θ, a spot 
hits the film at distance 2D sin Θ from the origin, a distance that according to Eq. (3.8) is 
proportional to the magnitude of the relevant reciprocal lattice vector. By rotating sample 
and film about multiple axes one obtains an undistorted projection of the reciprocal lattice. 
(B) Precession image of K2Cr04. (Courtesy of H. Steinfink, University of Texas.) 
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3.3.3 Powder Method 

Figure 3.11. The powder method generates every scattering peak from a monochromatic 
beam that could be produced by a crystal at any imaginable angle. Whenever a reciprocal 
lattice point contacts the Ewald sphere, rotating the crystal about the direction of the in-
coming wave continues to produce a scattering peak. Therefore scattering from powdered 
samples is in the form of rings. 

The third general technique for structure determination is the powder method, 
also called the Debye-Scherrer method; this method is suitable for materials when 
a perfect single crystal is not available. The incoming beam needs again to be 
monochromatic, but now the scattering sample is either polycrystalline, with in-
dividual crystallites on the order of a micron, or else a powder made of particles 
roughly that size. Because small crystals are present in all orientations in the sam-
ple, the net effect is the same as a rotating crystal experiment that turns the crystal 
through all possible directions, and there is a ring of scattering peaks, as shown in 
Figure 3.11, corresponding to every reciprocal lattice vector of magnitude less than 
twice that of the incoming beam; the Bragg angles corresponding to the scattering 
are 

Θ = S in" ' (K/2k0) F r ° m Eq- (3-8)· K, is the magnitude of a re- ( 3 . 4 0 ) 
ciprocal lattice vector. 

and the radius r on film of the scattering ring due to reciprocal lattice vector K is 
f = D tan(2$). D is the distance from sample to film. ( 3 . 4 1 ) 

From the series of rings recorded on film, complicated crystals can be worked 
out. The process proceeds in stages. The first step is to compare the locations of 
the rings with those produced by various known crystal structures and to pick out 
reasonable candidates, trying to identify the Bravais lattice first, and then working 
out decorations and extinctions next. The second step settles on a set of candidates 
and carries out a refinement process, varying precise locations of the atoms, varying 
scattering intensities of the species, and allowing for thermal motion, in order to 
produce a best fit to the data. In practice, this procedure is usually computerized, 
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Figure 3.12. Scattering intensity as a function of Bragg angle Θ for three monatomic 
lattices. At the top is a simple cubic lattice with lattice constant a and incoming radiation 
of wavenumber ko = 10/α. Each lattice site contains two atoms, to ease comparison with 
the remaining cases. In the middle is the same lattice, but decorated with basis atoms at 
the origin and at (.25, .25, .25). Finally, at the bottom the basis moves to (.5, .5, .5), so 
that the lattice is now body-centered cubic. Notice the increase in scale of the scattering 
pattern as the physical lattice develops structure on smaller scales. 

with locations and intensities of rings being compared automatically with databases 
of known structures. 

A simple example of the results to be expected from powder diffraction appears 
in Figure 3.12. The intensities of lines in this figure are calculated according to the 
results obtained in Problem 7. 

3.4 Further Features of Scattering Experiments 

The discussion so far has presumed that X-rays lie behind all scattering exper-
iments, and that the scattering form factors f(r) contain no useful information. 
Neither of these points is correct, and the corrections deserve some discussion al-
though there is no possibility of describing all the refinements and elaborations of 
structure determination since 1912. 

There are three types of particles widely used in scattering experiments: pho-
tons, neutrons, and electrons. They differ in the relations between energy and 
momentum, in the strength and nature of their interaction with condensed matter, 
and in cost and ease of generation. Some characteristics are displayed in Table 3.2. 

3.4.1 Interaction of X-Rays with Matter 

The interaction of X-rays with condensed matter is actually quite complicated. The 
easiest way to get an idea of what it should be is to recall the expressions in classical 
electromagnetism for the interaction of an electromagnetic wave with an isolated 
charged particle. The charged particle vibrates at the frequency of the incoming 
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Table 3.2. Characteristic values associated with different types of radi-
ation 

X-rays Neutrons Electrons 
Ö ~e 
1.67· 10^27 kg 9.11· 10 31 kg 

60keV 

Charge 
Mass 
Typical energy 
Typical wavelength 
Typical attenuation length 

0 0 
0 1.67· 
12keV 0.02 i 
1Â 2À 
100 μηι 5 cm 

0.05Â 
1 μπι 

Typical atomic form factor, / 10~3 Â 10~4Â 10 Â 
Source: Eberhart (1991). 

radiation, and it reradiates a spherical wave. The scattering cross-section for this 
process is 

e4 ( 1 + cos2 260 e4 

/atom(r) = — A
 y~ '- = -T-AP{r) See Jackson (,999). ( 3 . 4 2 ) 

m z C 4 2 m z C 4 Eq. (14.124); Pis a 
polarization factor. 

e2 
f(f) = = JP(r) = 2X2- \QTl5JP{r) TO. Putting in values for the (3.43) 

ItlC * * electron and expressing the 
answer m meters. 

Because the .nuclei of atoms are so much heavier than the electrons, only the elec-
trons contribute to X-ray scattering. However, the electrons are not tightly localized 
in space, but instead are characterized by a number density n(7), which peaks up in 
the vicinity of ion cores, but does not completely vanish between them, particularly 
in metals. An expression for X-ray scattering which takes this fact properly into 
account is 

f(r) = —2 φψ) ( dr n{f)S-? = ~ >Jp{f)n{q) (3.44) 
mcL v J mcL v 

=> /atom(g) = n . P ( r ) |w(^) | . n(q) is the Fourier transform of the ( 3 . 4 5 ) 
m C electron density. 

Hahn and Cochran (1992) have tabulated f(f) for all the elements. 

3.4.2 Production of X-Rays 

The oldest way to generate the monochromatic X-rays needed for rotating crystal 
and powder methods is to collide electrons upon a metal anode at energies great 
enough to ionize core electrons, and thereby create a bright resonance at a precise 
frequency, such as the Ka line of copper at 8.98 keV. Although a good fraction of 
the emitted X-ray power is contained in the desired line, a continuous component 
to the radiation is unavoidable. One way to omit the continuous component is to 
obtain a crystal arranged to have a scattering peak at precisely 8.98 keV, and then 
use the scattered beam from the reference crystal as the incoming radiation for 
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further experiments. The highly monochromatic beam produced in this way has 
unfortunately low amplitude, and a brighter but less narrow beam can be chosen 
by filtering the X-rays through an element that absorbs most of the continuous 
radiation while leaving the sharp line alone; a good candidate for such a filter is 
the element one atomic number down in the periodic table, which in the case of 
copper is nickel. Electron collisions with a metal do not provide an efficient way 
to generate X-rays; 99% of incoming energy is converted to heat. Even employing 
tricks such as rapidly rotating the target anode to keep it cool, the maximum X-ray 
power that can practically be extracted from conventional tubes is around 100 W, 
and by the time the X-ray has been filtered, fewer than 10 W may be left. The 
situation is very different at a synchrotron, where radiation is generated by rapidly 
accelerating electrons in huge rings. The total power emitted as X-rays in a broad 
band up to 200 keV is on the order of 106 W, so even after filtering to 0.1% of the 
200 keV bandwidth to get a monochromatic beam, 1000 W of power is left. The 
relative intensities of radiation at various frequencies available from the different 
types of X-ray sources are compared in Figure 3.13. 

Figure 3.13. Overview of various means of producing radiation, relative to the intensity 
available from a synchrotron. Intensity for sources spanning a range of wavelengths is 
measured by finding the number of photons in a frequency interval that is 0.1% of the 
total wavelength range. Synchrotron radiation is orders of magnitude more intense than 
any source apart from lasers, and spans a broad range of wavelengths. [After Brefeld and 
Guertler(1990), p. 285.] 
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3.4.3 Neutrons 

Neutrons scatter only off nuclei, and apart from interesting corrections due to rela-
tive spins of incoming neutron and nucleus that make it possible to probe magnetic 
structures, the interaction is completely isotropie. The scattering form factor f(r) 
for neutrons is a constant a for any given element called the scattering length. This 
simplifying fact is the great advantage of neutrons. Their main disadvantage is sim-
ply the great expense required to generate beams of useful intensities. A neutron 
wavelength of 2 Â corresponds to an energy of 0.02 eV, which corresponds ap-
proximately to room temperature, giving neutrons of this energy the name thermal 
neutrons. Figure 3.14 shows neutron powder data used to uncover antiferromag-
netic ordering in MnO; the structure is depicted in Figure 24.6. 

80K 

) 

293K 

- i -
(111) 

V 

1 

(311) / 

■ 1 

(222) 

(400) (331) 

l Λ A 
(111) 

(200) 
V i 

1 1 

(511) (440) 

(220) 

(622) 

A A 
(311) 

. A 
0 20 40 60 80 

Scattering angle 2Θ (degrees) 

Figure 3.14. Powder pattern for neutron scattering from MnO. Above an antiferromagnetic 
transition temperature, the scattering pattern is that of a crystal in the NaCl structure, with 
a lattice parameter of 4.42 Â. Below the transition temperature, an entirely new set of 
scattering peaks appears, indicating the antiferromagnetic ordering depicted in Figure 24.6. 
[Source: Shull et al. (1951), p. 337.] 

Elastic scattering, in which the outgoing neutron has the same energy as the 
incoming neutron, is important for deciphering complicated structures, but inelastic 
scattering, where the neutron loses or gains energy during its passage through the 
material, is equally important and will be discussed in Section 13.4, as a means of 
studying excited states of lattices. 

3.4.4 Electrons 

Electrons interact more strongly with matter than either X-rays or neutrons. This 
fact might at first seem to present an advantage, but the scattering is so strong 
that electrons cannot escape through samples without suffering multiple collisions 
unless the samples are less than approximately 100 Â thick and unless the electrons 
travel at fairly high energies, on the order of 100 keV. Electrons therefore are not 
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employed to deduce the structures of bulk crystals, but they do find use in the study 
of solid surfaces (Section 4.3), and microscopically thin samples. 

Incoming electrons interact with the complete electrostatic potential of the mat-
ter into which they travel, including both electrons and nuclei, and in the Born 
approximation this leads to a scattering amplitude fe\ 

fe,(q) = — / dr V(7)e""q See Landau and Lifshitz (1977) p. 513, or ( 3 . 4 6 ) 
h2 J Schiff (1968), p. 324. v ' 

which is related to the scattering function for X-rays by 
2 

ine 
f < (q) = — ~ \Z — n(q)] Z is the atomic number; n is the electron den- ( 3 . 4 7 ) 

2/j Jt? s in Θ s ' ty a nd ' s r e ' a t e <J t 0 the X-ray scattering form 
0 factor by Eq. (3.44). 

as shown in Problem 6. 

3.4.5 Deciphering Complex Structures 

Teasing crystalline structures out of arrays of spots on film is relatively easy when 
the structure in question is composed of only a few elements and the unit cell is 
small. Faced, however, with a protein crystal, with a unit cell containing tens or 
hundreds of thousands of atoms, the problem of reconstructing atomic positions 
becomes a daunting one. Ideally, there would be some purely automatic procedure 
that operates upon the scattering data and reconstructs the scattering potential. In 
the fields of light and electron microscopy this procedure exists; it is known as a 
lens, which should be understood as a device for recombining scattered waves in a 
fashion so as to reveal the structure from which they came. An important feature 
of recombining waves by focusing them is that all information about the relative 
phase of waves scattered from different parts of the structure is preserved. Math-
ematically, this information is needed for structure to be deduced from scattering 
data, and in X-ray and neutron experiments it is almost always lost (see Hauptman 
(1989)). 

Automated procedures for analyzing X-ray data are nevertheless possible, to 
a point. Suppose one carries out a rotating crystal experiment and measures I(q), 
as in Eq. (3.45). Performing an inverse Fourier transform in 3 on these data gives 
immediately the Patterson function, after Patterson (1934), depicted in Figure 3.15, 
which is proportional to 

/

n is the number density per volume of electrons. Con-
dr'n(~r*\n(~r — 71) s t a n t m u m P n e r s s u c n a s factors of 2π are irrelevant for / τ ΛΟΛ 

\ / V - ' t h e ensuing arguments, and are being dropped. ^ ' ' 
How much of the information originally present in phases has irredeemably been 
lost? As Figure 3.15 makes clear, not so much. There is a peak in the Patterson 
function at all locations R\ — R2, where R\ and R2 are peaks of the true density, 
and the height of each peak is given by the product of the amplitudes of the two 
original density peaks that produce it. So, while one does not know where all the 
atoms are from Figure 3.15(B), one can read off a net of vector distances between 
them. Matters are simplified further if the structure contains a heavy atom: an atom 
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Figure 3.15. (A) A contour map of electron density of an imaginary structure with three 
atoms per unit cell, a large heavy atom at the origin, and two lighter atoms displaced 
from it. (B) The Patterson function resulting from this density. Notice that the Patterson 
function is centrosymmetric and that there is a peak in the density at a distance from the 
origin corresponding to the distance between the two light atoms. 

whose scattering is stronger than any other. Say this atom is at the origin. Then the 
largest peaks of the Patterson function will be at the origin and at ±/?,, where Rj are 
the locations of all the other atoms. So, if a structure has heavy atoms, the greatest 
remaining uncertainty is whether peaks of ±/?, correspond to atoms at /?,·, at —/?,·, 
or at both locations. One of the techniques essential to unraveling the structures of 
large proteins has been the artificial chemical insertion of heavy atoms at various 
points in the proteins as replacement for lighter atoms, to provide guides to the 
structure. 

Even the stubborn tendency of X-ray data to make all structures centrosymmet-
ric can be overcome. When incoming X-rays have an energy near to that at which 
one of the atoms in the sample has an absorption resonance, a bit more phase in-
formation becomes available in the region of anomalous dispersion; this fact is the 
subject of Problem 5. 

3.4.6 Accuracy of Structure Determinations 

Catalogs of crystal structures must always be employed with the possibility in mind 
that published results are inaccurate or incorrect. Abrahams et al. (1967) describe 
an effort to determine how big these errors might be, by taking a carefully pre-
pared crystal to multiple research groups and asking them to measure Bragg peak 
intensities independently. Although each group claimed accuracy in determining 
structures of around 1%, discrepancies between different groups were typically on 
the order of 5%-6%, and measurements of the intensity of the (111) reflection var-
ied by 50%. In revisiting the results of this experiment, Mackenzie and Maslen 
(1968) call the results "grossly discordant." An example of an incorrect structure 
determination is provided by the high-cristobalite structure of S1O2, on page 318 of 
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Wyckoff (1963); the correct structure is discussed in Liu et al. (1993). How many 
other examples like this latter one may exist is difficult to say. 

3.5 Correlation Functions 

3.5.1 Why Bragg Peaks Survive Atomic Motions 

Sommerfeld objected in 1912 to the search for X-ray scattering on the grounds 
that atoms constantly move large distances from their ideal positions, and the ex-
periment could not work. The theory presented so far assumes atoms sit perfectly 
still at ideal locations, yet it compares well with experiments performed at room 
temperature. How can this be? 

This is a special case of an even more primitive question, which concerns the 
nature of crystals. What really defines them? It is not enough to say that all their 
atoms sit in a perfect lattice, since thermal motions and occasional impurities do 
not destroy the crystal's essential nature. 

The essential nature of a crystal is that positions of atoms are correlated at long 
distances. This idea can be made precise in any monatomic system by defining the 
two-particle or Van Hove (1954) correlation function n2(7\, r2; t). This function 
gives the probability that if some particle is at position r\ at time t\, a particle is to 
be found at position r2 at time t\+t. Formally, 

«2(n, ~h\ 0 = ( Σ δ(7] -Ri{h)W2-Ri'{t\ +t)) ) . S S e °ngmal (3.49) 
\ / // I condition / ji /' is 

' imposed on the sum. 

The brackets denote either a thermal average or a time average over t\, as according 
to principles of statistical mechanics the two averages should be the same. Vari-
ables R[(t) track the locations of the particles. 

From the correlation function, define the dynamic structure factor, a dimen-
sionless measure of scattering, by 

S(q, ή Ξ = — y ^ /e'HRi('i)-Ri>(.ti+t))\ This is proportional to the time ( 3 . 5 0 ) 
yV/iitnm N ^^ \ ' average or thermal average of 

1,1' Eq. (3.11). 

= l Σ / ^ 1 ^ 2 ^ ' - ? 2 ) ( < 5 ( n -Rifa))S(r2-Ri>(ti + 0 ) ) (3-51) 

= — I df\ dr2 n2{r\, r2\ ήε^'^"7"1"1 Just insert the definition (3.49). ( 3 . 5 2 ) 

V 
= — η 2 { 3 , t) V is the system volume. If the condition / φ /' had been added to ( 3 . 5 3 ) 

N Eq. (3.49), there would be an additive factor of 1. 
where 

n2(q, t) = ^ J drdr> η2{7 + Ψ, r; t)e^'. (3.54) 

Return to Eq. (3.11). A traditional scattering experiment requires collecting 
radiation on a photographic plate over times on the order of seconds. Atomic 
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oscillations occur on a time scale of picoseconds. Scattering experiments thus 
measure the long-time average of radiation intensity exiting the sample. That is, 
these experiments do not really measure the quantity in Eq. (3.11), they measure 
its time average, which is the static structure factor, 

S{q)=S(q,0). (3.55) 

The necessary condition for scattering peaks can now be expressed in a more 
general way. As Ψ in Eq. (3.54) becomes larger and larger, the static correlation 
function must continue to exhibit periodic maxima centered on lattice sites, and the 
amplitudes of these maxima should not diminish when the r' becomes large com-
pared to atomic spacings. A specific example comparing solids and liquids appears 
in Figure 5.9. This is the type of correlation called long-range positional order. 
Putting matters another way, it does not matter if atoms are in thermal motion, just 
so long as every atom vibrates around a set of mean locations that constitute a per-
fect crystal. The effect of vibrations is to decrease the amplitude of Bragg peaks, 
not their existence or location in frequency space. Explicit expressions for the way 
that quantum mechanical and thermal fluctuations reduce Bragg peak amplitude 
appear in Eqs. (13.124) and (13.129). 

Placing atoms in lattices is a special case of the more general idea of long-
range order or long-range correlations. Long-range order concerns the average 
behavior of pairs of particles over time, not their location at any one instant. Long-
range order is the fundamental property that separates solids from liquids. More 
generally, the ideas of correlation and ordering explain qualitative phases of matter 
including superconducting and superfluid states. 

3.5.2 Extended X-Ray Absorption Fine Structure (EXAFS) 

Figure 3.16. Extended X-ray absorption fine structure 
is observed when a scattered wave impinges on near 
neighbors, and returns to interfere with the first scat-
tering source. 

Extended X-ray absorption une structure (EXAFS) is an X-ray scattering tech-
nique that homes in on small-scale details of the correlation function «2 in the 
neighborhood of specifically chosen target atoms. To employ the technique, one 
illuminates a sample with X-rays whose frequency is chosen to lie near the absorp-
tion resonance of some particular atom. For incoming radiation whose energy £ 
lies above the onset of absorption at Ea, the receiving atom emits an electron of 
energy £ — £u and wave vector hk — \j2m{Z — £a), which has been excited out of 
a core state. Traveling out of the atom that produced it, this electron immediately 
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begins to scatter off neighboring atoms; the scattered wave returns to the original 
atom and interferes with the electron emission process, as in Figure 3.16. If this re-
turning wave reduces the electron amplitude at the original atom, X-rays will have 
increased difficulty ejecting electrons to begin with, and there should be a dip in 
the X-ray absorption coefficient a(E). Without developing a detailed theory of this 
rather complicated interference process, it is possible to guess the form the result 
must have. If X-rays eject electrons from atoms at the origin, and a neighboring 
atom at location Rj scatters them back, then because the total path length from 
atom to scatterer and back is 2Rj, interference between the original and scattered 
wave leads to absorption in the form 

( \ Sum over all neighboring atoms. The 

Y" 11 + \e~R>them' f/Rj]2]2 ) s q u a r e c o m e s f r ° m t h e f a a t h a t t h e (3.56) 
' ' i ' L J i ji i / wave is scattered twice. / is a v ' 
j I scattering form factor. 

/
.-. irs -, n\ —Jr/Ιτ / „ . \ Keeping only the leading term ,_ ^_N 

drn2(0,r, 0)e 2r/'T COs{2kr), depending on k. ( 3 . 5 7 ) 
where IT is the mean free path of electrons in the solid. In fact the absorption coef-
ficient is observed experimentally to have small oscillations for energies as much 
as 1000 eV above the absorption edge. According to Eq. (3.57), the Fourier trans-
form of these oscillations is proportional to the correlation function of neighboring 
atoms times the decay factor exp[—2r//r]. Thus EXAFS gives quantitative descrip-
tions of the neighborhoods of atoms of specific types, even in liquid or amorphous 
environments. 
3.5.3 Dynamic Light Scattering 
Under the general heading of scattering experiments, there is a wide variety of pos-
sibilities. Dynamic light scattering presents an interesting contrast with the X-ray, 
electron, neutron scattering experiments discussed so far. Like these techniques, 
dynamic light scattering involves sending a beam of radiation into a sample and 
measuring the outgoing radiation in order to draw conclusions about particle loca-
tions. However, almost everything else is different. Dynamic light scattering uses 
visible light, so it is most suitable for studying particles or structures whose size is 
comparable to visible wavelengths, on the order of /im. Instead of Bragg peaks, the 
focus of attention moves to speckles of light emerging from the sample, and their 
fluctuations in time. The fluctuations in light intensity provide information about 
the motions of particles in the path of the light beam. Instead of resulting from 
coherent scattering from many different particles at the same time, dynamic light 
scattering results from the changes of intensity due to changes in particle locations 
over time. In terms of correlation functions, conventional X-ray scattering probes 
the correlations of many particle locations with one another at one time, while dy-
namic light scattering probes the correlations of particle locations with their own 
histories. 

The study of dynamic light scattering begins with the observation that when 
electric fields scatter weakly off particles located atR\... R^, then the the result-
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ing field is 

EM = Σ E°e
i<i-Ri(') 

1=1 

Taking the form factor / = 
for polarization. 

1. The index a is (3.58) 

Thus -2 Σ(£*(0)ΕΩ(ί)> 

= — y y ^^(e-^-^'W-^'iO)) 

= f drdr,e~i^7-^n2(r, ?'; i) 

= n2{q,t). 

Ε2
0 = ΣαΚ\ 

Exactly as in Eq. (3.54). (3.59) 

Unfortunately, despite this pleasing definition, ri2(q, t) cannot be measured 
directly, because experiments measure intensities at a given time, not electric fields. 
However, by taking a chance on one new assumption, temporal fluctuations in 
fields can be related to temporal fluctuations of intensity. The assumption is the 
Siegert relation. Consider 

1 
\Eo\A y (Ε*α(0)Εα(0)Ε*Ί(ήΕΊ(ή i\I(t)I(0) (3.60) 

αη 

This quantity can be measured directly in experiment by keeping a record over time 
of intensity. Its can be related to Eq. (3.59) if one assumes that the electric field 
components Ea(0) and ΕΊ(ί) are random variables, normally distributed about their 
mean values, and the deviations from the mean independent of one another. If this 
assumption holds then one can employ a theorem from statistics discussed by Tri-
antafyllopoulos (2003), analogous to Wick's theorem (Section 13.4.3 or Doniach 
and Sondheimer (1974), pp. 52-62) saying that the expectation value of products 
of random variables is given by summing up all possible products of expectation 
values of pairs of the operators. 

In the case of Eq. (3.60), this means that 

</(0/(o))//£ 
i - ^ £(Ε*α(0)Εα(0)Ε;(ήΕΊ(ή) 
\Eof 

1 
a~f 

Σ 
{Ε*(0)Εα{0)){Ε*(ήΕΊ(ή) Terms such as £*α(0)£;(0 

| £ θ | 4 t ? +(Ε*α(0)ΕΊ(ή)(Ε*Ί(ήΕα(0))\ factorsof 

/ | (£*(0)£7( ί ))Κ 2 

vanish after averaging over 

Q 7 

] _|- ß\fi2{q t) | . See Gittings and Durian (2006) for an inves-
tigation of this approximation. 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 
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Figure 3.17. Measurement of (I(t)I(O)) for a dilute solution of coiled DNA. The scattering 
angle is 60° so q can be determined from Eq. (3.8). The solid line is an exponential 
function; it fits the data with a correlation coefficient of 0.996. Thus the data have the form 
predicted by Eqs. (3.67) and (3.65) with β κ. 0.8. [Data of H.L. Swinney and J. Newman 
from Berne and Pecora (2000), p. 61.] 

Here β is a constant that depends first of all upon the polarization state of the 
light. For linearly polarized light, one expects β = 1 and for circularly polarized 
light β = 1/2. In addition, depending upon the size of the photo-detector, the 
light speckles being measured may be more or less completely spatially correlated, 
and the degree of correlation affects the success of the approximation leading to 
Eq. (3.65). The constant β is in practice used during experiments as an adjustable 
constant to compensate for the approximation. 

3.5.4 Application to Dilute Solutions 

For a dilute solution of micron-scale particles in liquid, what should the 
correlation function of Eq. (3.49) look like as a function of time? Small parti-

cles undergo Brownian motion which means that they diffuse about, and obey the 
diffusion equation (5.2), to be derived in Section 5.2. 

Exactly the same equation must apply to the the probability «2(0, r; t) that a 
particle at the origin at time t = 0 has moved to r in time V. 

— = D V n2(0, r; t) (3.66) 

Because the particle is originally at the origin, «2(0, r; 0) = δ(τ). Applying the 
Fourier transform J dr exp[—q ■ r] to both sides of Eq. (3.66) gives 

dnijq, ή 
dt 

- 1)q H2 (a, t) The boundary condition is that «2(<? = 0. 0) = I. 
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=>n2(q,t)=e-'ii'Dt (3.67) 

Figure 3.17 shows an example of intensity correlation data for a dilute solution 
of coiled DNA. Note that by varying the scattering wave vector q = ko sin Θ of 
Eq. (3.8) it is possible to obtain many independent measurements of the diffusion 
constant D. 

Problems 

1. Reciprocal lattice vectors: 

(a) Use Eq. (3.24) to verify that the reciprocal lattices of the fee and bec lattices 
are as claimed in Table 3.1. 

(b) Find reciprocal lattice vectors of smallest magnitude for aluminum, beryl-
lium, and bec iron, and write down their Miller indices. 

2. Hep extinctions: 

(a) Show as claimed in Table 3.1 that the reciprocal lattice of a hexagonal lattice 
given by Eq. (2.5) is another hexagonal lattice rotated at 30° with respect to 
the original one, and find primitive vectors for the reciprocal lattice. 

(b) The hep lattice is built upon the hexagonal, with basis given by Eq. (2.6). 
Show that the modulation factor induced by the basis is 

Fn= | ΐ+^|[2("ι+"2)+3"3] |2 . (3.68) 

(c) Describe all the cases in which scattering from the hep lattice vanishes be-
cause of an extinction. 

3. Bragg peaks: Bragg's model for reflection of X-rays from a solid was based 
on the view that the solid was constructed out of a series of parallel planes. X-
rays bounced off these planes in such a way that angle of incidence Θ equaled 
the angle of reflection, and diffraction peaks occurred when radiation from 
successive planes added constructively. 

(a) Verify that the values of ko, k, and K given in Figure 3.2 are chosen correctly 
to produce scattering. 

(b) Show that in general the condition for a scattering peak can be written as 

2d sin Θ = IX, (3.69) 

where d is the distance between lattice planes, Θ is the Bragg scattering angle, 
λ is the wavelength of incoming light, and / is an integer. 
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4. Laue pattern: Suppose that broad-band X-rays are scattered from a crystal 
onto a photographic plate 1.5 inches away, giving the following pattern: 

Only the upper half of the four-fold symmetric scattering pattern is shown. 
Any scattering peaks at radii falling outside the gray shaded area are not 
recorded on the photographic plate. 

'""' ' Ilj"'1 

30 20 10 0 10 20 30 

(a) Use this Mauguin abacus to identify the Bragg angles of each spot. The way 
to use the abacus is to copy it (preferably onto transparent paper) and lay it 
down so that a tickmark on the left lies on some scattering spot, while the 
corresponding tickmark on the right lies on the origin. The Bragg angle is 
given by the common value of the two tickmarks. 

(b) The lattice has spacing a and is either sc, fee, or bcc. Which one? Assume 
the incoming X-rays to have uniform intensity at all wave vectors up to a 
cutoff of 32/a. It should be emphasized that the spots are cut off both in real 
space by the boundaries of the circle and in reciprocal space by 32/a. 

5. Centrosymmetry: 

(a) Suppose that all the ionic form factors // in Eq. (3.10) are real. Show that 
the X-ray scattering data will make all crystals appear to be centrosymmetric 
whether they are so or not (FriedeVs law). 

(b) Consider next a crystal that is not centrosymmetric, and with two different 
atoms per unit cell. Suppose that the X-ray frequency is chosen near to a 
value ωο at which one of the atoms has an absorption resonance. Assume that 
the frequency dependence of the absorption can be modeled by pretending 
that the atom behaves like a mass on a spring with damping. Show that the 
amplitude and phase of scattered radiation vary just like the amplitude and 
phase of a mass on a spring with damping driven by a periodic force. Show 
that the phases of the two form factors / for the two atoms should be different, 
and that the scattering intensity now contains information from which can be 
deduced the fact that the crystal is not centrosymmetric. 
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6. Mott-Bethe relation: Demonstrate Eq. (3.47). Use the fact that the electron 
density satisfies Poisson's equation, V2V = Απηβ, where V is the electrostatic 
potential. 

7. Powder pattern intensities : Consider an array of identical scatterers from 
which is made a powdered crystal suitable for the Debye scattering method. 
The intensity of a measured line appearing at Bragg angle Θ is 

\f(e)\%MqN^ . *f (3.70) 
V KQ sin Θ sin 2Θ 

Here Mq is the multiplicity of the relevant &-space point. Sketch the derivation 
of Eq. 3.70 by showing that the ^-dependent part is the product of two types 
of terms: 

• Form factors / and F such as those in Eqs. (3.47) and (3.31). 
• Geometrical factors resulting from averaging over crystallite directions. 

Formally, the geometrical factors are obtained by observing that the Bragg 
reflection due to a reciprocal lattice point K is 

Ô(qx-Kx)ô(qy-Ky)ô(qz-Kz). (3.71) 

In a powder diffraction experiment, the probability that a reciprocal lattice 
vector of magnitude K should point along angles Θ and Φ is sin(6)/47r. Av-
eraging over Θ and Φ, and writing the resulting single delta function as a 
function of the Bragg angle Θ will give the desired result. Use the mathemat-
ical result that 5(f(x) — y) = Σ,· 5(x — Xi)/\f(xì)\, where x,· are the roots of 
y-f(x). 

8. Zinc powder pattern: Consider the hep metal zinc in polycrystalline or pow-
dered form, and consider conducting an X-ray scattering experiment in which 
radiation of 1 Â wavelength is scattered off the sample. Write a computer 
program calculating the scattering intensity as a function of Bragg angle that 
should be observed, treating zinc atoms as point scatterers. Use experimental 
numbers for the lattice constants of zinc, and use Eq. (3.70) for the intensities 
of the lines. 

References 
S. C. Abrahams, L. E. Alexander, T. C. Furnas, W. C. Hamilton, J. Ladell, Y Okaya, R. A. Young, and 

A. Zalkin (1967), American Crystallographic Association single-crystal intensity project report, 
Acta Crystalographica, 22, 1-6. 

J. D. Axe and R. M. Nicklow (1985), Neutron scattering in condensed-matter physics, Physics Today, 
38(1), 26-35. 

C. S. Barrett and T. B. Massalski (1980), Structure of Metals: Crystallographic Methods, Principles 
and Data, third, revised ed., Oxford, New York. 



74 Chapter 3. Scattering and Structures 

B. J. Berne and R. Pecora (2000), Dynamic Light Scattering with Applications to Chemistry, Biology, 
and Physics, Dover, New York. 

W. Brefeld and P. Guertler (1990), Synchrotron radiation sources, in Handbook on Synchrotron Ra-
diation, S. Ebashi, M. Koch, and E. Rubinstein, eds., vol. 4, pp. 269-296, North Holland, Ams-
terdam. 

P. Carra and B. T. Thole (1994), Anisotropie X-ray anomalous diffraction and forbidden reflections, 
Reviews of Modern Physics, 66, 1509-1515. 

S. Doniach and E. H. Sondheimer (1974), Green's Functions for Solid State Physicists, Ben-
jamin/Cummings, Reading, MA 

J. P. Eberhart (1991), Structural and Chemical Analysis of Materials: X-Ray, Electron and Neutron 
Diffraction; X-Ray, Electron and Ion Spectrometry; Electron Microscopy, John Wiley and Sons, 
Chichester. 

P. P. Ewald, ed. (1962), Fifty Years of X-Ray Diffraction, International Union of Crystallography. 
W. Friedrich, P. Knipping, and M. von Laue (1912), Interference phenomena for X-rays, Sitzung-

berichte. Bayerische Akademie der Wissenschaften, pp. 303-322. In German. Translated in 
Glusker (1981), pp. 23-39 

E. A. Galburt and B. L. Stoddard (2001), Time-resolved macromolecular crystallography, Physics 
Today, 54(7), 33-39 

R. K. Gehrenbeck (1978), Electron diffraction: fifty years ago, Physics Today, 31(1), 34—41. 
A. S. Gittings and D. J. Durian (2006), Gaussian and non-Gaussian speckle fluctuations in the 

diffusing-wave spectroscopy signal of a coarsening foam, Applied Optics, 45, 2199-2204. 
J. P. Glusker, ed. (1981), Structural Crystallography in Chemistry and Biology, Hutchinson Ross, 

Stroudsburg, PA. Collection of historical papers. 
T. Hahn and A. J. Cochran, eds. (1992), International Tables for Crystallography, vol. C: Mathemat-

ical, physical, and chemical tables, 3rd ed., Kluwer Academic Publishers, Dordrecht. 
H. A. Hauptman (1989), The phase problem of X-ray crystallography, Physics Today, 42(11), 24-29. 
T. M. Hayes and J. B. Boyce (1982), Extended X-ray absorption fine structure spectroscopy, Solid 

State Physics: Advances in Research and Applications, 37, 173-351. 
J. D. Jackson (1999), Classical Electrodynamics, 3rd ed., John Wiley and Sons, New York. 
L. D. Landau and E. M. Lifshitz (1977), Quantum Mechanics (Non-relativistic Theory), 3rd ed., 

Pergamon Press, Oxford. 
P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid (1981), Extended X-ray absorption fine 

structure-its strengths and limitations as a structural tool, Reviews of Modern Physics, 53, 769-
806. 

F. Liu, S. H. Garofalini, R. D. King-Smith, and D. Vanderbilt (1993), First-principles studies on 
structural properties of/3-cristobalite, Physical Review Letters, 70, 2750-2753. 

J. K. Mackenzie and V. W. Maslen (1968), Reproducibility of intensity measurements by X-ray 
diffractometers. A new assessment of data from the single-crystal intensity project of the Ameri-
can Crystallograpic Association, Ada Crystallographica, A26, 628-639. 

E. M. McMillan (1984), A history of the synchrotron, Physics Today, 37(2), 31-37. 
A. L. Patterson (1934), A Fourier series method for the determination of the components of inter-

atomic distances in crystals, Physical Review, 46, 372-376. 
A. Rousse, C. Rischel, and J. C. Gauthier (2001), Colloquium: Femtosecond x-ray crystallography, 

Reviews of Modern Physics, 73(1), 17-31 
L. Schiff (1968), Quantum Mechanics, 3rd ed., McGraw-Hill, New York. 
C. G. Shull, W. A. Strauser, and E. O. Wollan (1951), Neutron diffraction by paramagnetic and 

antiferromagnetic substances, Physical Review, 83, 333-345. 
K. Siegbahn (1982), Electron spectroscopy for atoms, molecules and condensed matter, Reviews of 

Modern Physics, 54, 709-728. 
G. H. Stout and L. H. Jensen (1989), X-Ray Structure Determination: A Practical Guide, 2nd ed., 



References 75 

John Wiley and Sons, New York. 
K. Triantafyllopoulos (2003), On the central moments of the multidimensional Gaussian distribution, 

The Mathematical Scientist, 28, 125-128. 
B. K. Vainshtein (1994), Fundamentals of Crystals: Symmetry and Methods of Structural Crystal-

lography, vol. 1 of Modern Crystallography, 2nd ed., Springer-Verlag, Berlin. 
L. Van Hove (1954), Correlations in space and time and born approximation scattering in systems of 

interacting particles, Physical Review, 95(1), 249-262. 
R. W. G. Wyckoff (1963), Crystal Structures, vol. 1, 2nd ed., John Wiley and Sons, New York. 





4. Surfaces and Interfaces 

4.1 Introduction 

Surface physics might seem to be unimportant because the number of atoms sitting 
at a surface relative to those lying within the bulk is negligible for macroscopic bod-
ies. However, this judgment is incorrect. Surfaces provide the doorways through 
which material inevitably passes when entering or leaving a solid. The state of 
a material's surface determines both its strength and its resistance to chemical at-
tack. The manufacture of integrated circuits consists in the deposition of complex 
sequences of surface layers to build up the desired pathways for electrons. Partly 
for this last reason there is a continual rapid development of experimental meth-
ods for describing and characterizing surfaces. Characterization has in fact outrun 
the immediate needs of technology, and it allows even surfaces without crystalline 
order to be pictured in atomic detail. 

4.2 Geometry of Interfaces 

The simplest deviation from perfect crystalline behavior occurs when a crystal 
comes to an end, abutting either another crystal or empty space. The first case 
is a grain boundary, and the second one is a surface. As discussed by Wolf (1992), 
these two types of interface can be described in a common way from the geometri-
cal point of view. 

One can initially simplify the problem of interfaces by assuming that when a 
perfect crystal is sliced along a plane, none of the remaining atoms moves from its 
original location. This assumption is not generally true, but is often a reasonable 
first approximation. The way in which it fails has to do with the fact that the crys-
tal deforms as it approaches a boundary. The deformation may take a mild form, 
such as a slight increase or decrease of the volume per atom. It may involve the 
formation of an entirely new crystal structure right at the interface, called surface 
reconstruction. Or it may involve the formation of an entirely new phase; for ex-
ample, a thin liquid layer on an otherwise solid body. The region of deformation 
relative to the perfect crystal is called the selvage. 

Ignoring surface reconstructions and other deformations, a plane interface be-
tween two crystals may be described by ten variables, describing the ways that two 
perfect planar interfaces can be brought together. Three of the variables describe 
the precise microscopic three-dimensional positioning of one crystal with respect 
to another, as shown in Figure 4.1(A): exactly how far the two crystals are from 
one another, and how far each has been slid along the other in the two in-plane 
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directions. The seven remaining variables have macroscopic significance. Each of 
the two crystals has been sliced along a plane. The conventional way to describe 
planes is with Miller indices, using three numbers, but of course to describe a plane 
in three dimensions needs only two numbers, the angles along which its unit nor-
mal points. However, one needs to describe the precise point along the unit normal 
where the cut is made. So specifying the two crystal planes takes a total of six 
numbers. A tenth and final variable Θ is needed to specify the relative orientations 
of the two crystals as they rotate about in the plane where they meet, shown in 
Figure 4.1(B). 

Figure 4.1. (A) Three microscopic variables describe the precise positioning of two ideal 
interfaces with respect to one another. (B) Angle specifying the relative rotations of two 
crystal interfaces. 

For a free surface, only two variables need to be described; those giving the 
plane along which it cuts the crystal. 

4.2.1 Coherent and Commensurate Interfaces 

When two crystal surfaces meet, it is valuable to know if they will mesh well with 
one another. This question is particularly interesting if one is building a layered 
structure consisting of alternating crystal types and wants to know if they will bind 
together. If two crystal surfaces are placed together and the atoms are in perfect 
registry with one another, then one has a coherent interface, and the process of 
growing such an interface is called epitaxy. There is a related concept, that of a 
commensurate interface which is slightly more general. Two interfaces are com-
mensurate if there is some larger two-dimensional lattice on which their atoms 
coincide, as shown in Figure 4.2. The general condition for two lattices to be 
commensurate is slightly complicated because one must include the possibility of 
rotating them at some peculiar angle, as in Figure 4.2. Let a\, a-i and b\, &2 be 
two sets of primitive vectors for the atoms on the two interfaces. Then the two are 
commensurate if there is an infinite set of integers n\,ri2 and m\, m-i, together with 
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an angle Θ such that 

- , - / cos 6> sin ö \ , r τ Λ n\al+n2a2=\ . ,, „ \ [m\b\ + m2b2). (4.1) I — sin #cos 0 / 

The set of points on which the two lattices agree is called the superlattice. One 
can always define b\ and b2 so that the rotation angle in Eq. (4.1) is zero, although 
it is included for generality. 

Figure 4.2. Two square lattices whose lattice constants differ by VS/2 are commensurate 
but incoherent, because not all the atoms lie on top of one another. 

4.2.2 Stacking Period and Interplanar Spacing 

Another interesting geometrical quantity is the stacking period, which is defined by 
counting the number of lattice planes one encounters, while heading directly away 
from the interface, before hitting a new lattice plane that has all its atoms sitting 
directly above those on the interface, along the normal. There are some fairly 
general results for crystals of cubic symmetry. If the Miller index of a surface is 
(ijk), then the stacking period in a cubic crystal is 

P = ö(i2 + j 2 + k2), (4-2) 

where δ equals 1 or 2, depending on the particular lattice being considered and 
whether /, j , and k are odd or even, as shown in Figure 4.3. 

Probably more important is the interplanar spacing 

d = ea/yji2 + j 2 + k2, (4.3) 

where e equals 1/2 or 1 depending upon circumstances. In fee crystals, for ex-
ample, e is 1 if i, j , and k are all odd, but otherwise it equals 1/2. Because the 
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fee ( 100) surface, P = 2 fee ( 111 ) surface, P = 3 

Figure 4.3. The stacking periods of the (100) and (111) planes for the fee lattice. In the 
first case, δ of Eq. (4.2) is 2 and e of Eq. (4.3) is 1/2; in the second case, δ = 1 and e = 1. 

product of the interplanar spacing and the area per atom on the interface must 
be constant, interfaces with large interplanar spacings have the highest density of 
points on the surface. This situation is energetically favorable if two crystals are 
brought together, because it gives them opportunities to bond that resemble those 
of the unbroken crystal. For this reason, interfaces with small Miller indices, (110), 
(100), and (112), occur frequently in practical situations. 

Yet another concept, not so easy to define precisely, is the number of nearest-
neighbor bonds one must snap in order to build a given interface. This idea is 
connected approximately with surface energy, although the energy needed to form 
a surface cannot usually be encompassed completely by so simple a calculation as 
the snapping of nearest-neighbor bonds. The process of snapping bonds is rela-
tively easy to visualize in simple cases, such as the (100) surface of an fee lattice, 
shown in Figure 4.4. 

There is a large vocabulary that has developed to describe the geometries of 

Figure 4.4. Diagram showing the bonds broken in cutting along the (001) plane in an 
fee crystal. For planes at oblique angles, determination of the analogous quantity is more 
difficult, particularly because it may be advantageous for the surface of separation to rise 
and fall slightly on the atomic scale to cut the smallest number of bonds. 
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interfaces. If a single crystal is sliced along some plane, and the top half turned 
upside-down and replaced, the result is called a twin boundary, shown in Figure 
4.5. The grain boundary in this case is a mirror plane; the high degree of symmetry 
makes such boundaries energetically favorable and quite common. If instead one 
rotates the top half of the crystal through some angle around a normal to the inter-
face, one produces a twist boundary. If a single crystal has a wedge cut out of it and 
is then glued back together, the result is a tilt boundary; if the wedge is small, the 
result may be called a low-angle grain boundary. Finally, if the two halves of the 
crystal are brought back together without any tilting or rotation, but out of registry, 
the interface is a stacking fault. 

1 nm 
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Figure 4.5. (A) (111) twin boundary in NiAl visualized with atomic resolution in a high-
resolution electron micrograph. (B) Sketch clarifying locations of atoms. The mirror sym-
metry between right- and left-hand sides virtually eliminates defects along the interface. 
[Source: Nadarzinski and Ernst (1996), p. 651.] 

4.2.3 Other Topics in Surface Structure 

Because surfaces are open to the environment, they easily form thin layers of new 
structures, generically referred to as adsorption. If the attraction of the foreign 
material is weak, it is called physisorption. De Gennes (1985) reviews the phe-
nomenon of wetting in which a thin fluid layer covers a solid. Gomer (1975) re-
views chemisorption, where a chemical species forms a strong chemically bonded 
layer. All these topics are discussed in more detail by Zangwill (1988). 
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4.3 Experimental Observation and Creation of Surfaces 

Many of the most dramatic recent advances in experimental physics have con-
cerned studies of surfaces. There is an unpleasant tradition of giving each new 
technique an acronym, which tends to acquire new letters as the technique is re-
fined. 

4.3.1 Low-Energy Electron Diffraction (LEED) 

Figure 4.6. (A) Sketch of a LEED experiment. Electrons accelerate from a region with 
voltage V toward a sample surface. Reflected electrons pass through two grids whose volt-
age is arranged to allow past only those electrons that lost minimal energy during contact 
with the sample, and finally are attracted to a screen where they are imaged. (B) Low-
energy electron diffraction from a diamond (111) surface with a single hydrogen terminat-
ing each dangling carbon bond. [Source: Cheng et al. (1997), p. 3714.] 

Low-energy electron diffraction (LEED) is the method used by Davisson and 
Germer (1927) to establish the wave nature of the electron. The technique uses the 
fact that electrons of energy less than 103 eV have huge scattering cross sections in 
many materials, due to the intense interaction of electrons with any charged object, 
and is reviewed by Webb and Lagally (1973). 

In the LEED configuration, electrons are directed toward a sample, shown in 
Figure 4.6. They collide with the surface, penetrating at most a few atomic layers, 
and some are scattered backwards. These reflected electrons are filtered, and only 
those suffering minimal energy loss in the scattering process are retained. Effec-
tively, these electrons diffract only off the first layer or two of atoms with which 
they collide. The wavelength of electrons is given by 

λ = 12.2 [energy/eV]"'/2 À (4.4) 

so for typical energies of a few hundred electron volts, wavelengths are on the order 
of angstroms. 

The basic equation for scattering from a surface is still given by Eq. (3.11), but 
the sum over / is taken only over a two-dimensional collection of atoms lying at the 
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Figure 4.7. The Ewald construction for surfaces is shown, emphasizing that points in the 
reciprocal lattice become rods, and that the condition for scattering is that these rods be 
intersected by a spherical shell. 

solid surface. Call the scattering surface the x-y plane. The condition for obtaining 
a strong scattering peak therefore is given by Eq. (3.17) in the form 

q ■ (Rx, Ry, 0) = 2πΙ. ι m u s t b e a n integer, but will vary depending (4 .5 ) 
on the choice of R. 

The difference between scattering from a bulk solid and scattering from a solid 
surface results from the fact that while the lattice vectors R in Eq. (4.5) lie in a 
plane, the experiment takes place in a three-dimensional world, where radiation 
is free to exit in a set of directions indexed by angles Θ and φ. Then Eq. (4.5) is 
satisfied by any a of the form 

Kx and Ky are components of a reciprocal lattice 
q — [Kx, Ky, qz). vector Kchosen so that KXRX + KyRy = 2-πΙ. One (4 .6 ) 

can take qz to be anything at all, because the z 
component of R is zero. 

Constructing the Ewald sphere corresponding to Eq. (4.6), one sees that the 
geometrical condition to be satisfied is that the surface of a sphere intersect a col-
lection of rods, as in Figure 4.7. This condition is guaranteed to be satisfied at some 
scattering angles for any choice of incoming wave vector ko and for any orientation 
of the sample, in contrast with the bulk case described in Section 3.3. There is no 
need to rotate the sample, scan through incoming wave vectors, or use powdered 
samples in order to obtain scattering peaks. 

Despite LEED's crucial historical role in demonstrating the wave nature of the 
electron, it is not easy to determine detailed features of surfaces based upon LEED 
measurements. Because electrons interact very strongly with solids, multiple scat-
tering is impossible to avoid. Quantitative comparison of theory and experiment 
requires one to make detailed guesses about surface structure and then carry out 
lengthy quantum-mechanical calculations for the scattering of electrons from the 
surfaces, based upon the guesses. 
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4.3.2 Reflection High-Energy Electron Diffraction (RHEED) 

In this technique, electrons of energy on the order of 100 keV are reflected off a 
surface at a grazing angle. The wave vectors associated with such energies are 
on the order of 200 Â - 1 and are much larger than the spacing between reciprocal 
lattice vectors, leading to streaky scattering patterns where the Ewald sphere in-
tersects reciprocal lattice rods. Slight rotations of the sample are needed to obtain 
strong signals in desired directions. 

4.3.3 Molecular Beam Epitaxy (MBE) 

With the ability to measure the properties of surfaces with precision has come the 
ability to control their composition with comparable precision. The technique of 
molecular beam epitaxy (MBE) allows building up a solid one atomic layer at a 
time with precise control over the composition of each layer and the ability to alter 
composition at will. 

Figure 4.8. Schematic view of MBE. Ballistic beams of atoms escaping from heated cham-
bers impinge upon a substrate and form atomically perfect layers, monitored by RHEED. 

A caricature of a molecular beam epitaxy facility appears in Figure 4.8. An 
atomically flat crystalline surface is placed within an ultra-high vacuum chamber, 
meaning it is at a pressure of around 10~n torr. Various Knudsen cells, each 
containing a different element to be added to the surface, are aimed at the substrate. 
Atoms leave the Knudsen cell simply by being heated until they evaporate, and 
then flying ballistically to the substrate, if the control shutter is open. To obtain 
atomic control of the deposition process, reflection high-energy electron diffraction 
is carried out in situ. The strength of the specularly reflected electron beam depends 
upon the state of the surface, as shown in Figure 4.9. If a new surface layer is only 
half-formed, the electron beam is scattered diffusely, while if it is nearly perfect and 
smooth, the specular reflection grows stronger. The result is a periodic oscillation 
of the strength of the electron beam, in which each period represents the deposition 
of precisely one atomic layer. 
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Figure 4.9. The intensity of RHEED scattering from a growing surface depends upon whe-
ther the surface is complete, or partially formed. These data show oscillations in RHEED 
intensity during the growth of a (001) GaAs surface, monitoring the [210] reflection as 
electrons reflect off the surface at an angle of 0.91°. [Source: Braun et al. (1998), p. 
4937.] 

To a great extent, layer growth in molecular beam epitaxy is dependent upon 
the physics by which atoms attach to surfaces, still more of an empirical than a 
theoretical science. Attempting to deposit silver on GaAs, for example, by this 
technique produces blobs and islands rather than uniform atomically flat films. 
Conversely, there are fortunate cases in which deposition layer by layer is possible. 
One important example is the deposition of GaAlAs on GaAs, where the aluminum 
may be substituted for the gallium at any desired concentration and where layers of 
varied composition may be grown with exceptional precision, one upon the other. 
The interfaces are not absolutely atomically perfect, but errors in which a gallium 
or aluminum atom finds itself out of place are typically confined to the width of a 
single atomic spacing. 

4.3.4 Field Ion Microscopy (FIM) 

A specimen is formed in the shape of a sharp tip. This tip is given a large positive 
electrical potential, and because sharp tips create singular electrical fields, a field 
on the order of 109 V/cm is generated near the surface. The tip is placed in a neutral 
gas such as helium or neon at moderately low pressure, and the large fields cause 
occasional ionization of the gas, thereby capturing an electron and repelling the ion. 
The ions are captured on a screen. The capture process happens preferentially near 
protruding atoms on the tip, so that the technique can actually image individual 
atoms on the tip surface. Disadvantages include the fact that one must be able to 
build the microscope tip out of the material one wishes to examine, and one can 
only look at materials that can stand the high fields. This technique has largely 
been supplanted by tunneling microscopy. It is reviewed by Tsong (1993). 
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4.3.5 Scanning Tunneling Microscopy (STM) 
The idea that quantum mechanics should permit particles to pass through barriers 
occurred to J. R. Oppenheimer during a drive from the eastern United States to a 
position as research fellow at Cal. Tech. in 1927. The symbols 

-C 
i r^ e x p See Davis (1968), p. 23. The tunneling (4 .7 ) 

E formula in more familiar notation might 
read φ ~ exp[—x 

had just been scrawled on the windshield of his car when he ran off the road into 
a county courthouse, a rather unsuccessful first attempt to put the formula into 
practice. 

Tunneling spectroscopy became a powerful tool for investigation of metals 
and superconductors over the next four decades. As discussed by Wolf (1975), it 
was typically performed between flat millimeter-scale samples with separations be-
tween the plates much larger than an angstrom. The macroscopic size of the sample 
offset the exponentially small current that could flow between the two plates, and 
the large size also produced an average over the thermal vibrations of the plates. 

Gradual improvement of numerous branches of technology made it possible 
by the 1980s to employ Eq. (4.7) for imaging of surfaces on the atomic scale, in 
a device invented by Binnig and Rohrer (1987) and called the scanning tunneling 
microscope or STM. The essential idea is to bring an atomically sharp metallic tip 
near to a conducting surface. Because the current flowing from surface to tip varies 
exponentially with the distance between them, it can be used as an exceptionally 
sensitive indicator of surface height, and because the tip is very sharp, it is sensitive 
to small-scale variations in the horizontal direction as well. 

Detailed calculations of the precise rate at which tunneling takes place between 
surface and tip are not needed to appreciate the device, but it is worth asking how 
all the quantities appearing in Eq. (4.7) are to be defined in order to apply to the 
case of the tunneling microscope. A schematic picture of the device appears in 
Figure 4.10. First, consider the case in which the voltage difference V between tip 
and sample is zero. The equilibrium chemical potentials of different conductors 
are not in general the same, which means that in order for tip and sample to be at 
the same voltage, a small transient current has had to flow between them soon after 
they were connected together, resulting in a situation where the minimum energy 
needed to raise an electron from tip or surface to the energy of the vacuum is 

φ = — (n\ -\- / Ì2 ) . Thus φ is the average of the work functions (4 .8 ) 
2 of the tip and surface; work functions are dis-

cussed further in Sections 19.2.1 and 23.6.1. 

The tunneling current Eq. (4.7) follows from the Wentzel-Kramers-Brillouin 
(WKB) approximation, which gives as an approximate solution of Schrödinger's 
equation 

^(x)~exp [(i/h) I dx'^2m(E-U(x')) See Landau and Lifshitz (4 9 ) 
(1977), p. 164, or Schiff 
(1968), p. 268. 
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Figure 4.10. Schematic view of scanning tunneling microscope. Electrons tunnel through 
the vacuum from a metal surface to a metal tip. 

An electron wave function which begins on the left side of Figure 4.10 and travels 
distance s through the vacuum will drop in amplitude by a factor of 

exp 2ηιφ/Η 
Because U — £ = φ in the forbidden region. 
The calculation is performed in the limit of 
vanishing voltage V, so one need not consider 
the slight drop by amount V in the potential 
U(x). 

(4.10) 

by the time it reaches the other side. The current must be proportional to the applied 
voltage V, to the square of the wave function, to the initial density of electrons n\ 
ready to spring out of the sample, and to the final density of locations in the tip «f 
to which they can travel. Thus one estimates the current J to be 

JocninfV exp[—2sy 2m0/ft2] 

oc exp ■\M[s/k]J[<f>/éV] 

(4.11) 

(4.12) 

Achieving atomic-scale resolution depends upon careful experimental control 
of a number of different elements. First, external noise and vibrations must be 
eliminated, because motion of the tip by even 0.5 angstrom relative to the sam-
ple is fatal. The seeming impossibility of controlling vibrations is one explanation 
for why the STM took so long to discover. In the first STM, vibration was con-
trolled by levitating the entire apparatus on permanent magnets over a bowl of 
superconducting lead. Nested collections of mechanical springs were soon found 
to be equally effective, but much cheaper. A schematic view of an STM from the 
point of view of vibration isolation appears in Figure 4.11. The central idea is that 
large soft springs connect the outside world to the machine through progressively 
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smaller and stiffer ones, terminating in the tip and sample housing that needs to be 
as small and stiff as possible. 

The next experimental challenge is to bring the tip reliably to within 1 angstrom 
of the sample and then maintain it either at constant current or constant voltage 
during scans across the surface. So that the sample can be removed and inserted 
under the tip, there needs initially to be clearance of around 1 mm. This difficulty 
also can be surmounted with appropriate use of springs, as indicated in Figure 
4.11. Gross vertical motions of the sample are controlled by a large weak spring, 
which also helps ensure that external vibrations do not reach the sample. The 
large spring is in series with smaller, much stiffer springs, so pushing up and down 
upon it results in comparatively small motions of the sample. Fine motions of the 
tip, which must be controlled well within an angstrom but range over a micron, 
are controlled by mounting the tip upon a number of piezoelectric elements. The 
conceptually simplest geometry of the piezoelectric elements controls tip motion 
with two horizontal elements (whose contraction moves the tip about in the plane) 
and one vertical element (which controls its height). A widely used piezoelectric 
material is PbZrTi (PZT), which contracts by around 4 parts in IO8 per volt applied 
across it, up to 1000 V. Therefore for 2-cm-long piezoelectric strips sub-angstrom 
resolution is obtained by controlling voltages to within a percentage of a volt, but 
at the same time excursions on the order of 1 μπ\ are obtainable. The piezoelectric 
strips in such a geometry are too long and floppy to provide optimal control, and 
numerous other designs are employed in practice. 

Figure 4.11. Schematic view of mechanical operation of an STM. 

Finally, there remains the challenge of creating a tip capable of achieving 
atomic resolution. Experimental groups have their own secret magical recipes, 
and no single method dominates because no method has yet been found which is 
particularly reproducible or reliable. The best tips have literally a single atom pro-
truding from their ends; they are hard to make and last only so long as mechanical 
stresses during measurement do not make the atom jump about. 

It would be difficult to operate a scanning tunneling microscope without mod-
ern electronics. On the one hand, the piezoelectric elements must be controlled 
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continuously and in precise sequence in order to scan the tip across the surface. In 
addition, all the data for tip height as a function of x, y location have to be recorded 
and assembled later for interpretation. Computer control and data acquisition are 
therefore almost indispensable. 

Figure 4.12. Stereo pair showing the locations of atoms in the Si 7x 7 reconstruction of 
the (111) surface. The first three layers of atoms are shown, with different colors assigned 
to atoms in each layer. Top layer, ; middle layer, ; bottom layer, . The structure 
occupies 7x7 unit cells, as may be seen by counting the number of cells separating the 
centers of the large voids at each corner. 

Figure 4.13. Atoms on the (111) surface of silicon form the pattern shown here, which 
involves a 7x 7 atom surface unit cell. The image is produced by scanning tunneling 
microscopy. [Source: Wolkow and Avouris (1988), p. 1050.] 

The STM only became a standard tool in laboratories around the world after 
proving itself by resolving a long-standing controversy that had resisted all other 
types of surface analysis, the structure of the Si ( 111 ) surface. Although the crystal 
surface of silicon used in the electronics industry is (100), the (111) surface is easier 
to prepare for research purposes, because unlike (100) it can be formed by cleavage 
and made atomically flat with relatively little effort. Prior to the STM, locations of 
the atoms on the surface were not possible to determine, and the number of differ-
ent proposals was approximately equal to the number of experimental and theoret-
ical papers published on the subject. The STM resolved the question decisively; 
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Figure 4.14. (A) Scanning electron micrograph of piezoresistive cantilever and tip used in 
atomic force microscopy. [Courtesy of M. Tortonese, ThermoMicroscopes and Stanford 
University.](B) Atomic-scale image of the surface of graphite. The image is a map of the 
force between the microscope tip and the sample at a height of 12 pm, with forces ranging 
from —30 pN (white) to 30 pN (black). Hexagons show crystalline lattice. However, the 
experimental image has three-fold rather than six-fold symmetry because the AFM tip is 
not symmetrical and interacts differently with the crystalline lattice in different directions. 
(C) Map of dissipation per cycle obtained while oscillating the AFM tip at a height of 97 
pm over the sample, showing full symmetry of graphite lattice. [(B) and (C) courtesy of 
U. Schwartz, Yale University. For further details, see Albers et al. (2009).] 

the atoms are located in a 7 x 7 structure illustrated in Figure 4.12. Within a few 
years, images such as in Figure 4.13 became commonplace. Having shown it could 
answer questions beyond the capability of any other instrument, very rapid growth 
both in research use and commercial development began immediately thereafter. 

Tempting though it may be to regard the white and black spots of an STM 
image as atoms, one needs always to think back to Eq. (4.11) in viewing an STM 
image. What one sees is a contrast between electron densities at various points 
on the surface. Therefore, an atom on the surface which keeps a close grip on its 
electrons will be invisible, and some atoms may come in and out of view as one 
varies the bias voltage between tip and sample. In metals, the electron density is 
frequently sufficiently uniform that an STM image is featureless; an insulator has 
no free electrons to donate and is invisible, which leaves semiconductor surface 
physics as the domain in which the method is most profitable. 



Problems 91 

4.3.6 Atomic Force Microscopy (AFM) 
The atomic force microscope (AFM) was developed by Binnig et al. (1986) as a 
modification of the STM, to permit investigation of insulators. A tip is lowered 
toward a sample on a lever until it virtually touches, and either the force on the 
lever is maintained constant as it scans over the sample, or else deflection of the 
lever is measured by mounting a mirror on it and bouncing a laser beam off the 
top. The difficulties of controlling motion at the angstrom scale find the same 
solutions as with STM. An image of the surface of graphite is shown in Figure 
4.14. Interpretation of the image requires some caution. It accurately reflects the 
force between the surface of graphite and the AFM tip, but because the tip is not 
completely symmetrical, the image has three-fold rather than six-fold symmetry. 
Bustamante and Keller (1995) show that the AFM technique can be modified to 
function even in liquids at room temperature, although in such noisy environments 
atomic-scale resolution is no longer possible. 

4.3.7 High Resolution Electron Microscopy (HREM) 

High resolution electron microscopy (HREM), described by Spence (1988), allows 
the study of solids with atomic resolution, and it can only be used on extremely thin 
sections of samples. An example of the technique has been displayed in Figure 4.5. 
The image looks like a photograph of atoms, but it must be approached with cau-
tion. It actually reflects a complicated smearing out of the actual electron density, 
and any attempt to extract quantitative density information requires an attempt to 
deal with the smearing quantitatively. 

Problems 

1. Superlattice: Show that when two crystal surfaces meet in a commensurate 
fashion, so that there is a superlattice along the interface, the areas of the 
primitive cells for the two surface lattices must be rational multiples of one 
another. 

2. Interplanar spacing: Consider a bcc lattice, and find how e in Eq. (4.3) 
depends upon /, j , and k for the planes (110), (111), (114), and (137). 

3. Bond breaking: 

(a) Consider an fee lattice in which the energy of a surface is given by the num-
ber of broken nearest-neighbor bonds. With reference to Figure 4.4, find the 
energy needed per area to cut along the (001) plane. 

(b) Consider the diamond structure, shown in Figure 2.6. How many bonds per 
area need to be cut to expose the (001) plane? 

(c) Consider again the diamond structure, but now also consulting Figure 2.2(D). 
How many bonds per area need to be cut to expose a (111) plane? Which of 
(001) and (111) should be expected to cleave most easily? 



92 Chapter 4. Surfaces and Interfaces 

4. Faceting: 

(a) Consider a two-dimensional square crystal. Suppose the energy needed to 
form a surface of Miller index (ij) is simply the number of nearest-neighbor 
bonds broken in forming the surface. Show that the surface energy a per unit 
length is 

where J is the energy per bond and a is the lattice spacing. 
(b) Draw a polar plot of Eq. (4.13); that is, draw a curve in polar coordinates 

where r(9) is given by the free energy a appropriate for a surface cut at angle 
Θ. 

(c) Suppose one has a two-dimensional crystal whose surface free energy per 
unit length is α(θ) for a surface at orientation Θ, or equivalently a(y'), where 
y(x) is a function describing the height of the crystal in Cartesian coordinates, 
and j ' = dy/dx. Argue that the equilibrium shape of such a crystal is given by 
minimizing the functional 

f dxy/l+y^a^-X f ' dxy(x), (4.14) 

where λ is a Lagrange multiplier. 

(d) Dehne 

f{y,) = \J^+y'My')· (4.15) 
Using the calculus of variations, show that 

dx dy' 

and that after obtaining a first integral and then multiplying by y", Eq. (4.16) 
can be integrated to give 

y/l+yza(y) = \(y'x-y) (4.17) 

The arbitrary constants obtained during the integrations can be ignored. Why? 

(e) Rewrite Eq. (4.17) in terms of the unit normal h to the surface described by 
y{x). Equation (4.17) describes a geometrical construction in which for every 
normal direction n one draws a line perpendicular to « at a distance r(n) from 
the origin such that the line hits the polar plot of a ( / ) from part (b). Then y(x) 
is the envelope of all these lines. Use this construction to draw a sketch of the 
equilibrium crystal resulting from the surface energy of Eq. (4.13). For more 
information on this topic, see Rottman and Wortis (1984) and Tosi (1964) 
p. 92. 
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Figure 4.15. A cluster produced by diffusion limited aggregation with 2000 particles. 

5. Diffusion-limited aggregation: Diffusion-limited aggregation or DLA is a 
simple algorithm for how surfaces might grow in a disordered fashion, first 
studied by Witten and Sander (1981). The algorithm has the following steps: 

(a) Consider a rectangular grid, periodic in the horizontal direction, with period 
200. Particles will be able to visit nodes on the grid, indexed by integers 
(lx, ly), where 0 < lx < 200 and 0 < ly. Create a 200 x 600 array of integers 
to represent this grid, and initialize all elements to 0. 

(b) Introduce a particle at site (100, 0), which means setting the array element 
(100, 0) to 1. The height of the cluster is now 1. 

(c) Now introduce a new particle at height 1, which means randomly choosing 
an array element on the line (lx, 1) and setting it to value 1. 

(d) Allow this particle to diffuse. That is, choose randomly from the four direc-
tion vectors (1, 0), (—1, 0), (0, 1) and (0, —1), and move the particle as the 
direction vector indicates by setting the array element where the particle used 
to be to 0, and also setting the value of the new array element to 1. 

(e) Keep allowing the particle to diffuse until: 

i. The particle height ly rises above the maximum height of the cluster (now 
equal to 1). In this case set its array element to 0, and return to step (c). 

ii. The particle height hits the floor at ly — 0. In this case, the array element 
where the particle is located remains at 1, and a new particle is introduced. 

iii. The particle occupies any lattice site adjacent to the first particle that was 
introduced, from any side. Again, the second particle is frozen, and a new 
particle will be introduced. There is now the possibility that the height of 
the cluster will have risen to 2. 

(f) Introduce more particles in an analogous fashion. Particles are introduced 
randomly at height /max + 1, where /max is the highest occupied site on the 
existing cluster. If they diffuse above the height at which they are introduced, 



94 Chapter 4. Surfaces and Interfaces 

throw them out, and introduce a new particle. If a particle touches the floor, 
or any particle already frozen in the cluster, it too freezes, /max is increased by 
1 if necessary, and a new particle is introduced. 

(g) Using this algorithm, produce a cluster with 2000 particles and draw a pic-
ture of it (see Figure 4.15). 
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5. Beyond Crystals 

5.1 Introduction 

The number of possible equilibrium crystal structures is enormous, but these struc-
tures represent ideal cases, rarely realized in the natural world. Macroscopic sam-
ples of solid matter are rarely close at all to thermal equilibrium, and equilibrium 
structures are not always crystals. The goal of this chapter is to discuss some of the 
relations between naturally occurring materials and crystals. The first topic is dif-
fusion, since random displacement of atoms provides one of the primary ways that 
perfect crystalline order is modified. Metal alloys provide the next topic. Simple 
statistical arguments show that their crystalline order can be destroyed at a critical 
temperature well below melting, and that even when one disregards this transition, 
these alloys are unlikely ever to be in equilibrium. There follows a brief discussion 
of several other forms condensed matter can take—liquids, glasses, liquid crystals, 
and polymers—for which the language of crystals is inappropriate. The discussion 
closes with an introduction to quasicrystals, which provide an example where a 
structure without true crystalline order can be described with the same precision 
and completeness that has been found for crystals. 

5.2 Diffusion and Random Variables 

5.2.1 Brownian Motion and the Diffusion Equation 

In 1827, Robert Brown published an account of observations through a microscope, 
beginning with pollen, and proceeding to a large variety of powders. He concluded 

[t]hat extremely minute particles of solid matter, whether obtained from 
organic or inorganic substances, when suspended in pure water or in 
some other aqueous fluids, exhibit motions for which I am unable to 
account and which from their irregularity and seeming independence re-
semble in a remarkable degree the less rapid motions of some of the 
simplest animalcules of infusions. —Brown (1827), p. 481 

The motions were eventually explained by Einstein (1905) and Perrin (1909) 
as the result of thermal fluctuations causing fluid molecules to collide with the par-
ticles, and exciting them into motion. The microscopic motions became identified 
with the tendency of small particles to spread apart, as when some ink drops onto 
a piece of paper or a gel. 
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5.2.2 Diffusion 
Diffusive motion concerns a large population of noninteracting particles kicked 
about by random forces. Equivalently, it describes the probability distribution of a 
single particle undergoing random motion. 

The mathematical description of diffusion begins with the observation that if 
n(r, t) describes some density distribution of particles then there is a particle cur-
rent j that flows from regions of high density to low. The simplest possible rule 
for how this happens is that the rate of flow is proportional to the gradient Vn(r, t) 
(Fick's law) so that 

j = -VWn. (5.1) 

The constant Ί) is called the diffusion constant. Eq. (5.1) can also be rewritten as 

Vn j = —vn where v =—T>— (5.2) 
n 

is the mean velocity of particles. 

Continuity Equation. To obtain a closed expression for the particle density n, 
make use of the fact that particles are conserved. The continuity equation, illus-
trated in Figure 5.1 describes any collection of conserved particles whose coordi-
nates r change continuously with velocity v. If n(x, t) is the number of particles 
at position x and they are moving with mean velocity v(x, t), then the number of 
particles moving into a little region of width dx minus the number moving out is 

Av(x)n(x) dt—Av{x + dx)n{x + dx) dt (5.3) 

in time dt. Therefore for variable x one has that 

dn d , . . . 
= V(x)n(X t). Divide change in number of particles per time (5 .4 ) 

dt dx ' by volume Adx of the box. 

If there are many variables, the argument holds for each coordinate in turn and 

dn ^ d 
~dt=~^dr, 
&n = - Σ ^-Mr)n(7, t). (5.5) 

Figure 5.1. The continuity equation ap-
plies to any situation in which a conserved 
collection of particles can be characterized 
by a mean velocity wasa function of co-
ordinate 7. 
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Diffusion Equation. Using the velocity v for diffusing particles from Eq. (5.2) in 
the continuity equation (5.5) gives finally the diffusion equation 

— D V n. Taking Eq. (5.5) to apply to three dimensions. ( 5 .6 ) 
dt 

5.2.3 Derivation from Master Equation 

The simplest derivations of the diffusion equation do not make it apparent how 
random motion of particles leads to diffusion. To build this connection, a more 
sophisticated derivation is required. Again, let n(7, t) be the density of particles 
at location 7 at time t. Assume that at small time dt later the number of particles 
originally in small volume 5V at 7 that end up at 7 + ? is 

n(r, t) R(7 —> 7 + i, dt) ÔV. R g i v e s t n e probability that particles start at 7 ( 5 .7 ) 
and end at r + ? after time t. 

Then the change in the number of particles in the volume 5V near 7 is the number 
of particles starting at 7 + 87 and coming to 7 minus the number starting at 7 and 
leaving, which can be written as 

n(7, t + dt)— n(7, t) = / ds -
R(7 + s-^ 7, dt) n(7+s, t) 

■ R(7 —> r - s , 8t) n(7, t) 
(5.8) 

Factors of 8V have been divided out everywhere. Equation 5.8 is called the master 
equation. It appears very general, but it is based on some strong assumptions that 
can easily be violated. The most important is that knowing a particle is at 7 is all 
one needs in order to know the probability it will be at 7 + s some time dt later. 
This need not be true. For example, if the momentum of particles is important, 
then a collection of particles with momentum p\ will have a different probability 
distribution for future locations from particles with momentum ριφ p\- On the 
other hand, nothing in the derivation requires ? just to be three position coordinates. 
The derivation goes through without change when 7 contains many components, 
including for example momenta as well as positions. 

To derive the diffusion equation, observe that /?(?+?—> 7, t should be expected 
to be a rapidly varying function of s; the chance of going distance s varies quickly 
with the distance. However, one should not expect R(7 + s* —>■ 7, t to vary very 
quickly as a function of r: the rate at which particles jump about should not depend 
very much on where they are. Adopting this assumption, one can insert a Taylor 
expansion in Eq. (5.8) sending 7 to 7 — s, 

R(7+67^7, 6t)n(7+s, t) « R(7->7-s, öt)n(7, t) 
9 

+ 07- —R(7—+ 7 — Ï, ôt)n(7, t) 
or 

d2 

+ \ Σ sasßx R{7^7-s, dt)n(7,t) + . . . 
αβ ΟΓαΊΓΡ 

(5.9) 
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Substituting Eq. (5.9) into Eq. (5.8) gives 

-^ = - Σ ΈΓυ<* «('> 0 + Σ äryVoß n^')> ( 5 · 1 0 ) 

vi a <Jra αβ <Jrarp 

where, sending ? —► — sin the integrals, 

vaV) = fdssa
R^f+ldt) (5.11a) 

Vaß(r) = J ds\ w / ( ? ^ ^ + ? ' dt). (5.11b) 

The diffusion equation has now been generalized to include the possibility of a 
nonzero net flow « i n a particular direction, and the possibility that the diffusion 
rate is different in different directions so that Ί) becomes a tensor. 

5.2.4 Connection Between Diffusion and Random Walks 

Using Eqs. (5.11), one can connect physical models for how particles move to the 
diffusion equation. For example, suppose that at time intervals io, particles jump a 
distance a in a random direction in three dimensions. The mean flow w vanishes, 
because the probabilities of going forward or backward in direction a are equal. 
Off-diagonal components of Ί) vanish as well. Since jumping distance a in time to 
is certain, 

R(r^r + s,to) = 0-^^-. (5.12) 

The normalization ensures that / dsR= 1. Thus 

Σ © Ω α ( 7 ) = / 
ds [ 2^(s~a) a 2 

s - - = — (5.13) Ans2 2 to 2/o 
a2 

=>· D = Έαα = Since the three components are equal by symmetry ( 5 . 1 4 ) 
6io 

Thus a random walk with step length a and time constant to is equivalent to a 
solution of the diffusion equation with diffusion constant D = α2/6ίο· This cor-
respondence can be used to find the mean square distance travelled by particles 
undergoing a random walk. Multiply the diffusion equation (5.6) by r2 and inte-
grate: 

drr ~—-=T) / dr r ^rn = 6T> Use spherical coordinates for d2/r2 and ( 5 . 1 5 ) 
Ot J V Qr assume n(r, t) is spherically symmetric. 

Then integrate twice by parts and use the 
/ 2\ ^m> 2 ^ fact that f drnCr, t) = 1. ... . -. 

=> {rz) =6T>t = al- ■> y ' (5.16) 
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5.3 Alloys 

The importance of metallic alloys is compactly expressed in the fact that eras of 
human history are named for them. The Bronze Age began around 3000 B.C. in 
Greece with the discovery that addition of between 10% and 30% of tin to copper 
produced a metal of greater hardness and lower melting point than either of its 
components. Bronze was in most respects superior to the alloys of the Iron Age 
which followed, except that iron was cheaper and easier to mold. The progress of 
industry in recent centuries has closely been tied to the creation of improved forms 
of steel, which meant developing ingenious ways to add carbon and other materials 
in a controlled fashion to iron. 

5.3.1 Equilibrium Structures 

Consider a pure crystal of some element—say iron—and imagine addition of a 
very small amount of a second element—say carbon. The second element is always 
soluble in the first in sufficiently small quantities. 

The reason that thermodynamics favors a mixture is a consequence of entropy. 
Suppose that addition of each atom of the second element to the first incurs an 
energy penalty e > 0. The number of ways to add M atoms to a lattice of N 3> M 
sites is 

/N\ N\ NM 

= Ft Using the approximation that (5 17) 
\MJ M\{N-M)\ M\ ' N(N-l)... (N-M+\)^NM. 

so the entropy associated with the addition of M atoms, in terms of the concentra-
tion 

c = M/N, (5.18) 

is 

kß in(NM/Ml) « —ksN(c inc — c). T h e entropy is Boltzmann's constant kg ( 5 . 1 9 ) 
times the log of the number of ways to 
achieve some macroscopic state; also use 
M\?sMMe-M. 

Therefore, the free energy 3~ of the mixture is 

2f = £ - TS = N[ce + kBTc In c - kBTc], (5.20) 

which has a minimal value for concentration 

C ~ e _ e / * e 7 \ Just differentiate Eq. (5.20) by c, set to zero, ( 5 . 2 1 ) 
and solve for c. 

This tendency toward solubility of one element in another that declines exponen-
tially with decreasing temperature is illustrated in Figures 5.2 and 5.3(B). 



102 Chapter 5. Beyond Crystals 

IL, 

u 

-4 -

^ -5 -
00 
o 

Figure 5.2. The solubility of Fe3C in Fe drops exponentially, as predicted by Eq. (5.21). 
[Source: Flynn (1972), p. 38.] 

Zone Refining. An immediate consequence of Eq. (5.21) and diagrams such 
as Figure 5.3 is that the solid elements will not naturally be found in completely 
pure form, but tend to contain impurities at the level of around 1%. This tendency 
is particularly unfortunate in the case of the semiconductors intended for use as 
electronic materials, because certain types of electrically active impurities impair 
device operation if they are present at levels over one part in 1012. The same 
physical principle that tends to introduce impurities into solids can also however be 
used to remove them, motivated by the observation that as temperature increases, 
the solubility of an impurity in a host increases. Zone refìning uses this idea by 
taking an impure crystal and heating it, starting at one end, and slowly moving 
the front of the heated region toward the other end. Because impurities are much 
more soluble in the hot material than in the cold, they migrate toward the hotter 
end. When the process is completed, one end of the crystal has a much higher 
concentration of impurities than the other. The portion highest in impurities is 
discarded, and then the process is repeated. With successive passes, the impurities 
can be filtered away. 

5.3.2 Phase Diagrams 

The material produced by addition of a slight amount of one substance into another 
is called a primary alloy, since the first material is essentially unchanged by addi-
tion of the second. The primary alloys come in two basic types. In a substitutional 
alloy, one atom displaces the other and lives on its lattice sites. Zinc mixed into 
copper provides an example of an alloy of this type. Alternatively, the additional 
atoms may choose to sit within empty spaces of the lattice, creating an interstitial 
alloy; the atom sitting within interstices must be small and is usually hydrogen, 
boron, carbon, or nitrogen. 

A phase diagram describes the equilibrium state of a mixture of elements, as a 
function of temperature and relative concentrations. The simplest two-component 
diagrams belong to a few pairs of elements, including AuAg, AuPd, NiMn, CuPt, 
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and CuNi. All of these elements share an fee structure in the ground state, members 
of the pair have very similar lattice constants (see Table 2.1), and the two metals 
mix substitutionally into each other in any concentration. The Au-Cu phase dia-
gram provides an example in Figure 5.3(A). Such unlimited solubility is, however, 
quite rare, and even elements with the same crystal structure and similar lattice 
constants typically pass through an elaborate sequence of structures. For example, 
Ag and Al share the fee structure and have lattice constants differing only by 1%, 
yet Ag is soluble in Al up to only 0.2% at 200 °C. 

Gold Copper Silver Copper 

(A) 
10 20 30 40 50 60 70 80 90 

Atomic Percent Copper (B) 
0 20 30 40 50 60 70 80 90 100 

Atomic Percent Copper 

Figure 5.3. (A) Phase diagram of copper and gold, which form a perfect substitutional 
alloy but have a number of superlattice structures at intermediate temperatures. (B) Phase 
diagram of copper and silver, which have limited solubility and form a eutectic. [After 
Hansen (1958).] 

In general, beyond a critical concentration that depends upon temperature, the 
atoms of alloys begin to array themselves into an immense variety of structures. 
The term intermetallic compound applies whenever two metals form a definite 
crystal structure at some definite concentration. The crystals listed in Tables 2.2, 
2.4, 2.5, 2.6, and 2.7 provide many examples. When the concentrations of ele-
ments vary continuously between values at which intermetallic compounds form, 
they form secondary alloys, which can be thought of as intermetallic compounds 
with excess or deficit of some elements. In addition, there are two general types 
of ordering that can occur. If unlike atoms find it favorable to be near one another, 
they may choose to form superlattices, particularly near favorable concentrations. 
If, on the other hand, unlike atoms find each others' company energetically unsat-
isfactory, there will be a tendency toward phase separation. 

5.3.3 Superlattices 

The phase diagram of Figure 5.3(A) shows that gold mixes substitutionally into 
a primary alloy of copper at all concentrations. The arrangement of the gold 
with respect to the copper is not, however, always random. At temperatures be-
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low 400 °C, X-ray diffraction off copper-gold mixtures, with three parts copper 
to one part gold, shows a new set of diffraction peaks not present above 400 °C. 
Furthermore, the strength of these peaks depends upon the way the mixture is pre-
pared. Bragg and Williams (1934) report that lowering of temperature from above 
400 °C to 270 °C in a few seconds gives peaks no different from those present 
above 400 °C—the mixture has been quenched. By cooling the solid solution in-
stead over a period of several days—annealing it—new peaks form. Following the 
methods of Chapter 3, the locations of the new peaks can be used to show that the 
copper and gold have formed a crystalline compound in which gold and copper are 
arrayed as shown in Figure 5.4, called a superlattice. Many other combinations of 
metals produce similar superlattices, usually when mixed in ratios of 1:1 or 3:1. 

Figure 5.4. (A) A 3:1 mixture of copper and gold has the equilibrium superlattice structure 
depicted here below a temperature of 400 °C. (B) Superlattice of copper and gold in equal 
mixtures.The lattice constant c is 7% smaller than a. 

The structures of superlattices are no less varied than the structures of inter-
metallic compounds, and all the crystal structures of Chapter 2 are possible. There 
is no distinction in principle between intermetallic compounds and superlattices, 
except that the latter lose their order at a definite transition temperature well below 
the melting point of the crystal. Among elements mixed in 3:1 ratios, the structure 
displayed in Figure 5.4(A) is common, while for elements mixed in proportion 
of 1:1, the CsCl structure (Figure 2.8) frequently occurs, as in the cases of Cu-
Zn (/3-brass), CuBe, CuPd, AgMg, AgZn, AgCd, AuNi, NiAl, and FeCo. Phase 
transformations in superlattices are studied in more detail in Section 24.5.1. 

Many other structures are, however, possible. Mixed in a ratio of 1:1, copper 
and gold form a superlattice involving alternating planes of copper and gold atoms, 
as shown in Figure 5.4(B). When the atoms arrange themselves in this way, the 
whole lattice contracts by 7% along the c axis, so the symmetry of the crystal 
changes from cubic to tetragonal. Such macroscopic changes in the shape of the 
crystal are another frequent feature of superlattices. 

5.3.4 Phase Separation 

Iron carbide, Fe3C, is a stable compound. Suppose that only 3 atomic percent of 
carbon is mixed in with iron. The 3 carbon atoms out of 100 can combine with 9 
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iron atoms to form 12 atoms' worth of Fe3C, leaving 88% iron. This process re-
quires the physical separation of the proper mixture of carbon and iron from the rest 
of the soup, a rearrangement that cannot always occur quickly or spontaneously. 

Because phase separation is based upon principles of thermodynamics much 
more general than their application in alloy systems, a slightly abstract view is 
appropriate. 

Suppose one has any two substances, whose free energy when they are mixed 
homogeneously among one another has the form shown in Figure 5.5 as a function 
of their relative concentration. The shape shown in the figure is all the information 
one needs to conclude that a system prepared with concentration between ca and 
c/, will attempt to phase separate in order to minimize its free energy. 

>> 
EP 
<u 
c 
ω 
<u ω 

Ca Ch 

0 Concentration c 1 

Figure 5.5. When the free energy of a homogeneous mixture of two substances has the 
form shown in this diagram, whenever the overall concentration lies between ca and c/„ the 
system will phase separate into components with those two concentrations. 

Phase separation lowers the free energy of a system in the following way. Sup-
pose that the curve displayed in Figure 5.5 is iF(c). If the atoms were to separate 
into two different domains of concentrations ca < c and Q, > c (not yet necessarily 
the concentrations indicated in the figure), the free energy would instead be 

3r
ps = f3r(ca) + (l-f)?(cb), (5.22) 

where / is the fraction of the sample at concentration ca, and 1 — / is the fraction at 
concentration Q,. The fraction / is not arbitrary, because the overall concentration 
of the mix must be c, and therefore 

c = fca + (l-f)cb^f=^^- (5.23) 
Ca-Cb 

=* ?ps = ^^Hca) + ^-2(cb). (5.24) 

The geometrical interpretation of Eq. (5.24) is that one picks any two points one 
wishes on the curve 3(c) and draws a straight line connecting them; the straight 
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line describes free energy of phase separation between those two points. The points 
ca and Cb in Figure 5.5 have been chosen so that this construction resulted in the 
lowest possible free energy. 

A typical phase diagram is largely occupied with regions of phase separation. 
Consider the diagram in Figure 5.3(B) for copper and silver. Regions Ag and Cu 
are primary phases of fee metal with substitutional impurities. The region marked 
"Liquid" is also a homogeneous mixture. Everywhere else, the two metals phase 
separate. The solid lines then indicate the concentrations ca and Q, as a function of 
temperature. For example, at 700 °C, separation occurs between the two concen-
trations that have been marked. In the region denoted "Ag+liquid" a primary alloy 
of silver coexists with a liquid containing a greater percentage of copper. The line 
describing the composition of the liquid is called the liquidus, while the line de-
termining the composition of the solid is the solidus. The point marked "Eutectic" 
has technological significance, since it provides the lowest possible temperature at 
which the two metals mix in the molten state. As soon as the two metals are cooled 
below the eutectic temperature, however, they begin to phase separate, so if the 
goal is a homogeneous material there is a race against time. 

Binary phase diagrams have a number of characteristic shapes that appear 
bizarre at first glance, but which have a rather natural explanation in terms of sim-
ple assumptions concerning the free energies of solid and liquid phases. The idea 
is best illustrated geometrically and is shown in Figure 5.6. 

5.3.5 Nonequilibrium Structures in Alloys 

A material composed of large numbers of small crystalline regions of different 
orientations is said to be built out of grains, and the interfaces between them are 
grain boundanes. These boundaries may appear on scales ranging from tens of 
nanometers to meters. When the crystallites are at the small end of the scale, one 
calls the material microcrystalline. Frequently in metals, the crystalline regions are 
on the micron scale, and the materials are called polycrystalline. In sea ice, grains 
may grow to scales of meters. The orientations of adjoining crystalline regions are 
fairly random, and if one takes a two-dimensional slice through such a solid, the 
grain boundaries form a characteristic network, with the grain boundaries meeting 
in vertices, as shown in Figure 5.7. The manner in which grains grow is the subject 
of Problem 6. 

A type of grain boundary that occurs in substitutional alloys is the antiphase 
boundary, which is a grain boundary where the orientations of the crystals on the 
two sides are the same, but there is a shift of phase in the lattice as one crosses 
the boundary. Antiphase boundaries can form snaking labyrinthine structures of 
great complexity [Figure 5.8(A)]. As the concentration of one element in another 
increases, one tends to get crystals dominated by one element embedded in crystals 
dominated by the other element. For example, one can have small crystals of N13AI 
sitting in a background of nearly pure Al. The forms that these intermixed crystals 
can take depend upon the dynamical processes by which they form. In the simplest 
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At sufficiently high tempera-
tures, the liquid phase is of 
lower free energy at all concen-
trations c than the solid. 

At this temperature, the liquid 
L is lower in energy to the left, 
but coexists with solid of type 
0 towards the right, and 0 is 
stable for sufficiently high con-
centrations. 

Now solid of type a is stable 
for low values of c, 0 is stable 
for high values, liquid is stable 
for a small range in the middle, 
and there are two coexistence 
regions. 

Only solid phases are stable. 
These can be pure a, pure 0, 
or mixtures a + 0 of the two. 

Figure 5.6. Schematic free energies of liquid and solid which would lead to typical binary 
phase diagram with a eutectic. The upper panels show solid and liquid free energies at 
various temperatures, while the lowest panel shows the resulting phase diagram. In this 
schematic view, the effect of temperature is simply a vertical shift in the relative free en-
ergies of solid and liquid phases. In reality, the shapes of the free energy curves would 
change with temperature as well. Unless the solid at temperature T\ is metastable, there 
will be no operational way to determine the solid free energy curve at that temperature. 
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Figure 5.7. Transmission electron micrograph of the grain structure of alumina. Grains 
are approximately 1 μπι across. [Source: B. Hockey, National Institutes of Science and 
Technology.] 

case, one has spheres of one type sitting in a background of the other type. The 
spheres can be replaced by rods or plates, or can be sufficiently dense that they form 
an interconnected network. The structures can include treelike dendritic shapes 
[Figure 5.8(B)], arrays of parallel fingers, and bands or stripes. 

5.3.6 Dynamics of Phase Separation 

Any alloys heated sufficiently form a homogeneous liquid mixture. Upon cooling, 
the mixture will typically remain homogeneous for a time, even if a phase sepa-
rated state is ultimately of lower free energy. In some cases, the initial process 
of breaking apart into spatially separated regions of different phases happens eas-
ily, because the homogeneous state is unstable, and the result is called spinodal 
decomposition. It can also happen that the cooled homogeneous state is stable 
against small fluctuations, and only large rare fluctuations can disturb the situation. 
The appearance of new domains by such fluctuations is called nucleation, and is 
reviewed by Wu (1997) and Kelton (1991). As shown in Figure 5.8, phase sepa-
ration during the cooling of solid solutions can produce exceedingly complicated 
spatial patterns. The patterns have an intrinsic aesthetic appeal, although from a 
technological point of view they are usually undesirable, and one reason to under-
stand the physics underlying them is to prevent them from occurring. 

The basic equation underlying the dynamics of phase separation is simply the 
law of diffusion, presented in Section 5.2.2. The change in concentration with time 
following from Eq. (5.1) is 

β The concentration c is often taken to be a linear func-
Z__ _ 'Y)\7^r tion of actual atomic concentrations; for example, when Γ5 2 5 Ì 
ßf phase separating between ca and Q,, one might take c —> \ · / 

(c-Ca)/(cb-Ca). 

The diffusion equation, (5.25), appears innocent, but, when coupled with ap-
propriate boundary conditions, it is capable of producing the sort of complexity that 
appears in Figure 5.8. As an illustration of how it functions, consider the problem 
of a spherical droplet of carbide, carbon concentration ca, growing in a background 
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Figure 5.8. (A) Antiphase boundaries in FÎ76AI23. The boundaries mark the dividing 
line between two chemically identical regions, but where the placement of atoms is out 
of synchrony. [Source: Allen and Cahn (1979), p. 1093.] (B) Dendrite formed during 
solidification of stainless steel (F^oNiisCris). (Courtesy of L. A. Boatner, J. Gardner, and 
D. Corrigan, Oak Ridge National Laboratory. ) 

mixture of iron and carbon whose overall carbon concentration is c ^ > ca. Car-
bon atoms flow toward the droplet, because phase separation is thermodynamically 
favorable. The simplest calculations employ the quasi-static approximation. This 
approximation requires the time it takes for carbon atoms actually to join the drop 
and make it grow to be long compared to the time for the concentration of carbon 
outside the drop to converge to a steady state. In this case, the time variation of 
c(r, t) can be neglected, and Eq. (5.25) becomes Laplace's equation 

V c[r) = 0 Place the origin of a system of polar coordi- ( 5 . 2 6 ) 
nates at the center of the droplet. 

with boundary conditions 

c(R) = ca and lim c(r) — c^. (5.27) 

The unique solution of Eq. (5.26) satisfying (5.27) is 
p 

c{r) = c0O + -(ca-coo) (5.28) 
r 

and from Eq. (5.1) the flux of material into the drop is 

ATTR2T>—— - . Take the gradient of Eq. (5.28) a t« = r, and (5 -29) 
R multiply by the surface area of the drop. 

Suppose that for each unit of concentration entering the drop, the volume of the 
drop changes by v. Then the drop changes in size according to 

jt~R3=v4irR'D(c00-ca) (5.30) 

• VD, 
=>R=—{coc-ca) (5.31) 

K 

RoiJ2vT>(c00-ca)t. (5.32) 
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The radius of the drop grows as the square root of time. This calculation oversim-
plifies even the problem of growing drops. It neglects the fact that the surface of 
each drop exerts a pressure on the material inside, like the skin of a balloon, that 
causes very small drops to shrink rather than grow. It neglects the fact that after 
many drops have grown, the background concentration CQO of carbon must dimin-
ish. Taking these effects into account, Lifshitz and Slyozov (1961) showed that the 
average size of drops increases as the cube root of time, not the square root. 

The reason that Eq. (5.25) is able to exhibit complicated behavior is that the 
shape of the region where the equation applies is being made to depend upon the 
concentration field; the coupled motion of the boundaries and concentration field 
is a complicated nonlinear problem. Further discussion of such pattern-forming 
problems is provided by Langer (1980). 

5.4 Simulations 

As the power of computation increases, it is gradually becoming possible to imag-
ine computing the evolution of structures such as shown in Figure 5.8, either from 
partial differential equations or by starting down at the atomic level. Two impor-
tant methods for atomic scale calculation are Monte Carlo and molecular dynam-
ics. They are very similar in conception. Each method treats atoms as classical 
interacting particles, and each watches them evolve in a fashion meant to mimic 
the actual evolution they might display in nature. The methods differ only in the 
detailed manner that they employ to move atoms about. 

5.4.1 Monte Carlo 

The Monte Carlo method shuffles atoms about randomly, like the cards in the casi-
nos from which it takes its name. The idea behind the method is that if a solid is 
at some temperature T, then the probability of its atoms adopting a position so that 
their energy is E is exp[—/?£], where ß = 1/kßT. As a corollary, it follows that if 
one has any two states of the system whose energy differs by SE, then the relative 
probability that these two states be occupied is exp[—ßSE}. 

So suppose one has a collection of N atoms at 7\ . . . ?N, and an energy function 
E{7\ . . . ?/v). What exactly this energy functional might be is discussed further in 
Section 11.8. In brief, the Monte Carlo method chooses an atom randomly from 
this collection, and randomly moves it a small distance. If the result of this small 
move is to lower the energy of the system, the move is always accepted. If the 
move raises the energy of the system by an amount SE, then the move is accepted 
with probability exp[—ßSE}. 

Suppose one wants to compute the average value in thermal equilibrium of any 
function g(r\ . . . r#) of particle positions. The function g could be the energy, or 
anything else. The Monte Carlo method proceeds as follows: 
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1. Begin with a collection of particles whose locations are known and whose 
energy E(r\ . . . r#) = £1 n a s been computed. Compute g(r\ . . . r#) and 
store the result in a variable G. 

2. Choose one of these particles at random. Call the particle chosen particle /. 

3. Create a random displacement vector. One way to do this is to choose three 
random numbers p\ . . . pi lying in [0, 1] and to form the vector 

Ξ = 2a{Pi - 1/2, p2 - 1/2, p3 - 1/2), (5.33) 

with a setting the length scale. A natural choice of a is a typical interparticle 
spacing, although final results should not depend upon the choice of a. 

4. Compute the energy difference, 

δε = ε(?ι...η+Ε...ΓΝ)-ει. (5.34) 

When particles interact only with near neighbors, it will always be possible to 
compute this change in energy more efficiently than by computing the energy 
from scratch for all particles in the system. 

5. Check whether δΖ is positive or negative. If <5£ is negative, replace r/ by r/ + Ξ 
and return to step 1. In either case, add the new value of g(T\ . . . ?N) to G. 

6. However, if δΕ is positive decide randomly whether to allow particle i to move 
or not. Pick a new random number p E [0, 1], and compare p to exp[—βδ£]. If 
p is greater than this Boltzmann factor, then leave ?/ where it is and return to 
step 1. However, if p is less, set ?/ to η + Ξ before returning to step 1, despite 
the fact that this move raises the energy of the system. Once again, add the 
new value of g(r\ . . . r#) to G. 

At the very end, after M steps of the process, an estimate of the thermal average of 
g(r\ . . . 7N) is given by taking the variable G that accumulated the sum of g and 
computing 

At low temperatures, almost the only moves accepted are those which lower the 
energy of the system. At very high temperatures, almost every move is accepted. 
The probability of accepting a move with positive δ£ has been arranged in just 
such a way that the probability of occupying states differing by δΕ is exp[—βδ£]. 
This fact is easiest to understand by considering a system with just one particle, 
and which can occupy just two states, but is true generally. 
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5.4.2 Molecular Dynamics 

Molecular dynamics makes use of Newton's laws and random forces, rather than 
random hops, in order to emulate thermal equilibrium. One form of molecular 
dynamics operates by computing 

Fi = -^r, (5-36) 
on 

the force on every particle due to every other particle, and then has the particles 
move according to 

d2n 
fill — f, mi is the mass of particle /. ( 5 . 3 7 ) 

dt2 

Practitioners usually want to use the largest number of particles that can possibly 
fit on their computers, and they also want to obtain reasonable accuracy while 
minimizing intermediate storage. For this reason, an algorithm due to Verlet (1967) 
is widely employed; a variety of other algorithms is described by Rapaport (1995). 
Pick a time step dt that is much smaller than any time scale on which forces would 
cause particles to move appreciably. Let the position of particle / after n steps of 
the algorithm be rf. In order to find positions at the n + l'st step, compute 

r ? + 1 = 2 r f - r ? - ' + ^ / 2 (5.38) 
mi 

with 
Pp = Pl{7{r2...rN) (5.39) 

This sequence of computations requires only the storage needed to hold rf and 
rf~ ', but makes errors only at order (dt)4 after each time step, as shown in Problem 
2. 

Nothing more than Newton's laws is required in order to carry out computer 
simulations of a physical system at temperature T. However, it is not easy to know 
what the temperature of the system will be before the simulation begins, because 
while the total energy £ is easily specified in initial conditions, the temperature 
would have to be found later—for example, from the root mean square velocity of 
particles. The fluctuation dissipation theorem may be used to modify the method 
so as to specify temperature directly. According to this theorem, interacting parti-
cles head toward equilibrium at temperature T when two terms are added to their 
equation of motion, one a damping term, and the other a random force, giving the 
Langevin equation 

p The damping constant b is somewhat arbitrary. The 
-jt _ i_ _ iy-γ _i_?/f\ smaller it is, the more closely particles follow Hamil- /-c ΛΓ\\ 

' m ' > V / tonian mechanics, while the larger it is, the more ^ ' ' 
quickly they come into thermal equilibrium. De-
tails of a particular physical problem are needed to 

... fixé. 
with 
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The brackets refer either to a time average, or to an _ (5 .41 ) 
average over statistical realizations of the system. 
See Landau and Lifshitz ( 1980) p. 362 or Problem 
10 

A practical implementation of this idea replaces F" in Eq. (5.38) with G" where 

tyn_jf-l] i 
Ö" = Ff-bmi^—1—i- + Êi^6bmikBT/dt; (5.42) 

Ξ/ is a vector whose components lie randomly between —1 and 1, and it can be 
computed from 

Ξ = 2 ( ρ ι — 1 /2 ΏΊ — 1 / 2 . P3 — 1 / 2 ) Each pa is a random number between 0 and 1. ( 5 . 4 3 ) 

Because molecular dynamics keeps track of both positions and momenta, it is 
computationally more costly than Monte Carlo, and Monte Carlo is preferable if 
one only wants to find thermodynamic averages for a system in equilibrium, be-
cause it runs faster. However, molecular dynamics paints a more realistic picture of 
the dynamical fashion in which a system approaches equilibrium. Representative 
results from molecular dynamics calculations appear in Figures 5.9 and 5.14. 

5.5 Liquids 

5.5.1 Order Parameters and Long- and Short-Range Order 

Every element melts at some temperature, at which point crystalline order disap-
pears. The presence and absence of order is captured by an order parameter, which 
is a function designed to (a) vanish when the desired form of order is absent, and (b) 
rise up from zero as soon as it is present. Order parameters are often single num-
bers, although they may also be tensors. The sharp Bragg peaks that characterize 
scattering from crystalline lattices can be used as crystalline order parameters. 

Formally, to create an order parameter 0^ distinguishing between crystal and 
liquid, choose any reciprocal lattice vector K ψ 0 of the crystal, look back to the 
correlation functions defined in Section 3.5 and define 

V 
0 - = —n2(q = K,0). Where n2{q, t) was defined in Eq. (3.54). ( 5 . 4 4 ) 

For a crystal where N2 terms contribute to the sum in Eq. (3.54), this quantity 
should be of order unity. In a liquid where crystalline order has been lost, it will 
instead be of order 1 /N. 

Radial Correlation Functions. 
Comparisons of solids and liquids are often made by additionally averaging the 

correlation function «2(^1, ^2; 0) defined in Eq. (3.49) over all angular orientations 

(uo)m)=™BTSaßm 
mi 
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of the sample and making the result dimensionless by dividing through by the 
square of the density n = N/V. The result is the radial correlation function 

g{r) 
(n2(r\,r2;0))e δ(7χ-72) Here r = \7\ — τ\\. The angular braces mean 

one must average over all angular orientations 
of the sample. Subtracting off the second term 
is conventional. 

(5.45) 

Liquids and glasses are isotropie by nature, while polycrystalline and powdered 
crystalline samples have been made isotropie as described in Section 3.3.3. For 
scattering off such materials the structure factor in Eq. (3.52) can be rewritten as 

S(q) = \+n J drg[ re iq-r 

= , + „ / dr(g(r)-\)é^r + n 

Using Eq. (5.45) and the static ( 5 . 4 6 ) 
structure factor of Eqs. (3.55) and 
(3.54). 

dr e'Q'r Since g(r) ~^ 1 for large r the ( 5 . 4 7 ) 
integral only converges well after 
subtracting 1. 

\+n / dre^7{g{r)-\). The last term on the right hand 
side of (5.47) is a delta function 
that only rises above zero when 
one is staring directly into the 
scattering beam, and which one 
therefore can drop. 

(5.48) 

An integral of the area under the first peak, 

I first peak 
dr 4πΓ g(r), (5.49) 

gives the average number of nearest neighbors of each atom, known as the coor-
dination number. This quantity is slightly ambiguous to the extent that the precise 
ending point of the first peak is ambiguous. 

Figure 5.9 provides typical examples of correlation functions for crystals and 
liquids taken from experiment and from computer simulation. The defining prop-
erty of crystals is long-range order (Section 3.5.1), yet the long-range order found 
for crystals in these examples is not so very long: only around 10 Â. Nevertheless 
order over these distances is easily sufficient to distinguish the liquids and crystals 
from each other. 

Figure 5.10 displays the static structure factors S(q) for liquid and amorphous 
nickel. The radial correlation function g(r) can be obtained by inverting the Fourier 
transform in Eq. (5.48). Differences between static structure functions of liquids 
and amorphous solids are quite subtle. 

5.5.2 Packing Spheres 
One of the oldest questions in condensed matter physics goes back to a conjecture 
of Kepler that the most efficient way to fill space with spheres is to stack them in 
an fee or hep lattice (Figure 2.2 (D)). If one examines any given sphere in the close 
packed state it has 12 neighbors, but these neighbors are not distributed about it 
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Figure 5.9. (A) Radial correlation function g(r) for liquid and crystalline sulphur obtained 
from neutron scattering. For nearest neighbors, the correlations in liquid and crystalline 
sulphur are very similar. [Source: Winter et al. (1990) p. SA218.]. (B) Radial oxygen-
oxygen correlation function g(r) for liquid and crystalline water obtained from molecular 
dynamics simulations. The crystalline water is in the form of Ice VIII at 10 K and pressure 
of 2.4 GPa. [Source: Vega et al. (2005), pp. 1453 and 1455]. 

5ί 

Figure 5.10. Static structure factors S(q) for liquid and amorphous nickel. The difference 
between the liquid and amorphous states appears in subtle changes in the shape of the 
second peak. [Source: Waseda (1980), p. 91.] 

perfectly symmetrically. Problem 6 in Chapter 2 shows that such collection of hard 
spheres fills 74% of space. Kepler's conjecture was proved after a slight delay of 
several centuries by Hales (1997, 2005). 

Spheres can also be mixed together randomly, in which case they provide a 
model of a solid called dense random packing or the Bernal model. Bernal ( 1959) 
carried out experiments with ball bearings and showed that randomly mixed hard 
spheres fill about 64% of space. They do not instantly and automatically find their 
way into the closely packed fee or hep structures. Furthermore, there seems to 
be no way to fill space with hard spheres in a uniform way at densities between 
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74% and 64%. Ensembles of hard spheres provide attractive settings for carrying 
out computer simulations. The pair distribution function for hard spheres in two 
dimensions is shown in Figure 5.11. While there is no element that precisely repro-
duces the three-dimensional hard-sphere distribution function, it is not too far from 
that for liquid argon. In addition, properties of randomly packed spheres provide 
a starting point for studies of granular materials like sand [Liu and Nagel (2001); 
de Gennes (1999); Kadanoff (1999); Jaeger et al. (1996)]. 
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Figure 5.11. The radial distribution function g(r) for hard spheres (disks) of radius d in 
two dimensions. The energy of a system of hard spheres is defined to be zero if the spheres 
are not overlapping, and infinite if any two touch. Temperature is therefore irrelevant for 
this system, and its correlation function depends only upon density, which in this case is 
chosen to be 0.5. 

5.6 Glasses 

Just as ball bearings form a static random state when mixed together, so do many 
collections of atoms. Solids where atomic positions are largely random are called 
amorphous materials or glasses. Glasses are distinct from liquids. In liquids, the 
atoms are constantly moving about and exchanging places, while in glasses they 
are mainly locked into place. There is not complete agreement on how precisely 
to define what a glass is, nor which elements are capable of forming glasses. No 
elements or mixtures are known for which the ground state is glassy; glasses are 
produced by rapid cooling as indicated in Figure 5.12. On the other hand, with 
sufficiently rapid cooling, it may be that any collection of atoms forms a glass; a 
great variety of metals can form glasses, as discussed by Cargill (1975) or Gilman 
(1975), and so can water, as shown by Debenedetti and Stanley (2003). 
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To make a glass, start from a liquid and lower the temperature quickly. Below 
the melting temperature 7M, thermodynamic equilibrium requires atoms to arrange 
themselves into a crystal. For fast enough cooling rates, which for window glass 
are around 10 K s_1, and for nickel are 107 K s_1, glass forms instead. Density of 
the liquid increases slowly, but viscosity η increases dramatically, up to a value of 
around 1012 Pa s, obeying the empirical formula, known as the Vogel-Fulcher law 

η (X e x p [C/(T - T0)} . C is a constant ( 5 . 5 0 ) 

There is now a variety of theories, discussed by Angeli (1988), which can calculate 
a divergence similar in shape to that of Eq. (5.50). Gradually, the material changes 
its mechanical nature from a viscous liquid to a (frequently) brittle elastic solid. 
The first peak in the correlation function g(r) narrows, indicating an increase in 
short-range order, and the second peak then splits, as shown for amorphous nickel 
in Figure 5.10. 

(B) Composition (C) Composition 

Figure 5.12. (A) Schematic equilibrium phase diagram for a two-phase system with a 
eutectic. Below the temperature Te, the alloy phase separates into a- and /3-rich regions. If 
the system is cooled sufficiently rapidly from the liquid phase, then the boundaries of the 
solid-liquid coexistence region apparently collapse together, and metastable phases appear. 
In case (B), phases a and β have similar crystal structures, and rapid cooling produces a 
continuous solid solution. In case (C), the crystal structures of a and β are incompatible, 
and rapid cooling in the central region produces a glass. Single-component glasses fit 
roughly within this framework if one component is taken to be vacuum. [After Perepezko 
and Wilde (1998), p. 1074.] 

In addition to these incremental changes, there is a deceptively definite temper-
ature at which the specific heat and thermal expansion coefficient change abruptly, 
by a factor of around 2, known as the glass transition temperature and indicated in 
Figure 5.12 by TQ. The glass transition is difficult to define precisely, and many 
features of the problem remain controversial, as discussed by Cusack (1987) or 
Yonezawa (1991). The precise location of the transition is crucially dependent 
upon the amount of time one is willing to spend looking for it. 
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Figure 5.13. Specific heat cp times thermal conductivity κ for the glassy liquid glycerol as 
a function of temperature, at three different frequencies. The thermal conductivity does not 
vary rapidly, so the experiment basically measures cP. The top portion of the figure shows 
the real part of cpK, while the bottom portion shows the degree to which the phase of the 
heat oscillations being injected differs from the phase of the temperature oscillations being 
measured. Note that there is always a transition in the specific heat, but that the transition 
temperature increases roughly as the logarithm of the frequency v, meaning that one can 
move the transition temperature down by waiting exponentially longer. [Source: Birge and 
Nagel (1985), p. 2675.] 

An experiment demonstrating this effect particularly well has been carried out 
by Birge and Nagel (1985), illustrated in Figure 5.13. A heat source whose heat 
output oscillates in time is placed within a glass, and the temperature variation in 
the glass is measured, as a function of the mean temperature and as a function of the 
frequency of oscillation v. For temperature oscillations above a certain frequency, 
the specific heat is low, because many degrees of freedom are unable to respond 
quickly enough to contribute to the specific heat. The specific heat rises rapidly 
as the frequency falls, because more modes are able to follow along. The particu-
lar frequency at which the changeover occurs is an exponentially rapidly varying 
function of temperature. The picture suggested by this and other experiments is 
that if one observes some dramatic change in the behavior of glass as a function 
of temperature, it is due to the time scale for some process in the glass passing 
rapidly across a threshold of patience. Still, there remains the question in principle 
of whether there really is a transition temperature TQ, as in Eq. (5.50), at which 
viscosity diverges, and a glass reaches some type of ideal glassy state. Menon and 
Nagel (1995) provide tentative experimental evidence of a true divergence. 

Rapid cooling permits many metals to be formed in a glassy state, and com-
puter experiments on argon and hard sphere systems indicate that these too would 
form glasses if only one could cool them fast enough. Materials that form glasses 
reluctantly, by virtue of very rapid cooling, are called fragile. By contrast, there is 
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a tendency among certain materials to form glasses especially readily. These are 
strong or network glasses. 

The prototypical network glass is S1O2, which is at the heart of most commer-
cial glasses. The basic structure is that of a silicon atom, which wants to bond 
with four neighbors, surrounded by four oxygens, each of which wants to bond 
with two neighbors. One model of the glass structure is the continuous random 
network, shown in Figure 5.14. It is crucial that the angles between all the bonds 
be somewhat variable, or else a crystalline structure must resuk instead. 

Figure 5.14. The continuous random network was proposed as a model of S1O2 by 
Zachariasen (1932). Each silicon tends to have four neighboring oxygens and each oxygen 
tends to have two neighboring silicons. The picture was produced by a molecular dynamics 
simulation where silicon and oxygen were raised to a high temperature and then rapidly 
cooled and allowed to settle (stereo pair). 

A rough argument of Phillips (1982b) gives an idea why mixtures where the 
the average coordination number z lies between two and three tend to form glasses. 
If one views the solid as a mechanical system where atoms bond to neighbors, 
then it tends to form a glass when the number of degrees of freedom in the system 
just equals the number of mechanical constraints. If there were more degrees of 
freedom than needed to optimize the constraints, then the network would be me-
chanically unstable and would flop around, as for polymers (Section 5.8). If there 
were fewer, the local structure of the network would have a deep energy minimum 
at some particular configuration, and crystals would be favored. More specifically: 
When the average coordination number provides z neighbors per atom in a system 
of N atoms, the system has a total of Nz/2 bonds and must try to choose an opti-
mum length for each of them, providing Nz/2 constraints. Angles between bonds 
provide more constraints. An atom with two bonds must try to optimize the angle 
between them. An atom with three bonds must try to optimize the three angles 
between the three pairs. For these two cases, the number of constraints to try to 
satisfy is given by N(2z — 3). Setting the total number of degrees of freedom, 3N, 
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equal to the total number of constraints, 

Nz 3Ν = Ν(2ζ-3) + γ , (5.51) 

it follows that 
z = 2.4. (5.52) 

Thus according to this argument, systems form glasses roughly when the average 
number of neighbors per atom lies between 2 and 3. This argument is in accord 
with the picture of the continuous random network in Figure 5.14 and is consistent 
with observations in silicon oxides, boron oxides (B2O3), and the chalcogenide 
glasses (AS2S3 and As3Se, for example). It does not fit amorphous silicon, how-
ever, which has fourfold coordination. In attempting more detailed accounts of 
structure, the most frequently studied case is S1O2. While the general picture 
shown in Figure 5.14 is correct, attempts to calculate the distribution of bond an-
gles and compare predictions with experiment have not yet been conclusive. 

5.7 Liquid Crystals 

CH3 O - N = N O CH3 

O 

T 

^ ► 
20 Â 

Figure 5.15. Picture of the organic molecule p-azoxyanisole (PAA), which forms a nematic 
liquid crystal between 116°C and 135 °C. It can roughly be regarded as a rigid rod of 
length 20 Â and width 5 Â. 

Intermediate in order between liquids and crystals are the liquid crystals. Their 
mechanical properties are those of a liquid, yet certain types of order, particularly 
in orientation, persist over large distances. The main structural element is a rodlike 
molecule as shown in Figure 5.15, often made by two linked aromatic rings with 
various flexible chains hanging off the ends. 

5.7.1 Nematics, Cholesterics, and Smectics 

Nematics. A nematic liquid crystal consists of a series of rods whose centers 
are arrayed randomly, as are molecules in a liquid. Just as in a liquid, there is no 
long-range positional order. However, there is long-range orientational order, as 
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shown in Figure 5.16. As a consequence, the refractive index of the liquid varies 
by around 20% in different directions and must be regarded as a tensor. This tensor 
has complete rotational symmetry about the axis n and has mirror symmetry about 
the plane normal to n as well as the planes containing it; its point group is D^/, in 
Schönflies notation, or oo/mmm in international notation. 

Figure 5.16. The molecules of a nematic liquid crystal have long-range orientational order, 
but only short-range positional order. 

Cholesterics. A variant of the nematic liquid crystal is the cholesteric (see Figure 
5.17). Now the director n rotates slowly along an axis that is perpendicular to it, 
described by 

nx = 0 (5.53a) 
ny = cos qox (5.53b) 
nz = sin qox. (5.53c) 

The wavelength of the twist λ = Ιπ/qo is on the order of thousands of angstroms 
and is therefore much larger than the lengths of the molecules. This length can vary 
rapidly as a function of temperature. The twist breaks the mirror symmetries about 
the planes containing the x axis, and this loss of symmetry is directly connected 
to the fact that cholesterics are produced by chimi molecules; these molecules are 
rodlike, but they twist slightly as one moves up the rod. 

Smectìcs. The final major class of liquid crystals is the smectic. Now, there is not 
only long-range orientational order, but long-range positional order in one direction 
as well. In smectìcs A, the rodlike molecules arrange themselves in layers with a 
well-defined spacing, although within each layer the structure is liquid-like. The 
layers are perpendicular to the director n. In smectìcs C, the director is no longer 
perpendicular to the layers, and it may or may not rotate as one moves along the x 
axis, depending upon whether or not the liquid crystal is made of chiral molecules. 
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Figure 5.17. The director h of a cholestenc liquid crystal rotates as one moves along the x 
axis. 

Finally, in smectics B, molecules are arranged in a crystalline fashion within the 
layers, and only the fact that the layers slide about with respect to one another 
distinguishes the structure from a perfect crystal. These three phases are shown in 
Figure 5.18. 

Figure 5.18. The three main smectic phases, A, B, and C display one-dimensional long-
range positional order. 

5.7.2 Liquid Crystal Order Parameter 

One way to define an order parameter that will pick out nematic order is to consider 
the probability n\ that a particle is at ?\ pointing along θ\ and define 

Ό= ί ά3ηαθιηι(7ι, 0 i ) i (3 cos2 0i - 1). (5.54) 
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The use of the quadrupole moment rather than the dipole moment is dictated by 
the fact that nematic molecules are unchanged when flipped through 180°, and one 
does not want to get into the business of deciding which way they are pointing. If 
they are taken to point up and down with equal frequency, then a dipole moment 
vanishes. Another possible order parameter is produced by the tensor of dielectric 
constants, or of magnetic susceptibility, both of which change their symmetries 
when nematic ordering sets in. So that the result vanish in an isotropie phase, one 
might define 

Qaß = Caß — ^αβ 2_^ £77, (5.55) 
7 

which picks out the anisotropie part of the dielectric tensor. For a computation of 
the mechanical properties of nematic liquid crystals, see Section 12.4.1, and for 
more detailed discussions of the topic see Chandrasekhar (1992), de Gennes and 
Prost (1993), and Chaikin and Lubensky (1995). 

5.8 Polymers 

Polymers, like liquid crystals, are built from rod-like molecules, but now the rods 
are floppy and exceptionally long. Polyethylene, for example, consists of thou-
sands of repeating units of CH2. One repeating unit is a homopolymer, while two 
or more in alternation form a copolymer. The degree of polymerization is the num-
ber of basic units repeating in a typical chain. In useful materials, this number may 
be in the tens to hundreds of thousands. 

It may seem unlikely that any conceptually simple picture could capture fea-
tures of polymer behavior. It is from the enormous lengths of the individual poly-
mer chains that simplifications can flow. The molecules are so long that they be-
have like ideal floppy chains, wiggling randomly in an environment produced self-
consistently by all the other polymers. The starting point for study of polymers is 
therefore a single polymer chain immersed in a solvent liquid. 

View the polymer as a collection of identical rigid segments, connected by 
joints, each of which is completely free to rotate as it wishes, depicted in Figure 
5.19. Different segments of the chain are even free to rotate right through each 
other, an admittedly unrealistic feature of the model that needs to be corrected in a 
more sophisticated treatment. It may also seem unrealistic to reduce complicated 
bending energies to rigid rods and joints, but this particular simplification makes 
little difference. 

5.8.1 Ideal Radius of Gyration 

One of the most important features of an isolated polymer chain is its characteristic 
size, called the radius of gyration Jl, which is the root mean square distance from 
one end of the polymer to the other. This quantity is the same as the mean square 
distance traveled by a random walker, Section 5.2.4, but it is interesting to derive 
it in a different way more directly related to polymer physics. Suppose one end of 
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Figure 5.19. Illustration of a polymer as a random walk. To prepare this figure, each 
segment was permitted to turn at an angle up to 26° relative to the previous segment. 

the polymer to be sitting at the origin, and suppose that one has already calculated 
the probability 3V(/?') that a polymer of length N has its end at position R'. Then 
the probability JV+i (R) that a polymer of length N + 1 has its end at position R is 

TN+i(R)= [ dR"yN{R')y\{R~R') The ontyway for the end of the polymer ( 5 . 5 6 ) 
J to be at R is for the end of the /Vth 

segment to have been at R', and for the 
(JV + l)st segment to reach from R' to R. 

=4> 7N+i(k) = 7Ν(Ϊ)7\ (k) This is the convolution theorem for the ( 5 . 5 7 ) 
Fourier transform of CP; Section A.5. 

=> 7Ν(%) = [7\ (k)}N. By recursion. ( 5 . 5 8 ) 

Provided N is large enough, details of 3Ί (k) will not matter; one only needs to 
know its behavior near k = 0, where it can be expanded in a Taylor series. Keeping 
terms up to order k3 gives (Problem 7) 

3>, (it) « 1 - | / t 2 « e~ck2/2 (5.59) 

=> 3V(£) xie~NCk2/2 

This approximation is excellent for large N. ( 5 . 6 0 ) 

=>■ 7N{R} — e /2A'C Inverting the Fourier transform. ( 5 . 6 1 ) 

VÏ^NC3 

The statement that the probability of a large number of uncorrelated events is de-
scribed by a Gaussian, as in Eq. (5.61), is known as the central limit theorem. One 
can easily calculate the constant c from 

d2 

Ç= \- i P t ( Â : ) = û / 3 This can be used as a definition of the length ( 5 . 6 2 ) 
ßfc2 £=0 α 0f a n individual polymer segment. 
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and can also relate it to the ideal radius of gyration Uli of the polymer, 

%2= f dRR2TN(R) = 3CN = a2N write«2 = RJ +RJ + R2
Z, note that the (5.63) 

J three terms in the sum must have the 
same integral, and perform the integral 
for any one of them. 

=φ. 3^i = a\N. This expression is identical to Eq. (5.16) with ( 5 . 6 4 ) 
N = t/to, but has been derived in a different 
way. 

Polymer Interactions. Two features of this calculation appear questionable. First, 
the polymer is not actually composed of identical segments that pivot completely 
independently of one another. In reality, the polymer is rather stiff when viewed at 
the molecular level. However, two stiff springy units placed end to end have half 
the spring constant of the original unit, four placed together have one-fourth the 
spring constant, and by the time one has a chain made up of a million segments, 
one can safely view it as composed of, say, 20,000 completely floppy sections, 
each built from 50 of the original springs. Making this idea more precise is the 
subject of Problem 8. The result is that expressions (5.61) and (5.64) survive, but 
the constant a must be defined in a more general way. 

The more serious defect of the calculation is that it allows different points of 
the polymer to slide freely through each other. One should recognize that the poly-
mer can never visit the same point twice during its path; the polymer describes a 
self-avoiding random walk (SARW). Such a calculation presents many formal dif-
ficulties. A considerably simpler method begins by calculating the forces needed 
to extend or compress an idealized polymer, and then it determines whether the 
interactions between polymer segments are powerful enough to cause the overall 
shape of the polymer to alter noticeably from its idealized shape. 

Stretching a Polymer. From Eq. (5.61) one can determine the force needed to 
stretch a polymer. Fix one end at the origin, grab the far end, and move it to location 
R. This motion costs no energy (because all polymer segments rotate freely) but 
reduces the entropy. For example, if the end were to be pulled far enough that 
the whole polymer was made completely straight, it could no longer move, and its 
entropy would be zero. More generally, the entropy associated with any restricted 
configuration is just Boltzmann's constant kB times the log of the probability that 
the configuration will occur. Because Eq. (5.61) gives the probability that the end 
of the polymer be found at R, one has immediately that 

■2 » 2 
S = So kB y Use also Eq. (5.64) relating a and X,. S0 is ( 5 . 6 5 ) 

2 3^T a constant independent of R whose value is 
unimportant. 

The free energy resulting from this entropy is 

3 = ?0+lkBT^=3Q + hBT^-. Use Eq. (5.64). (5.66) 
2 %z 2 azN 
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and the force F needed to pull the end of the polymer away from its preferred 
location at R = 0 is 

F = 3kBT-^ = 3i^R = -R. (5.67) 
ftT

2 a2N N 
The polymer behaves like an ideal spring of vanishing equilibrium length, with a 
spring constant that rises in proportion to temperature, and that falls in proportion 
to the molecular weight 3l\ oc yv of the polymer chains. 
Compressing a Polymer. While the force needed to stretch a polymer is well 
indicated by grabbing the far ends and pulling outwards, this calculation says noth-
ing about the forces needed to compress a polymer into a small volume, because 
not only the far end, but all intermediate points, must now be pressed inwards. A 
simple estimate of the forces needed for this compression is obtained by imagining 
a polymer molecule trapped within a sphere of diameter Jl <C 3?i. Suppose that 
wherever the polymer hits the wall of the sphere it sticks permanently, and guess 
that by finding the free energy of a configuration of this type, one obtains a rea-
sonable estimate of the free energy in the more realistic situation where points of 
contact between polymer and sphere change with time. 

The typical number M of monomers separating points of contact along the 
polymer should be 

K2 

M r^i Since a polymer of length M has characteris- ( 5 . 6 8 ) 
Ü tic size \/~Ma oc "X 

So now one has N/M segments of molecular weight M, each stretched out to dis-
tance 01. According to Eq. (5.66), the free energy of such a collection of polymers 
is 

N λ 1ί2 ^ιΝ ri2 W,2 

The pressure the chamber exerts upon the polymer is therefore 
(5.69) 

d a2 kBT{N/M) 
^ ~ ~ ΛΦ3" ß ^ö?2 ^ Φ Τ — ' D r o p c o n s t a n t s o f o r d e r u m t y · ( 5 . 7 0 ) 

which is j ust the pressure of an ideal gas of N/M particles in volume Ji3. 

Volume Interactions. Although the calculations of the forces needed to extend or 
compress a polymer will later have direct use in finding the mechanical properties 
of polymer mixtures, the goal now is to use them in order to determine the impor-
tance of interactions between portions of the polymer chain which are not directly 
adjacent to one another. These interactions are rare when the polymer describes a 
random walk within a solvent, and therefore their contribution to the free energy 
should be contained within the virial expansion of statistical mechanics. One need 
know nothing of the elaborate techniques used to find the coefficients in this ex-
pansion; one simply needs to use the fact that the virial expansion is in powers of 
the density of particles. 



Polymers 127 

Suppose that when the interactions between distant points on the polymer 
chain, called volume interactions, are taken into account, the radius of gyration 
of the polymer becomes ul, rather than %. The density of particles available to 
interact with one another is therefore 

/V 'V? 
fi = — - = Factors such as 4π/3 are out of place in a ( 5 . 7 1 ) 

3? ü ÜI qualitative analysis of this type. 

According to the virial expansion, interactions between particles should produce 
contributions to the free energy of the form 

J (X kBT$.3 [An + Bn2 + Cn3, + . . . ] . The coefficients A, B, and C depend upon ( 5 . 7 2 ) 
temperature. The factor of X3 appears 
because 3 is extensive. 

Adding together Eqs. (5.66), (5.69), and (5.72) therefore gives an estimate of 
the free energy of a polymer whether it shrinks or expands, and includes the effect 
of interactions between distant segments. Dropping constants of order unity, one 
has 

3r = 3ro + kBT ft2 ft? m-\\.f ft? \ / ft? \ 2 „( ft? λ3 

+ . . 
(5.73) 

The condition that 3 have a minimum as a function of 31 is 
rn <τ>2 <Τ)4 φ6 
>-f\- *A.T ^Λ,τ J\.r 

2 ^ - 2 - ^ r - 3 ß - i - i - r - 6 C - ^ = 0 . (5.74) 
utf ft3 α43?4 α6Κ7 

If the second virial coefficient, B, is positive, then polymer segments tend to repel 
one another, and the polymer should swell to a larger size than Ui\. If "R ^> 3£i, then 
the only two terms that are significant in Eq. (5.74) are 

4" 3 s ^ = o ( 5 · 7 5 ) 
=*> 3?5 OC — ~ r =>- 3Ì OC JU/5 OC N3/5. The guess that % » % is confirmed. ( 5 . 7 6 ) 

cr 
If on the other hand, the second virial coefficient B is negative, the polymer has 
a tendency to shrink. The pressure in Eq. (5.70) resists shrinkage, but it is over-
whelmed by a negative pressure from the virial expansion. The two most important 
terms in Eq. (5.74) now give 

Any tendency toward attraction of distant polymer segments leads the whole mol-
ecule to collapse into a small ball, whose volume is proportional to the molecular 
weight. 

Finally, if B = 0 and C is not too large, 3" is minimized for 3? = 3tr; the polymers 
behave like an ideal random walk. A solvent tuned so that B vanishes is called a 
Θ solvent; polymers in θ solvents execute nearly ideal random walks, as in Figure 
5.19. 
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Figure 5.20. Schematic drawing of light path through sample filled with micron-scale 
particles in diffusing-wave spectroscopy. 

5.9 Colloids and Diffusing-Wave Scattering 

5.9.1 Colloids 

Many familiar liquids including milk, hand creams, and blood are colloids, de-
scribed by Gast and Rüssel (1998), which means that they are made of particles 
whose size ranges from nanometer to a micrometer dispersed in a liquid or gas. 
Electrostatic interactions between the particles can keep them from clumping to-
gether, and when their size is comparable to the wavelength of light, even a small 
fraction of colloidal particles can render a system opaque, as in the case of clouds 
and fog. 

While colloidal particles can form crystals, it is more common for them to be 
arrayed randomly and move constantly, so that one can only describe their location 
in a statistical sense. Their strong interaction with light opens up the possibility 
of studying the spatial arrangement. However, neither the theory of weak scatter-
ing from crystals nor dynamic light scattering of Chapter 3 are adequate because 
light scattering from colloidal particles is dominated by multiple scattering. A typ-
ical photon travels on a convoluted path through many particles before exiting the 
liquid. 

5.9.2 Diffusing-Wave Spectroscopy 

The technique of diffusing-wave spectroscopy, developed by Weitz and Pine (1993) 
exploits the multiple scattering limit in order to measure features of the correlation 
function Eq. (3.49) that conventional scattering does not. It measures the mean 
square distance that particles move in time t: 

i n Look back at the definition in Eq. (3.49). In 
(Ar2(t)) = - drdr n2(r, f\ t)\f- r'\2 !h

t
e ΡΓε8εη< e f < \ t h e most important corre-_ N I ±\ ' ' /\ I lations will be when / = / and particle lo-

cations are correlated with themselves over 
time. 

(5.78) 
How does this correlation function emerge from the process of multiple scat-

tering illustrated in Figure 5.20? The basic idea is that when light scatters from 
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many particles, its phase when it exits the sample is determined by the total path 
length through which it has traveled. Even small changes in the locations of parti-
cles produce changes in phase. Indeed, multiple scattering increases sensitivity to 
particle motions. Dynamic light scattering can detect particle motions on the order 
of a wavelength of light, while diffusing-wave spectroscopy is sensitive to much 
smaller motions just so long as the cumulative total distance moved by particles in 
a light path is comparable to a wavelength. 

The starting point is the Siegelt relation of Eq. (3.64) which- shows that the 
dynamic correlation function (E(t)*E(0)) can be deduced from measurements over 
time of light intensity exiting a sample at a point. 

However, when light scatters many times, the relation between particle loca-
tions and (££(0)£7(f)) is no longer given by Eq. (3.59). Instead, specializing to 
linear polarization and dropping subscripts on the electric field to simplify matters, 
let p denote some path that light takes to get from the laser to the detector. Then at 
the detector 

E*(0)E(t] 

\Eo\2 = T0 ( ( Σ E>"M0)) ( E Ε,&Α \ (5.79) 

Here Ep is the amplitude of the electric field along path p and φρ is the phase of the 
electric field at the end of path p. Assume next that the strongest correlations come 
from electric fields along the same path at different times, and that the intensity Ip 

is not correlated with the phase φρ. If this is correct, then only terms where p = p' 
need be kept in Eq. (5.79), and the average of the product can be replaced by the 
product of averages giving 

E*(0)E(t)) ,IJL _ c ί(ΦΡ{ή-Φρ(0))\ ,. r. „ _ . „ ^ 
|£ol £—' \ In / \ / i n amplitude of Ep over time t is not worth 

P considering, just the change in phase. lp is 
the intensity \EP\2. 

(5.80) 

Phase. What is the change in phase of light that escapes from the sample? For 
the scattering event that takes light from particle r, to particle r i + i , the wave vector 
of light is 

k:(t) = kn— Since for elastic scattering the wavelength of (5 8 1 ) 
W \ri+i(t)-7i(t)\ light is fixed at % 

Thus the phase is 
N 

φρ(ή-φρ(0) - Σ Ut) ■ [r ,+ 1(i)-r ,(0] -*i(0) · [r,-+i(0) -r,-(0)]. (5.82) 
i"=0 

As shown in Problem 9, this phase can be rewritten and approximated as 
N 

ΦΡ(ή -φρ(0)π-Σ Âi ■ ΔΓ/(ί) (5.83) 
i=l 
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where hqi is the momentum transfer of the scattering event from particle i — 1 : 

£, = *,·(())-jfc;_i(0) and An{t) = n{t) - r , (0) . (5.84) 

It is now possible to evaluate contributions from the phase in Eq. (5.80). Write 

-ΐ(Φ„(ί)-φΡ(0))\ = h Σ ; ? . Γ Δ Ο ( 0 \ F r o m Eq. (5.83). ( 5 . 8 5 ) 

Uj^+i^j-Ar^-^qj-Arjit)]2 

( 5 . 8 6 ) 

(_ ^ \ Odd powers of cjj should vanish since 

T T ( 1 - Jr [fl / · Ar jit)}2 . . . ) ) positive and negative values are equally ( 5 8 7 ) 
- l i . \ lvlJ ■>λ '' j I likely. Furthermore products such as 

j ' Ar^Ar1^ should vanish because 
motions of different particles are 
uncorrelated. 

«Πθ-ϊ^-ΔθίΟ]2)) (5-88) 
j 

( \ The justification for this move is called 

Σ 4 <[^·ΔΟ(0]2) ^ f f i ^ Ä (5-89) 
j ) normally distributed random variables 

in Triantafyllopoulos (2003). 
There is no reason that scattering paths q*j and particle displacements A7j should 
be correlated, so one can write 

N N 
y2((qj ■ A7j(t))2 = — (q2) (Ar2(t)} See Problem 9. (q2) means choose any qs as ( 5 . 9 0 ) 
T--? 3 their statistical properties are all the same. 
; = i 

The average over (g2) could be a terribly complicated formal problem, since qf = 
kj(0) —kj-\(0) varies from 0 to 2ko depending on the direction light scatters from 
particle j — 1. The standard approach to this problem is to evade it by defining 

(q2)^2k2^. (5.91) 

Here / is the mean distance between scattering sites, and /* can be interpreted as the 
mean free path of light in the medium. When /* is very large, kj is nearly parallel 
to kj-\ and (q2) is small. When light leaves each particle in a nearly random 
direction, /* « /. Using this definition, one has finally 

e-iï>„(r)-<M0))\ = h Σ ; ?;-ΔΓ;(/)\ = É,-^(Ar2(/))/(3/*) (5_92) 

where s = NI is the total path length of light traveling through the sample. 
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Amplitude. To evaluate Eq. (5.80) still requires dealing with the light intensity 
Ip of path p. The approach to this problem is to make further use of the idea that 
light is executing a random walk through the colloidal system. Suppose a flash of 
light hits the sample at time 0, and exits it at time t. One can immediately deduce 
that the path length of the light in the sample was s = ct. This means one can write 
Eq. (5.80) as 

77,/^im^^w (5.93) 
|£br J l* ;o 

The factor of /* keeps dimensions correct. All the information about the probability of 
having a path of length s is contained in the solution of the diffusion equation that follows. 

Since the probability distribution of particles undergoing random walks obeys 
the diffusion equation (Section 5.2.4), the intensity of light leaving the sample 
should be the solution of the diffusion equation, which means a solution of 

dU, 9 
-^- = T>,W2Uh (5.94) 

where \J\ is the energy density of light, and D/ is a diffusion constant for light. To 
estimate D/, imagine that the light path is a random walk with step length conven-
tionally given as 21*. Then according to Eq. (5.14) the diffusion constant is given 
by 

T>i = cl*/3. (5.95) 

Boundary conditions for the diffusion equation are tricky, and there seems 
some temptation to decide between mathematical boundary conditions on the grounds 
of agreement between theory and experiment. The problem is that the actual 
boundary conditions follow from the fact that once the source turns off, all sub-
sequent light waves are outgoing waves at the boundary of the sample. However, 
approximating light as a diffusing field allows no way to impose this condition ex-
actly. The issue is discussed in most depth in Chapter 9 of Ishimaru (1978). For the 
purposes of discussion here, a particularly simple boundary condition will be em-
ployed, which is that the energy density of diffusing light £// vanishes at the sample 
boundaries, because photons that arrive there are immediately whisked away as 
propagating radiation. 

A model calculation that corresponds reasonably well to experiments is to say 
that at time t = 0 a narrow plane wave of light of intensity 

Ui(x, 0 ) = ΙοΙ*δ(χ — Χο)/8π The multiplicative factors have been chosen ( 5 . 9 6 ) 
to give correct dimensions. 

is present in a sample at depth XQ > 0. The sample is a slab extending from 0 to 
L in the x direction, and off to infinity in the other directions. Given this initial 
condition, the diffusion equation (5.94) can be solved by Laplace transforms. Let 

poo 
Ü(r, a) = / 

Jo 
dt U(r, t)e~at. (5.97) 
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kj 

tq 1 0 - / _ 

Figure 5.21. Intensity of light scattered back from a suspension of polystyrene spheres in 
water, volume fraction 5%. The variables displayed in the plot should be linearly related 
according to Eq. (5.104) and they are. [Source: Weitz and Pine (1993), p. 677]. 

Then 

& 
αυ(χ,α)=1*Ι0δ(χ-Χο)/(8π) + Τ>ι^υ(χ,α) Only thexcomponent of r (5.98) 

dx matters because this is a plane 
problem. 

Ü(x, a)=A cosh XK + B s inhxK+ . , J? e-l*-*ol« 
IÓTTU/K 

where 

(5.99) 

(5.100) 

How can one relate the energy density of diffusing light to the intensity / ar-
riving at a photodetector? The energy current arriving at the edge of the sample 
is D/Vi / . Set this equal to the electromagnetic energy current density cE2/8n = 
cl/ΰπ, obtaining 

E*(0)E(t] 

\E0\2 

From Eqs. (5.93). Use the energy current D/Vi/ to find (/). Evaluate dU/dx at the point 
where light is to be collected. 

[ ds 8π {Vi/I0cl*)^-U{x, s/c)e-sk°{Ar2{t))/{3n(5A0l) 

(SKD/I01*)—U(X, a), where a = ckl(Ar2(t))/{3l* (5.102) 

In a forward scattering geometry, light is collected at the far end of the sample, 
x = L. Imposing the boundary conditions t /(0, a) = Ü(L, a) = 0 and solving for 
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A and B in Eq. (5.98) gives 

^ | £ o | 2 ' = ^ 5 Π Γ Τ β ' K = \A*o<Ar2(f))/(3D/*). (5.103) 

In a backscattering geometry, light is collected instead at x = 0 and the opposite 
sign of the derivative must be used in Eq. (5.102). In the limit L —> oo the result is 

(E*(0)E(t)) , 
X

 | £ o | 2 ' = e~™\ K = ^/ck2
0(Ar^t))/(3Dl*). (5.104) 

Now suppose that the particles in the fluid are diffusing with particle diffusion 
constant T>p, so that according to Eq. (5.16) the square distance a particle moves in 
time t is is Δ^( ί ) = 6T>pt. Then one has 

K = ^^6tk2
01)p. (5.105) 

Weitz and Pine (1993) recommend taking xo/l* « 2.1 in order to compare with 
experiment. As shown in Figure 5.21, the log of (E*(0)E(t)) is a linear function 
of y/T>pt. The slope of such curves can be used to find T)p and hence as shown in 
Problem 10 can be used to estimate particle sizes in suspensions that are not dilute. 

5.10 Quasicrystals 

First Observation. Shechtman et al. (1984) were not setting out to challenge 
crystallography, but were preparing melt-spun ribbons of AlgöMn^. The alloys 
were made to cool at rates of 106 K s~' by pouring molten metal onto a rapidly 
spinning wheel, cooling rates that could be expected to produce a metallic glass. 
After examination with an electron microscope, the samples were placed under X-
ray diffraction. The startling result was a set of diffraction patterns indicating axes 
of threefold and fivefold symmetry, shown in Figure 5.22. Fivefold symmetry was 
completely unexpected, since as proved in Problem 4 of Chapter 1, a fivefold axis 
is crystallographically impossible. It is impossible to build a lattice with a fivefold 
axis. Nonetheless, the data unambiguously indicated that the system had this sym-
metry. In fact, the scattering patterns exhibited the symmetry of an icosahedron, 
giving tenfold, sixfold, and fivefold symmetric diffraction patterns when tilted at 
appropriate angles. A picture of a small crystal exhibiting such symmetry appears 
in Figure 5.23. 

The claim that nature had found a way to realize true fivefold symmetries met 
with some resistance. A collection of five crystals might conceivably bond together 
at five different orientations to produce an apparent fivefold axis. They would not 
fit together perfectly, but the scattering pattern would not easily reveal this fact, 
and such a point of view was vigorously advanced by Pauling (1985). In some 
materials it turned out to be correct. However, the most interesting proposal, and 
the one that seems to have carried the day for the original AIMn alloy as well as 
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79.2° 

Figure 5.22. X-ray scattering patterns from single grain of AlgóMn^. Angles refer to 
various orientations of the grain. Note clear fivefold symmetry axis in two of the scattering 
patterns. [Source: Shechtman et al. (1984), p. 1952.] 

many other materials, holds that the explanation of the diffraction pattern lies in 
a quasi-periodic filling of space which has a true icosahedral symmetry. Levine 
and Steinhardt (1984) christened this type of lattice a quasicrystal. Such ordering 
generalizes the idea of the crystal, and the simplest explanation of how it works 
begins in one dimension. 
5.10.1 One-Dimensional Quasicrystal 

A one-dimensional quasicrystal is a collection of points lying on a line, spaced 
quasiperiodically. As an example, and to demonstrate the meaning of quasiperi-
odic, consider the Fibonacci sequence: 

71+ ( r — 1 ) ϊ η ί ( η / τ ) . "intOO" is the function that finds the largest ( 5 . 1 0 6 ) 
integer smaller than x. 
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Figure 5.23. Quasicrystal of AlLiCu: 
[Source: Kortan (1996).] 

This sequence of points is composed of long and short intervals: The distance 
between successive points is either r , the golden mean, 

r = l + - = „ + 1 = 1 . 6 1 8 . . . , (5.107) 
T 2 

or 1. The sequence has a deflation rule. If one writes out the sequence of differ-
ences between successive points (a sequences of l 's and r ' s ) , then replaces every r 
with the little sequence r , 1, and also replaces every 1 with a r , the same sequence 
returns. 

Example. Start with the sequence 

r l r r l (5.108) 

Using the deflation rule r —> r l and 1 —> r gives 

r l r r l r l r (5.109) 

Another Construction. One can use this procedure to generate longer and longer 
portions of the Fibonacci sequence, starting from a small subsection. One can also 
generate the sequence by the construction 

Xn+i =-X/i-Xn-i, (5.110) 

which means that one builds the sequence in this way: 

X-i =T;X0 = T1;X\ = Τ1τ; Χ2 = τΐττΐ . . . (5.111) 

X3=X2X{ = r l r r l r l r . (5.112) 

These properties are meant to indicate that the series has many regularities without 
being periodic. However, it is quasiperiodic, which means that it is periodic in a 
higher-dimensional space. In this case, the function is periodic in two dimensions, 
but has been projected into one. 

The Fibonacci sequence can be interpreted as a shadow cast in one dimension 
by a slice through a periodic lattice in two dimensions, as shown in Figure 5.24. 
To prove this assertion, proceed as follows. Rewrite Eq. (5.106) as 

Xm = m + y ηθ(η — m/τ + 1 )θ(ΐη/τ — η)/τ Here θ(χ) is the Heaviside step function, which 
^—' equals one if its argument is larger than 0, and 

" vanishes otherwise. A factor of (τ — 1 ) has been 
replaced by l / τ , using Eq. (5.107). 

(5.113) 
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Figure 5.24. Construction showing how the one-dimensional quasicrystal results from a 
projection down from two dimensions, and how one obtains the deflation rule. The shaded 
bar has slope 1/r, and vertical height 1. The sequence xm defined by Eq. (5.106) results 
from projection of the points lying in this bar onto the x axis. The bar enclosed by the 
dotted line has slope l / τ and width 1, and the sequence X„ defined by Eq. (5.118) results 
from projection of the points inside onto the x axis. 

Now consider the points that fall inside the shaded strip in Figure 5.24. The strip 
has vertical thickness of 1 and has slope 1/r, and points lie inside it if 

x/r>y>x/r-l. (5.114) 

So for every vertical column of the lattice, indexed by integer m, there is precisely 
one point inside the strip at location 

[m, y^ ηθ(ηΐ/τ — η)θ(η— [m/r— 1])]. T h i s js a Cartesian vector, whose first compo- ( 5 . 1 1 5 ) 
n 

To find where the shadow of this point falls on the x axis along the direction 
(1, —τ), one adds an appropriate multiple of (1, —r) to (5.115) so that the y co-
ordinate vanishes, and then one checks where one lands along x. The answer is 
precisely Eq. (5.113). Therefore the geometrical construction of Figure 5.24 is the 
same as Eq. (5.106). 

This geometrical construction can be used in order to prove the deflation rule. 
Consider the collection of points that fall within the smaller strip of Figure 5.24, 
which is surrounded by a dotted line and has unit width rather than unit height. 
Points lie in this smaller strip if 

( J C + 1 ) / T - 1 >y>x/r- 1. (5.116) 
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Because this strip has unit width, one lattice point must fall within it from every 
horizontal row, and one finds the lattice points satisfying Eq. (5.116) to be 

[J2 m9((m+ l ) / r - 1 -η)θ(η - [m/r - 1]), n}. (5.117) 
m 

Projecting this set of points onto the x axis as before results in the sequence 

Xn+] = ^ m 0 ( ( m + l ) / T - / i - l ) 0 ( n - / n / r + l)+/i/i"· (5.118) 
m This location is defined to be Xn+1 rather than Xn so that 

the lower left point in Figure 5.24 will correspond to X\ 
as well as to x\. 

The set of distances Xn is depicted in Figure 5.24 as the hollow circles. 
It is not hard to show that the sequence Xm is almost exactly the same as the 

sequence xm. After a few simple changes of variables (Problem 11), one finds 

Xm = -\/T + Txm. (5.119) 

Thus Xm is nothing but the sequence xm expanded by a factor of r and slightly 
displaced; in particular, the sequences of long and short segments of Xm and xm 

are exactly the same. It is evident from Figure 5.24 that Xm is obtained from xm 

by sliding the upper dotted line up slightly, replacing all long intervals by a long 
followed by a short, and leaving all short intervals alone. This argument shows the 
origin of the deflation rule. 

Scattering from a One-Dimensional Quasicrystal. The advantage of viewing the 
quasicrystal as a projection down from higher dimensions is that it makes it possi-
ble to compute its Fourier transform and to understand how scattering from such a 
structure leads to sharp peaks. What will emerge from the analysis is that the math-
ematical structure of scattering from a quasicrystal differs in some striking ways 
from that from a crystal. The quasicrystal scattering peaks are countably infinite 
and dense; any finite strip of q space contains an infinite number of peaks, but most 
of them have amplitude too small to be seen. This type of scattering spectrum is 
called singular continuous. 

The idea behind the calculation is that, as in Figure 5.24, the points contained in 
a one-dimensional quasicrystal can be expressed as the product of two functions. 
The first is the two-dimensional square lattice, and the second is a function that 
equals one within the shaded strip of Figure 5.24 but is zero outside of it. So, 
roughly speaking, one expects the Fourier transform of the quasicrystal to be a 
convolution of the Fourier transform of the square lattice with the Fourier transform 
of the shaded strip. 

The sum to be computed is 

E, = V e i ? I " ^ ac ■ , (5.120) 
v z—' The Θ functions are only 

n nonzero when m and n have 
= J2ei^^e(n-m/r+l)9(m/r-n) ^ j ^ ^ ^ (5.121) 

n,m contribution to the sum. 
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= / dxdy e iH*,y) y j δ(χ — m)S(y — n) 

where q = (q, q/τ). 

0(y -χ/τ + 1)θ(χ/τ - yt>5A22) 

(5.123) 

Equation (5.122) is a two dimensional Fourier transform that is to be evaluated 
along a particular line in q space. To carry out the integral one can use the convo-
lution theorem, Eq. (A.42), to carry out the Fourier transforms of the two halves of 
the integrand and then integrate them together in the end. The first piece is 

A{q) = j dxdy Σ δ{χ-πι)δ{γ-η)ε^χεί^ 
m,n 

= Ν^ψ~ Σ S{qx-2irn')6(qy-2irm!). 

(5.124) 

(5.125) 

Eq. (5.124) describes the scattering from a two-dimensional square 
lattice, which, according to the two-dimensional analog of Eq. (3.19) 
produces Bragg peaks at the reciprocal lattice vectors 2π(η', m1). 

The second piece is 

B{q) = [ dx fXT dy eic<*x+ici>y = ί dx e^x 

J Jx/τ-Ι J 

* W T ) —e'1y(x/T-\) 

iqy 
(5.126) 

Convoluting Eqs. (5.125) and (5.126) with q given by Eq. (5.123) gives 

E^oc 

/ 
ö(q-q'x-2Kn') 

dxdq'xdq'y ^ 
η',ηι' K ' ^ V 1 / / ' Hy 

,ί(η/τ—2πιη')(χ/τ) _ J(q/r—2nm')(x/T—l) 

^Σ 
n' ,m' 

x5(q/r — q'y — 2πηι') 

■ e i { 

ίφ/τ) _Aq[,(x/T-\) 

iq/r — 2nim' 
i(q-2irn')x 

-i(q/T—2nm') 
: 271" > ; —δ(\2πιη' ]/τ + 2πη' — q). 

f^, iar-l-Kim' u r J / ^' 
n' m' ί ' 

The peaks of (5.129) are at 

2π(ηι' /τ + n') 
r - 2 + 1 

q All integers m' and n' are allowed. 

and their square amplitude is proportional to 

s in 7Γ 
m'r — n'1 

T + T 
j (q/τ — 2nm' >\2 

e'^(5.127) 

(5.128) 

(5.129) 

(5.130) 

(5.131) 

Therefore, the Fourier spectrum is made up of countably many sharp peaks, as 
shown in Figure 5.25; in contrast to those produced by a lattice, these are dense 
and form a singular continuous spectrum. However most of them are sufficiently 
weak that they are practically invisible. The important ones are those produced by 
n' and m' whose ratio is near the golden mean—that is, when these integers are 
neighboring Fibonacci numbers. 
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Figure 5.25. Plot of the scattering amplitude ω 
predicted by Eq. (5.131). This singular con- Ή 
tinuous scattering spectrum has sharp peaks ■§, 
that fill the k axis in a dense fashion, yet are 3 
zero almost everywhere. 

20 
Wave number q 

40 

5.10.2 Two-Dimensional Quasicrystals—Penrose Tiles 

Figure 5.26. Penrose tiles. These are only allowed to join when the arrows match together. 
The smaller angle of the fat rhombus is 2π/5, and the smaller angle of the skinny rhombus 
is 2π/10. Taking the lengths of all the sides to be 1, the long diagonal of the fat rhombus 
(dashed line) has length r = (\/5 + l ) /2, and the short diagonal of the skinny rhombus 
(dashed line) has length 1/r. 

Figure 5.27. If this decoration is engraved on each tile of a Penrose lattice, the result will 
be a Penrose tiling with more tiles on a smaller scale. 

Penrose introduced two-dimensional quasicrystals as a playful mathematical 
problem in filling the plane nonperiodically; the results were first published for 
practical purposes by Gardner (1977). The Penrose lattice is a tiling of the plane 
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Figure 5.28. The first three applications of the deflation rule to two fat rhombuses and one 
skinny rhombus are shown here on the left, while on the right is a large circular section of 
quasicrystal, produced by the method of Problem 13. 

by a collection of two tiles, shown in Figure 5.26. These are decorated by arrow-
heads, and the tiles must be placed together so that matching arrows are always 
adjacent. It is possible to tile the plane with these objects, and although the result 
is not periodic, every finite area segment of the lattice repeats infinitely often else-
where in the lattice. One can partly verify these claims by noticing that the Penrose 
lattice has a deflation rule. If one decorates each tile as shown in Figure 5.27 with 
smaller tiles, then a set of big tiles which obeys the matching rules generates a set 
of many more smaller tiles also obeying the matching rules. Proceeding this way 
long enough generates a lattice with an arbitrarily large number of tiles in it, shown 
in Figure 5.28. 

An additional curious feature is that one can decorate the tiles with lines as 
shown in Figure 5.29; then when the tiles are laid on the plane, all the lines drawn 
on the tiles march across the plane. These lines are called the Ammanti lines. The 
spacing between them takes two values, whose ratio is the golden mean. When 
the deflation rule shown in Figure 5.28 is applied to the Penrose lattice, one can 
ask what happens to the lattice of Ammann lines. Say the large spacing between 
lines is r. After deflation, the new lattice will replace this large spaced pair of lines 
with three lines, along the same direction; the first is spaced by 1, and the second is 
spaced by 1 / r . All the lines separated by the smaller distance, 1, are not changed. 

This deflation rule is precisely the deflation rule for the one-dimensional Fi-
bonacci sequence, showing that the spacings between the Ammann lines are given 
by Eq. (5.106) Therefore, the Penrose tiling is a a two-dimensional generalization 
of the quasicrystal. 

One can build it by choosing five unit vectors, êa, which point at angles of 2π/5 
with respect to one another, along the sides of a pentagon. Then the quasicrystal 
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Figure 5.29. In (A) is shown a set of decorative lines drawn upon the fat and skinny tiles. 
They have the curious property, shown in (B), that when the tiles cover the plane, the lines 
join up and form five grids of parallel lines, with the spacings of lines in any given direction 
described by the one-dimensional Fibonacci sequence. 

lattice points are the set of points r such that 

r-êa=xna, r-eß=xnß, (5.132) 

where xn is a member of the Fibonacci sequence. In other words, one places down 
a set of lines in the plane. The lines travel along the five angles given by the sides of 
a pentagon. The spacing between groups of parallel lines proceeds as the Fibonacci 
sequence. The points in the lattice occur at the intersections of two lines. A more 
general way to create two-dimensional quasicrystals is the subject of Problem 13. 

One immediate question is why one has to vary the spacing between the lines 
in such a complicated way. Because one has created a fivefold axis by brute force, 
why not choose all the spacings between the lines to be constant? The answer is 
that if one does this, the vertices where lines cross can come arbitrarily close to 
one another, and atoms that built such a structure would have to do the same. This 
difficulty is at the heart of the proof that fivefold symmetry is crystallographically 
impossible. The Penrose lattice avoids this difficulty, and because it is constructed 
by assembling together simple geometrical objects, it is possible that molecules 
might naturally pack together so as to form this particular structure. In fact, dozens 
of materials are now known where such packing occurs. 

5.10.3 Experimental Observations 

To understand why naturally forming crystals might have a tendency to create qua-
sicrystals, it is helpful to return to the problem of packing hard spheres. In close-
packing arrangements such as fee or hep lattices, every sphere has 12 neighbors, 
but the neighbors are not arrayed about a central sphere with perfect symmetry. 
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Suppose one takes a sphere and places 12 identical spheres around it in the most 
symmetrical arrangement. Connecting the centers of the neighbors with lines, one 
finds that they form an icosahedron, as shown in Figure 5.30. Because of the five-
fold symmetry evident in this structure, one knows immediately that it cannot fill 
space uniformly. Approximate icosahedral symmetry is the basis for a complicated 
arrangement of atoms first proposed by Frank and Kasper (1958), and reviewed 
more recently by Nelson and Spaepen (1989). In the Frank-Kasper phases, a unit 
cell is packed with several approximate icosahedra; they must be distorted to fit 
together, and the unit cell is very complicated. Quasicrystalline phases can be un-
derstood as another way for materials to realize icosahedral symmetry. 

Figure 5.30. Twelve neighbors symmetri-
cally arranged about a sphere form an icosa-
hedron. 

The first quasicrystals were only metastable, and were filled with defects, but 
alloys such as AI6L13CU have since been found for which the quasicrystalline phase 
is truly a free energy minimum. The alloy system shown in Figure 5.31 has the 
remarkable property of forming a two-dimensional quasicrystal, arranged in layers. 

Figure 5.31. (A) Scanning tunneling microscope image of the two-dimensional quasicrys-
tal AI65CU15C020, viewed from an oblique angle. The three-dimensional crystal consists 
of stacks of identical two-dimensional quasicrystals. (B) Top view shows how to decorate 
the atomic locations with Penrose tiles. [Source: Kortan (1996).] 

The majority of quasicrystals found to date has the icosahedral symmetry illus-
trated in Figure 5.22. However, octagonal and decagonal quasicrystals have also 
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been found. 
Three-dimensional quasicrystals can be described using theoretical tools very 

similar to those employed in two dimensions, and they are discussed by Janot 
(1992). The essential idea of how fivefold symmetry is realized in nature is ex-
plained by the two-dimensional case, but three-dimensional quasicrystallography, 
discussed by Mermin (1992), is needed to obtain detailed comparison with most 
experimental systems. 

5.11 Fullerenes and nanotubes 

A new class of carbon compounds is the fullerenes, whose physical properties are 
reviewed by Smalley (1997) and by Weaver and Poirier (1994). The prototype 
for these compounds is COO, where 60 carbon atoms are arranged at the vertices 
of a molecule resembling a soccer ball, or one of the structures designed by the 
architect Buckminster Fuller. 

Ij ima (1991) discovered carbon nanotubes in 1991 while examining waste prod-
ucts created during synthesis of fullerenes. Single-walled carbon nanotubes con-
sist in single atomic layers of carbon in a honeycomb structure (graphene) rolled 
around an axis into a tube (Problem 1.3). When more than a single atomic layer 
of carbon rolls up into a tube, the result is a multi-walled carbon nanotube.. Great 
effort has been spent investigating their properties, as documented by Dresselhaus 
et al. (2001) and Ebbesen (1996). Nanotubes are extremely stiff and strong, and 
can grow to lengths of microns. 

Novoselov et al. (2004) found that by attaching tape to graphite crystals and 
pulling it off, it was possible to create micron-sized crystals of graphene that in 
places were literally one atom thick (Figure 1.3). Thus the study of graphene now 
encompasses small clusters, tubes, and infinite sheets. 

Problems 

1. Coordination numbers: 

(a) Find the coordination number z for fee and bec lattices 
(b) Find the coordination number z for hep lattices, depending on c/a. 
(c) Find the average coordination number z for sodium chloride and perovskite. 
(d) Find the average coordination number z for a continuous random network of 

Si02. 

2. Verlet method: 

(a) Derive Eq. (5.38) and show that errors are only of order dt4 after each time 
step by considering the Taylor expansion of the function r(t + dt). 

(b) Find an expression for the velocity r" in terms of r"+1 and r"~l that has 
corrections at order dt2. 
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3. Phase separation: 

(a) Given a specific function 5(c), the endpoints of phase separation in Figure 
5.5 can be determined by two algebraic equations. Find these equations. 

(b) Consider the specific case of 

1 
S"(c) = - ( c - 0 . 2 ) 2 ( c - 0 . 8 r + c/2. (5.133) 

Show that the conditions for phases separation are satisfied for ca = 0.2 and 
cb = 0.8. 

(c) Again considering the free energy (5.133), what is the final equilibrium state 
of a system that initially is homogeneous and has c = 0.6? 

4. Peritectic phase diagram: 

Figure 5.32. Phase diagram with peritectic. 

A peritectic is a point in a phase diagram above which phase ß simultaneously 
melts and phase separates. Use a series of sketches analogous to Figure 5.6 
to show how a such a phase diagram can arise from the competition between 
liquid and solid free energies. 

5. Monte Carlo: Consider 20 particles living in one dimension whose potential 
energy is 

υ = Σφ{χι-χι,)ί φ{χ) = φ0(χ-η-χ-6) (5.134) 
Kl' 

and which are constrained to sit in the interval [0, L], with L = 30. Write 
a Monte Carlo program to calculate g(x) = ri2{x)/n2 at two temperatures, 
ß = \/kBT = 10/00 and ß = 100/φ0. 

(a) Create an array of length 20 to hold particle locations, and also create an 
array of length NBINS=300 to hold g(x). 
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(b) Space the particles evenly initially, at distance 1 from each other. 
(c) Write a subroutine to compute the sum Eq. (5.134). The sum can be limited 

to near neighbors; five are recommended, as in 

f o r i = 0 t h r o u g h n 
{ 
for j= (maximum of i-5 and 0) through i 

{ 
e+=phi(x(i)-x(j)); 

} 
} 

(d) Wait 100,000 time steps, and then at every 20th time step compute a new 
contribution to g; the relevant line might look like 

for i=0 through n-1 
{ 
for j=0 through i-1 

{ 
k=(int) (abs (x(i)-x(j) )/L*NBINS) 
g(k)=g(k)+l 

} 
} 

Find the correct normalization of g(x). In a liquid of infinite extent, g —> 
1 as x —> oo. If case of a discrepancy of two, think about the effect of 
f a b s ( x [ i ] - x [ j ] ) . 

(e) Carry out a total of 500,000 Monte Carlo time steps for each of the two 
temperatures. Do not worry about the quality of the random number generator. 

(f) Landau and Lifshitz (1980), p. 537, prove that long-range order is impossi-
ble in one dimension at nonzero temperatures for particles with short-range 
forces. Please comment. 

6. Von Neumann's law: Consider a two-dimensional array of polycrystalline 
grains (see Figure 5.33). Assume four facts about the grain boundaries. 

Figure 5.33. (A) An array of two-dimensional soap cells, which obey laws very similar to 
those of metal grains. (B) Geometry of von Neumann's law. 
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(a) When grain boundaries intersect, there are always exactly three arcs depart-
ing from the intersection point. 

(b) The sides of the grains are all arcs of circles. 
(c) Where the arcs meet, the angles between them are all exactly 120°. To see 

why, consider three ropes meeting at a point, all being pulled with the same 
force. Only with 120° angles can they be in equilibrium. 

(d) For every arc with radius of curvature R and length /, the corresponding grain 
grows at rate —kl/R. Outward-bowing segments cause the grain to shrink; 
inward bowing segments cause it to grow, because the curved grain boundary 
exerts pressure like the skin of a balloon. Here k is a constant. 

Use these four facts to relate the growth rate of a grain to its number of sides. 
The result is called von Neumann's law, and it was derived by von Neumann 
while he sat in a conference listening to a talk on grain growth. A recent 
review of the topic is by Weaire and McMurry (1997). 

7. Polymer integrals: 
Consider the probability 5>i (/?) that a single polymer segment reaches from 0 
to R, and its Fourier transform 7\ (k) defined in Section 5.8.1. Show that 

0>i(ik = O) = l. (5.135) 

(a) Show that in a Taylor expansion to cubic order in components of k, the only 
terms allowed are of the form 

?x{k)^\-C-k2^e-ck2l2 (5.136) 

Assume '?\(—R) = 7\(R), and that T(/?) depends upon the magnitude of R 
but not its direction. 

8. Polymer stiffness: Suppose one has a polymer composed of a sequence of 
rigid rods, of length a, and suppose that the rods are connected by springs so 
that if the angle between rod / and rod / + 1 is θι, the energy of the joint is 
K9J (assume low temperatures so that βκ^> 1). Show that for long enough 
polymers the chain executes an ideal random walk. 

(a) Write down the probability "Ρ(θ\ . . . 0jy)of having some set of angles θ\ . . . 0# 
for a polymer at temperature T. 

(b) Confine the polymer to two dimensions, and ignore the possibility of self-
intersections. Find the x coordinate of the Mh bead for some particular set of 
angles θ\ . . . ΘΝ, given that bead 1 is at the origin. 

(c) Find the expectation value (xjj) of the end of the polymer. Take NkßT/κ to 
be much greater than 1. 

(d) The result has the same form as expected for an ideal random walk, but the 
segment length a must be replaced by an effective length ä. What is al 
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9. Diffusing-wave spectroscopy: Demonstrate Eq. (5.83). In addition to the 
definitions in Eq. (5.84), also define 

Aki = ki(t)-ki(0) (5.137) 

(a) Show that Eq. (5.82) can be rewritten as the sum of two terms, one of which 
involves Δ£,·(ί) · [r,+ i (ί) — ?,·(?)] and the other of which appears in Eq. (5.83). 
Make use of the fact that Δ?, vanishes when / = 0 and i = N + 1 because the 
starting and ending points of the light path are the laser and detector which do 
not move. 

(b) Argue that the sum involving Δ&,· should be much smaller than the sum in-
volving q, so long as particle motions over time / are small compared to the 
distance between scattering sites, and by discarding the smaller sum, obtain 
Eq. (5.83). 

(c) Demonstrate Eq. (5.90). 
(d) Complete the calculations to find Eqs. (5.103) and Eq. (5.104). 

10. Diffusion of spheres: Einstein (1905) first showed that the diffusion of spheres 
in liquid can be used to deduce their size. To recover this result, start with the 
Langevin equation, Eq. (5.40), with the external force F set to zero. 

(a) Defining v(t) = r(t), show for a particle starting at rest that 

va(t)= fdt'e-^'^Ut') (5.138) 
Jo 

(b) Consider times t\ and t2 that are large compared with \jb. Using Eq. (5.41), 
show that 

(vMvßfo)) = —δαβ «H"-*^. (5.139) 
m 

By setting t\ = ?2 and invoking equipartition of energy, argue that the constants 
in Eq. (5.41) were chosen correctly to reproduce thermal equilibrium. 

(c) Again considering times t much larger than \/b, compute 

(ra(t)r0(t)} (5.140) 

and obtain the Einstein relation 

D=k-f. (5.141) 
b 

(d) Employing Stokes' relation for the drag resistance of fluid on a slowly mov-
ing sphere, Eq. (15.145), relate the diffusion constant D for a sphere in liquid 
to its radius. 

11. One-dimensional quasicrystal: Verify that Eq. (5.119) follows from Eq. (5.118). 
Begin by sending n —> m and m —> n, and then send n —> n + m + 1. 
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12. Quasicrystal scattering: Consider a two-dimensional quasicrystal that is cre-
ated in the following way. First take five unit vectors ê/, with / = 1 . . . 5 point-
ing along the angles 2π//5. Construct an array of lines perpendicular to each 
of these unit vectors, and whose spacing is given by the Fibonacci sequence 
(5.106), as described by Eq. (5.132). 

(a) Find the two-dimensional Fourier transform of this crystal's density, thus 
obtaining the diffraction scattering amplitude. Use Eq. (5.129) as a starting 
point. 

(b) Prepare a plot in two dimensions of some of the brighter scattering peaks. 

13. The generalized dual method: A method for generating two-dimensional 
quasicrystals alternative to the one discussed in the text, and more general, is 
the generalized dual method. It proceeds in the following steps: 

Figure 5.34. Drawing upon which the generalized dual method for constructing quasicrys-
tals is based. 

(a) Write down five unit vectors êj pointing along angles 27iy'/5, for j — 0 . . .4. 
(b) For each unit vector, draw a set of parallel equally spaced lines perpendicular 

to the vector. Choose the starting points of the sets of lines so that no more 
than two meet at an intersection point. Number the lines, and refer with n-s to 
the nth line along the y'th unit vector. 

(c) Every open region between the lines will correspond to a vertex of the qua-
sicrystal. To obtain the location of the vertex, compute Σ)=ο njêj where the 
open region is after the nth line in the j direction and before the (n + 1 )st. 

(d) Choose the intersection point of any two lines in Figure 5.34 and describe 
what type of shape is generated in the quasicrystal as one travels 360° in a 
small loop about this intersection point. What are the two basic possibilities 
for what can happen? 

(e) Write a program to construct the tiling corresponding to Figure 5.34; or, 
better yet, starting from scratch. 
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6. The Free Fermi Gas and Single 
Electron Model 

6.1 Introduction 

Much of condensed matter physics lies within a Hamiltonian that one easily can 
write down in a single line. It is 

K=Y-^+-T «iqi: . (6.1) 
Z^2Ml 2fy\Rl-Rl,\ 

The sum ranges over all electrons and nuclei in a solid; M; is the mass of an electron 
or nucleus, and qi is its charge. The simplicity is deceptive. Equation (6.1) can be 
attacked directly by computer for little more than 10 to 20 particles. Dealing with 
the 1023 particles in actual solids requires a series of approximations, few of which 
are particularly well controlled. One has to replace the original equations with 
simpler ones, not always possible to justify, but capturing essential features of the 
system. A number of these approximations is indicated in Figure 6.1. In the study 
of electronic structure about to begin, the goal will be to start at the lower left hand 
side of the sketch and work back up toward the top. 

Since Eq. (6.1) so completely intractable in its original form as to be almost 
useless, progress comes about by posing and solving a series of model problems. 
In these model problems, one makes drastic simplifications that make it possible 
to solve the resulting equations analytically or numerically. The arbiter of success 
is partly comparison with experiment, and partly the ability to gain qualitative in-
sights. There is now more than 70 years' experience with approximation schemes, 
and their strengths and weaknesses are fairly well understood. 

The simplest model of a metal is the free Fermi gas. In this model, the Coulomb 
interactions between electrons and electrons and electrons and nuclei are all turned 
off. One considers a collection of electrons moving freely around in a box, and the 
only nontrivial aspect of reality to be maintained is the Pauli exclusion principle. 
In applying this model to a metal, one considers just a subset of the material's 
electrons, the conduction electrons. The free Fermi gas model captures the features 
of some metals remarkably well, particularly the alkali metals such as sodium. 
It simply cannot be employed for any solid that happens to be an insulator or a 
magnet. 

Some important features of the solution of the free Fermi gas do not depend 
upon details of the solution. They depend upon the fact that energy of the system 
of electrons can be written as the sum of energies of individual noninteracting 
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Figure 6.1. Some of the approximations used to make Eq. (6.1) tractable. 

electrons. Thus some of the results can quickly be extended to the more general 
single electron model. 

The Pauli principle alone is able to resolve the main paradox in the electron 
theory of solids prior to quantum mechanics. The problem was pointed out by 
Thomson (1907), and it occurs in trying to account for the specific heat of silver. 
Silver has one conduction electron per atom, leading to 6 · 1022 electrons cm- 3 . 
Thomson overestimated this number by a factor of 100, partly because his mea-
surements of the charge on the electron were several times greater than the correct 
values to be obtained by Millikan (1913) several years later, but the conclusions 
he drew still correctly captured the difficulty. The equipartition of energy should 
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contribute kgT jl to the mean energy for each of the three kinetic and potential 
degrees of freedom for the free electrons plus another 3kgT for the nuclei of the 
atoms, leading to a specific heat of c\> = 6nkß = 1.19 cal cm~3 K '. The exper-
imental specific heat is, however, half this value, as if the electrons are somehow 
immune to the demands of statistical mechanics. Thomson concluded that " We 
thus get to a contradiction. The value of the specific heats of the metals shows that 
the corpuscles [electrons] cannot exceed a certain number, but this number is far 
too small to produce the observed conductivities...." [Thomson (1907), p. 85] The 
resolution of the contradiction was not found for 20 years, and lies (as explained 
below) in the fact that only a tiny fraction of the electrons is permitted by the Pauli 
principle to participate in the process of absorbing energy. 

The free Fermi gas and single electron models are such a crude approximations 
that it may seem silly to study them at all. Two ideas eventually explained why even 
the free Fermi gas can have great quantitative success for some metals. Neglect of 
the periodic potential generated by the lattice of ions is justified by the pseudopo-
tential (Section 10.2.1), which shows how a redefinition of the electrons' wave 
functions turns them into particles interacting with weak potentials. Neglect of the 
interactions of electrons with one another is justified by the idea of the Fermi liquid 
(Section 17.5), which shows that properly chosen linear combinations of electron 
states behave like noninteracting particles. But these ideas ultimately provide only 
partial justification for approximation schemes, so there is no choice but to suspend 
disbelief and begin to calculate. 

6.2 Starting Hamiltonian 

The single-electron model is defined by the Hamiltonian 

N fc2v2 

It describes N conduction electrons, each of which interacts with an external po-
tential U but does not interact with the other conduction electrons. Equation (6.2) 
is called the single-electron model because if one finds the eigenfunctions φι(7ι) 
for single electrons, obeying 

~H V +U(r)\ ψ,(η = ειψι{?), (6.3) 
y 2m 

then the eigenfunctions describing many particles are simply obtained from prod-
ucts of the one-particle functions. The energy of the many-electron system is just 
a sum of the energies of the one-electron functions that make it up (Problem 1). 

That is, although the equation can be used to study large numbers of electrons, 
their properties can be obtained one electron at a time. 

Writing down Eq. (6.2) requires severe approximations outlined in Figure 6.1. 
However for a general potential U it is still impossible to solve in general. To start 
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making progress, throw away the potential U too. The free Fermi gas, is described 
by 

-h2 N 

— T ν ? φ ( ? ι ■ · · ?") = ε φ ( ? ι ■ · · **)· (6·4) 
2m f^ 

It describes N conduction electrons, interacting neither with nuclei nor each other. 
The eigenvalues and eigenfunctions of this Hamiltonian can be found exactly. 

No differential equation is completely specified without naming its boundary 
conditions. A natural choice would be to take Φ to vanish whenever any of its 
arguments reaches the boundaries of the system, but this choice is not convenient 
for calculations. Instead, one conventionally chooses a square box of side length 
L, L3 = V and imposes periodic boundary conditions; 

Φ(χι + L, yhz\ . . . , ZN) = y{xi,y\,zi . - . ZN) 
Φ(χι,)>ι + L, zi . . . , ΖΝ) = Ψ ( * Ι , ) Ί , Ζ Ι - ■ ■ ZN)-

This boundary condition is what one obtains 
by demanding that the system repeat indef-
initely with period L along the x, y, and z 
directions. 

(6.5) 
This mathematical condition cannot possibly be realized experimentally. However, 
almost any physical quantity one might calculate using Eq. (6.5) alters at most by 
an amount proportional to 1 /L if one adopts more realistic boundary conditions. So 
long as L is macroscopic, such corrections are negligible. It is sufficient to impose 
some condition on the wave function at the system boundaries. 

One Free Fermion. For the free Fermi gas, obeying Eq. (6.4), one can find the 
one-electron solutions explicitly. Eigenstates of (6.3) are all of the form 

Φ^ = ~j=e Because of the factor of l/VV, this function (6 .6 ) 
V V is normalized. 

with k of the form 
- 2π 
k=—{lx,ly,lz). (6.7) 

lx, /y, and lz are integers ranging from —oo to oo. Only if k is chosen in this way will a 
function of the form Eq. (6.6) satisfy the boundary condition Eq. (6.5). This enumeration 
of allowed values of k is more general than may now appear and it will survive unchanged 
when electrons interact with periodic potentials. 

The eigenvalue corresponding to the eigenfunction (6.6) is 
h2k2 

£ 9 = Simply insert Eq. (6.6) into Eq. (6.4). Setting (6 .8 ) 
Lm hk = p = mv, the energy is just ^mv2. 

Ground States of Many Free Fermions. The ground state of electrons obeying 
Eq. (6.4) is constructed from products of the one-electron wave functions (6.6). 
The Pauli exclusion principle forbids any given state from being occupied more 
than once, and therefore any given state indexed by k is able to host no more than 
two electrons, one for each value of spin. 
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The ground state of N electrons is built by first putting two electrons into the 
single-particle state of lowest energy, which is \k\ = 0. Next one puts electrons 
two at a time into all the states with \k\ = 2-n/L, and so on. The early stages of 
this process are the subject of Problem 6.2. Because the energy Eq. (6.8) increases 
with k, as one keeps adding electrons, one always wants to fill states with the lowest 
available values of £®. Since £^ is proportional to k2, this means that successive 
electrons get added to the ground state in successive spherical shells. 

Define the occupation number f^ of a state indexed by k to be 1 if this one-
electron state is part of the ground state, and 0 otherwise. For a large number N of 
electrons, the ground state corresponds to setting the occupation number _/j of all 
states with k less than a certain wave vector kp, the Fermi wave vector, to 1 and 
setting all others to 0. That is, the ground state is built out of one-electron wave 
functions occupying a sphere in &-space, as shown in Figure 6.2. Naturally, one 
wants to relate the number of electrons within the Fermi sphere to the value of kf, 
and for this purpose it is necessary to recall Eq. (6.7) and analyze it more closely. 

Figure 6.2. The ground state of the free electron gas is constructed by occupying vertices 
in a cubic grid of states that approximate a sphere of radius kF in k space. Any other shape 
would miss opportunities to put electrons as close as possible to the origin in k space, and 
thus would not minimize the total energy. 

6.3 Densities of States 

The k states described by Eq. (6.7) occupy a cubic lattice in k space, also called 
reciprocal space, with neighboring points separated by distances of Ιπ/L, as shown 
in Figure 6.2. One can draw a Wigner-Seitz cell around each of these points and 
can see as a result that the volume of the region of reciprocal space associated 
with k in this way is (2TT/L)3. Not only is this statement true for the free Fermi 
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gas, it is also true, as shown in Chapter 7, for electrons moving in general periodic 
potentials, and as shown in Chapter 13 for phonons. Therefore, all the terminology 
developed in this section to keep track of k states will recur constantly throughout 
the remainder of this volume, and the densities of states D defined here will have 
broad physical significance. 

In order to calculate the total number of electrons N, or their energy £, or any 
other thermodynamic quantity, one needs to carry out sums of the type 

Σ Fv (6-9) 

where F is some function of wave vector k, with the k vectors summed over values 
allowed by (6.7). Mathematical convenience requests that one convert these sums 
into integrals over a continuous function F^. Integration is defined by partitioning 
space into a large number of volume elements and summing a function over these 
elements, multiplied by the volume of each one. Because each k point is associated 
with a volume (2π/£)3, one obtains 

/

_ 27Γ 
dk Ft = y ( ) Fr This expression constitutes a long wavelength ap- ( 6 . 1 0 ) 

* *-^* L "· proximation that is only accurate if Fr varies slowly from one k to its neighbor, a condition that usually 
obtains in practice. 

^ V f -* 
=> > Fr = -^ / dk Fr. Recall V = Ü. Although this formula has only (6.1 1) 

TT"' (^ττ) J been derived for large volumes in the shape of a 
k cube, it can be proved to hold for large volumes 

of arbitrary shape. 
On some occasions, the function Fr, may involve a delta function, such as δ^. 

Viewed as a function of a continuous variable, this function clearly transforms 
into some multiple of ô(k — q). In order to remain consistent with Eq. (6.11), the 
correspondence must be 

δ-^—yì '—ßß — uY Only in this way do both sides of Eq. (6.11) ( 6 . 1 2 ) 
kq Ύ* equal 1 when these delta function are inserted 

6.3.1 Definition of Density of States D 

The sum in Eq. (6.11) is over all wave vectors allowed for free electrons. Because 
for each wave vector Pauli's exclusion principle allows two electrons, one with 
spin up and the other with spin down, it is conventional to define the density of 
electronic states, also sometimes called the density of levels 

D^ = 2 The factor of 2 accounts for spin. (6_ \ 3 ) 
k (2π)3' 

which is defined to be the quantity allowing one to write 

£ F ; = V j dkDlFl. (6.14) 
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To avoid perpetually writing Dp which does not even depend upon k, the notation 

^ Ξ |Σ=7 ' d î D i = jè )s Idl (6-i5) 

i 
will be adopted in the equations that follow. 

Energy Density of States. Several separate functions D are all referred to as 
densities of states. They are distinguished by their arguments. The most important 
is D(£), the energy density of states which is useful in dealing with sums over 
functions that depend upon k only through an energy function £p such as 

/

Electrons in periodic potentials will differ from 
dED(E)F(E) . their free-electron counte^arts largely because ( 6 1 6 ) 

v / \ / the energy fcj will differ from the tree-electron v ' 
ka value given byEq. (6.8). This definition looks 

ahead to that possibility. 

To find D(£), note that 
J2F(EÏ)=V ([dk}F(E$ First use of Eq. (6.15). ( 6 . 1 7 ) 

Ισ 

/
/· Integrating the <5 function with respect to E 

dE I [dk] δ(Ε- Er)F(E) Jus t P r o d u c e s ·· However, if one chooses to ( 6 j 8 ) 
J integrate with respect to k first, something new 

comes out. 
=^D(E) = I [dl] 0{E - E-k) . Obtained by comparing Eq. (6.16) with (6.18). ( 6 . 1 9 ) 

The units of densities of states are able to change without much warning. Often 
they are expressed in units of l/[eV atom], which means they are related to the 
function defined by Eq. (6.19) by a factor of density n. 

6.3.2 Results for Free Electrons 

For the free Fermi gas, one has that 

D(E) = f[dk}S(E-E^) „ „ « , « , . ■ u . (6-2°) 
v ' J k UseEq. (6.15), then switch to polar v ' 

2 roo coordinates in k space to do the 
= 4 π - Tj / dkk2S(E-E^) integral, because £2 depends upon the ( 6 . 2 1 ) 

\ ' " magnitude but not the direction of k. 

1 f°° dE° 2mE° 
1 _ £ ( £ _ £ ° ) Use Eq. (6.8) to express k in terms of ( 6 . 2 2 ) π ζ Jo \dE°/dk\ h2 y ' εΡ. 

m VïmÊ (6.23) 
From Eq. (6.8) one has 

= 6 . 8 1 2 · 1 0 2 1 Λ / ε / e V e V " 1 c m ' 3 . àS?/dk = H2k/m; then use Eq. (6.8) ( 6 . 2 4 ) 
V again to write k in terms of £. 

The number of electrons that can fit into a sphere of radius kp is 

]\j = \ f- Because/j is 1 only if the state is occupied. ( 6 . 2 5 ) 

1σ 
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= V [ [dk] fl, Application of Eq. (6.11 ) ( 6 . 2 6 ) 

= V / \dk\ 9(kp—it) Because the occupation number vanishes for ( 6 . 2 7 ) 
J k > kf. Θ is a Heaviside step function that 

vanishes when its argument is less than 0 and 
is 1 otherwise. 

V 47Γ 3 _ V # 
= Ιζί = — Using the formula for the volume of a sphere, (6 2 8 ) 

47Γ3 3 3 π 2 ' and Eq. (6.15). 

which implies that the Fermi wave vector is related to the density of electrons 
n = N/V by 

kF = (3τΛ)1 / 3 = 3.09 [n-A3]V3A~\ (6.29) 

The density of electrons is sometimes described by finding the volume per electron 
V/N and defining the free-electron sphere to be one with the same volume, so that 

4π , V 3_V 1/3 
(6.30) 

The energy of electrons in the most energetic occupied state is called the Fermi 
energy or Fermi level and denoted by 

£ F = ^ = 36.46[n-À3]2/3eV. (6.31) 
2m L J 

The Fermi surface is the collection of k such that electrons with wave number k 
have energy Ef. Finally, the Fermi velocity is defined to be 

Vf = HkF/m = 3.58 [n-À3]1/3 · IO8 cm s"1. (6.32) 

The density of states D(E) has broad physical significance. Usually, it is not the 
whole function that is important, but just D(Ep), the density of states at the Fermi 
surface. Almost every electronic transport property of a solid will be proportional 
to D(Ef-), whether it be the ability of electrons to absorb heat, or their response to 
applied electric fields. Electrons lying far in energy below the Fermi surface cannot 
contribute to transport properties, because all states around them are occupied, and 
if they cannot change their state, they cannot respond to perturbations. States far 
above the Fermi surface are not occupied at low temperatures and cannot play any 
role in responding to external fields. The electron number density right at the Fermi 
surface is therefore the crucial quantity to determine. For the free Fermi gas, one 
gets the result 

D(£f) = ^ = 4 . 1 1 - 1 0 - 2 [ n - Â 3 ] e V - 1 À " 3 . (6.33) 
2 c/r 

Note that n = J F d£D(e) = fQ
 F dt D(EF) y/t/tF. 
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One- and Two-Dimensional Formulae. Both because certain types of calcula-
tions are simpler in one and two dimensions and because techniques associated 
with microfabrication make it possible to construct experimental systems that are 
effectively one- and two-dimensional, it is useful to have corresponding formulae 
for other dimensions. The general expression for density of electron states in d 
dimensions is 

Di = 2(±)d. (6.34) 

In two dimensions, the density of energy states is 

m 
D(£) = —2, (6.35) 

πη 

while the density of energy states in one dimension is 

Problems 4 and 7 derive Eqs. (6.35) and (6.36) and extend them to arbitrary dimen-
sions. 

General Ground States for Noninteracting Electrons. The ground states of 
collections of electrons obeying Eq. (6.2) can be constructed in a manner analogous 
to that used for the free Fermi gas. Order the energies of the one electron states so 
that 

£ θ ^ £ l "^ £ ? · · · · These are the energies appearing in Eq. (6.3). For the free Fermi gas, ( 6 . 3 7 ) 
the energies would be £ίί, with k ranging over all allowed values and 

k 

each energy appearing twice to account for spin. 

The ground state for N electrons is built out of electrons occupying energy 
levels So · · · &N- The most energetic occupied level is still called the Fermi energy. 
The energy density of states D(E) remains defined as the number of single electron 
states D(E)d£ to be found per volume in an energy range between £ and £ + dE. 
When the potential U is periodic, it will be shown possible to index states by a wave 
vector k as well, but for nonperiodic U such a description is usually impossible. 

6.4 Statistical Mechanics of Noninteracting Electrons 

A first example of the role played by D(&F) in determining the response of elec-
trons to outside influence is provided by calculating the specific heat of free elec-
trons. To make this calculation possible, it is necessary to recall the statistical 
mechanics of noninteracting Fermi particles. This calculation also provides a way 
to obtain a quantitative criterion for when an ensemble of electrons behaves in a 
basically classical, as opposed to essentially quantum-mechanical, way. At suf-
ficiently high temperatures or low densities, electrons are classical, but at room 
temperature and at the densities common in metals, quantum mechanical effects 
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are of fundamental importance. This calculation will be carried out for the general 
case of noninteracting electrons, not just the free Fermi gas. 

The grand canonical partition function provides the most convenient formal 
means for studying this problem. Consider a volume V in contact with a tem-
perature reservoir, and with a reservoir of electrons, which flow in and out. The 
state of the electrons can completely be described by a collection of integers n\, 
«2 . . ., which equal zero or one and indicate for each of the quantum energy states 
in Eq. (6.37) whether the state is occupied or not. One can sum over all possible 
ways that electrons can inhabit the volume by summing over all possible values of 
all the integers «/. So the grand partition function Zgr is expressed as 

zgr=E αβ(μΝ-ε) 

states 

1 1 1 
β^2,"ι(μ-^ι) 

«1=0 «2=0 «3=0 

Using the mathematical fact that 
N N N M M ( N 

Σ Σ - Σ Π ^ Π E^r> 
n,=0 n2=0 « M = 0 / = l l=\ \ηι=Ό 

one has that 

*r = II Σ αβ η,Ιμ-ε,] 

I l « ; = 0 

= Jj[l+^-£/l 
Therefore the grand potential is given by 

Π Ξ — kßT In Zgr 

= -kBT^la \\+^-E' 

-kBTV ί dED(Z) In l+eß\M-Z] 

This is the definition of the grand , , . „ , 
partition function. The symbol ß is \P·-'"/ 
Ι/kßT, where ke is Boltzmann's 
constant and T is the temperature. 

The total number of particles N is ( 6 . 3 9 ) 
y \ «/, and the total energy £ is 
given by J2i η'ει-

The identity follows by just asking , _ 
what happens as one multiplies (6.4(J) 
everything out on the right-hand 
side. 

( 6 . 4 1 ) 

The sum over each «/ has just been ( 6 . 4 2 ) 
carried out explicitly. 

See Landau and Lifshitz ( 1980), (6 4 3 ) 
p. 108. 

(6.44) 

Here is an example showing the 
utility of defining the density of 
states D(E). 

(6.45) 

Fermi Function. From the grand potential all other thermodynamic quantities 
can be obtained. For example, the average number of electrons N is given by 

N = 8μ (6.46) 

V / dE' D(E')-. 
„βμ-βΕ' 

- From Eq. (6.38), N = kBTd{ZiT/dß)/ZSI. ( 6 . 4 7 ) 
\+eßß-ßt> 

N f 
n= — = / ί / ε ' D(E') f ( £ ' ) « is the density of conduction electrons. ( 6 . 4 8 ) 
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where 

/ ( £ ) 
1 

(6.49) 
ββ(ε-μ) _|_ ι 

is the Fermi function, or the occupation probability, and is depicted in Figure 6.3. 

/ (£ ) : ΛΒΓ = .005μ 
- - / (£) : £βΓ = .025μ 

exp[—/?(£ — μ)]: kBT = .25μ 

Figure 6.3. Sketch of the Fermi function / (£ ) for various values of kßT. At low tempera-
tures it differs only slightly from a step function around μ; the region in which the function 
differs appreciably from 0 or 1 is of width kßT. For £ ^> μ, the function rapidly becomes 
indistinguishable from a Boltzmann factor exp(—β£). 

The function / gives the probability that the state of energy £ will be occupied 
in thermal equilibrium at temperature T. In cases where energy is indexed by wave 
vectors k, the Fermi function can be viewed also as a function of k: 

h 
1 

Ah-ü + ι 
(6.50) 

Furthermore, 

δβΠ. , 
= £ — μΝ Again, look back at Eq. (6.38). £ is the total 

Qß I1 energy of the system. 
( 6 . 5 1 ) 

( 6 . 5 2 ) 

V 

V [ d£' D(E') (Ζ'-μ) / ( £ ' ) 

: / ί / δ ' D(E') E' / ( £ ' ) · Thus the total energy of the system is given ( 6 . 5 3 ) 
J by an integral over all states of the density of 

states times the occupation probability, times 
the energy of each state. 

Classical Limit. Electrons are said to be in the classical limit when the probability 
that an energy state be occupied is given by a Boltzmann factor: 

f(£,)=Ce . Here C is some arbitrary constant. 

This limit obtains whenever 

/ ( ε ) < ι = Φ / ( £ - ^ » ι . 

(6.54) 

(6.55) 
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When conditions (6.55) apply for all conduction electrons up to the Fermi level, 
one says that classical or Boltzmann statistics apply and that the electrons are non-
degenerate, because all the energy states are far from being doubly occupied. Oth-
erwise one says that Fermi, or Fermi-Dirac statistics apply and that the electrons 
are degenerate. Thus, the larger and more positive μ becomes, the more pro-
nounced are quantum effects; as μ increases, density increases, so the non-classical 
limit is associated with high densities and low temperatures. 

As temperature heads toward zero one sees that 

f ( £ ) —> θ(β — £ ) . The Θ function is zero when its argument is ( 6 . 5 6 ) 
less than zero, and one otherwise. 

At very low temperatures all states are occupied below the critical energy μ and 
are unoccupied above it, the same conclusion that was reached in constructing the 
ground state of the many-electron system. At T = 0 the Fermi energy ξ,ρ is equal 
to the chemical potential μ. This zero temperature limit is intrinsically quantum 
mechanical, because all states below the Fermi level have occupation number equal 
to 1, and conditions (6.55) are violated. 

It is impossible to determine what "low" and "high" temperatures might cor-
respond to without putting in numbers for real physical systems. One can pretend 
that metals are nothing but free-electron gases, use a conventional number of con-
duction electrons per atom and the known density of the various metals to compute 
kf and Ef for the metallic elements. The results appear in Table 6.1. One sees 
by consulting this table that Fermi energies are on the order of electron volts. In 
order for electrons to be excited with appreciable probability to such energies in a 
classical system, they would need to be at a temperature on the order of 

7> = EF/kB, (6.57) 

where Tf is called the Fermi temperature. Fermi temperatures are on the order of 
10 000 K and higher. Therefore, at room temperature, the electron gas in metals is 
at very low temperatures and is highly degenerate. 

Indeed, the single most important fact about metals is that their conduction 
electrons form a highly degenerate Fermi gas. No subsequent elaborations of the 
theory will change this central conclusion. 

6.5 Sommerfeld Expansion 

The temperatures at which metals remain solid are low in comparison with typical 
Fermi temperatures, so it makes sense to work out a low temperature expansion 
for thermodynamic properties. This expansion is due to Sommerfeld (1928), and 
it makes use of the idea that at low temperatures electrons are only active within 
a small energy range, kßT of the Fermi energy. To understand why, consider, for 
example, the process of adding heat to a metal. As the temperature of a metal rises, 
the average energy of electrons in it must increase. This increase can only hap-
pen if electrons make transitions to higher energy states. Only right in the vicinity 
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Table 6.1. Properties of free-electron metals 

Element Z 
(10Z2 cm" J ) (108 cm" 1) (eV) (10 4K) (IO8 cm s" 

rs/a0 

Li 
Na 
K 
Rb 
Cs 
Cu 
Ag 
Au 
Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 
Hg 
Al 
Ga 
In 
Sn 
Pb 
Sb 
Bi 
Mn 
Fe 
Co 
Ni 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
4 
4 
5 
5 
4 
2 
2 
2 

4.60 
2.54 
1.32 
1.08 
0.85 
8.49 
5.86 
5.90 

24.72 
8.62 
4.66 
3.49 
3.15 

13.13 
9.26 

16.22 
18.07 
15.31 
11.50 
14.83 
13.19 
16.54 
14.04 
32.61 
16.90 
18.18 
18.26 

1.11 
0.91 
0.73 
0.68 
0.63 
1.36 
1.20 
1.20 
1.94 
1.37 
1.11 
1.01 
0.98 
1.57 
1.40 
1.69 
1.75 
1.65 
1.50 
1.64 
1.57 
1.70 
1.61 
2.13 
1.71 
1.75 
1.76 

4.68 
3.15 
2.04 
1.78 
1.52 
7.04 
5.50 
5.53 

14.36 
7.11 
4.72 
3.89 
3.64 
9.42 
7.47 

10.84 
11.66 
10.44 
8.62 

10.22 
9.45 

10.99 
9.85 

17.28 
11.15 
11.70 
11.74 

5.43 
3.66 
2.37 
2.06 
1.76 
8.17 
6.38 
6.42 

16.67 
8.26 
5.48 
4.52 
4.22 

10.93 
8.66 

12.59 
13.53 
12.11 
10.01 
11.86 
10.97 
12.75 
11.43 
20.05 
12.94 
13.58 
13.62 

1.28 
1.05 
0.85 
0.79 
0.73 
1.57 
1.39 
1.39 
2.25 
1.58 
1.29 
1.17 
1.13 
1.82 
1.62 
1.95 
2.02 
1.92 
1.74 
1.89 
1.82 
1.97 
1.86 
2.46 
1.98 
2.03 
2.03 

3.27 
3.99 
4.95 
5.30 
5.75 
2.67 
3.02 
3.01 
1.87 
2.65 
3.26 
3.59 
3.71 
2.31 
2.59 
2.15 
2.07 
2.19 
2.41 
2.22 
2.30 
2.14 
2.26 
1.70 
2.12 
2.07 
2.07 

Conduction electron density, Fermi wave vector, energy, temperature, Fermi velocity, 
and radius parameter rs [Eq. (6.30)] in units of the Bohr radius, ao> for selected metallic 
elements computed by assigning each element a number of conduction electrons Z, and 
treating it as a free-electron gas. Densities are obtained from data of periodic table 
inside front cover, and are measured at 293 K. Assignments of Z to the four transition 
metals at end of table are conventional but not obvious. 
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of the Fermi energy are there both (a) an appreciable population of electrons and 
(b) vacant states of slightly higher energy to which they can move. The number 
of electron states is proportional to D(Ep), and the number of states that partici-
pate in the specific heat is proportional to T. Fermi statistics predicts that at low 
temperatures 

cv<xTD(EF), (6.58) 
and in this way resolves the difficulty with specific heats noted by Thomson (1907). 

i 

20 

10 

0 

L 

-

-

J 

ykBT = .005μ 

,kBT = ·025μ 
( ,ΛΒΤ = 25μ 
^ = = - h i 

μ 

Figure 6.4. Sketch of the derivative of the Fermi function δ/(Ε)/3μ for various values of 
kßT. This function is only nonzero over an energy range of order kBT around the Fermi 
energy. 

Formal Development. The formal development of this idea begins with a general 
scheme for calculating averages over Fermi functions. Suppose one has an average 
of the form 

/

oo 
dE H(E)f(E). Here / is the Fermi function, and tt is an ar- ( 6 . 5 9 ) 

^oc bitrary function of energy £. 
Integrating by parts and assuming the integrand to vanish at the limits ±00, one 
has 

/

oo re 

dl \ dZ'H{l' 
-00 J—00 

3μ (6.60) 

Note that —df/dC = df/θμ. The crucial step in the formalism is to have df/Ομ 
appear inside the integrand. This function embodies the idea that the only active 
electrons are those within distance kßT of the Fermi surface, as shown in Figure 
6.4. Now expand the first term in brackets about £ = μ to obtain the series 

{H) = dE / / ( £ ) Terms with odd powers of E — μ vanish by symmetry, ( 6 . 6 1 ) 
since df/θμ is an even function of £ — μ. 

+ΣΙ 
n=\ 

j2n-\ 

άμ 2/7-1 Η(μ)} J_ 00 dE^-ri-
(2n)\ 

In Of 
3μ (6.62) 
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dEH(E) + Σ an[kBT]2n-^^H(p) (6.63) 

with 
d I T - 2 " 

/
oo 

-oo oo dxex+l 
d\2n Γ &π 

(2»)! (6.64) 

sin Ζ?π 
Proving this relation is the ( 6 . 6 5 ) 

b=Q subject of Problem 6. (2n)\ \db) 

\H) = I d o / / ( c ) One seldom needs any terms beyond T2. This expansion ( 6 . 6 6 ) 
7—oo can be viewed as a power series in kßT lu, which at room i power series in kßT/'μ, 

temperature is 1/40 or less. 

+ 4 [kBT]2 Η'{μ) + ^ [kBT]4 H"(μ) + . . . . (6.67) 

This formal expression for quantum-mechanical thermal averages at low tempera-
tures is called the Sommerfeld expansion. 

6.5.1 Specific Heat of Noninteracting Electrons at Low Temperatures 

In order to find the specific heat, one can begin by finding the average energy δ of 
the electrons and then using the relation 

1 dE , 
CV = \NV . See Landau and Lifshitz (1980), p. 47. ( 6 . 6 8 ) 

Using the energy density of states defined in Eq. (6.16), one has 

| = ̂ ε'/(ε')ε'ο(ε') (6.69) 
ru -7Γ2 rKiiDiiiW This is a straightforward 

AC' Ρ'ΓΛίΡ'λ ι η η ^ τ ^ " ^ ^ ^ ) ) application of Ea. (6.67), 
irovid 

ru π2 rHiiDlnW This is a straightforward 
= / dE' E'D(E') + — (kBT)2 α[-μυ^μ)> . application of Eq. (6.67), with ( 6 J 0 ) 

L· \ J ' c. \ D j j fcD(fc) providing a specific v ' 
J0 α μ form for Hit). 

In order to proceed further one must find how the chemical potential behaves as a 
function of temperature. To accomplish this task, use the thermodynamic identity 

dN 
ομ _ Qf ^v

 (61l) 

dT \NV- g^ · lo. / i ; 
δμ ÌTV 

One can evaluate the right hand side of Eq. (6.71) because, using Eq. (6.67) with 
H(E) = D(E), the number of electrons N is given by 

N = V [ dE' f{E')D(E') = V Γ dE' D(E') + V~(kBT)2D'(ß), (6.72) 
J Jo 6 

which gives that 
There is an additional term that appears in the 

Λ 2 rV ( \ denominator of this expression, but it is pro-
r I __ ]p-T ^ ' portional to T2 and therefore very small rela- (6>ΊΎ\ 

βγ ÌNV τ Β Γ)( ιΛ ' tive to the term being retained. ^ ' ^ 
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When the temperature T equals zero, μ equals £,F, the Fermi energy, so 

μ = Ep — (kBT) ———. This expression is valid to order T2. ( 6 . 7 4 ) 
6 D ( o f ) 

Knowing that μ — £F is of order T2, one can now write to order T2 that 

[ F dl' Z'D(i') + ?-(kBT)2D{EF) 
JO o 

( Ji 
ε 
^ +B,FUß-EF)D{EF) + ^{kBT)2D'{tF)\ 

One replaces μ in Eq. (6.70) using Eq. (6.74). Notice that μ appears as a limit 
of integration; here one writes μ = &F + (μ — &F) and expands to first order in 
μ — Er . The term in curly brackets vanishes because of Eq. (6.74). 

(6.75) 

ε rEF 

v 
f F dZ £D(£) + ^(kBT)2D(EF) (6.76) 

Jo 6 
^ C V = — k2

BTD(EF). Using Eq. (6.68). ( 6 . 7 7 ) 

Equation (6.77) shows as predicted by Eq. (6.58) that the specific heat is propor-
tional to D(EF)T. The linear coefficient of the specific heat 7 = cy/T is called 
the Sommerfeld parameter, and it provides a measure of the density of states at the 
Fermi surface, EF. 

Free Fermi Gas. It is worthwhile to evaluate the specific heat in the particular 
case of the free Fermi gas. Using Eq. (6.33) gives 

Cy 7Γ2 f kB\ 
Ύ = — = — nkB. F r e e Fermi gas only, with n the density of ( 6 . 7 8 ) 

T 2 \8-F J conduction electrons from Table 6.1. 

It requires some foresight to compare Eq. (6.78) with experiment. The specific 
heat of a metal contains two major components. At room temperature, a solid ab-
sorbs heat mainly through the vibrations of ions about their equilibrium positions. 
However, these contributions vanish as Γ3 at low temperatures [see Eq. (13.70)], 
and at temperatures on the order of 1 K, there is a linear contribution to the specific 
heat coming from electrons. Experimental data supporting this claim are displayed 
in Figure 13.11. In addition to predicting the scaling of specific heat with tem-
perature, Eq. (6.78) gets the order of magnitude of the coefficient right for many 
metals, as shown in Table 6.2. 

One way to express measured values of the specific heat is in terms of the 
specific heat effective mass of the electron. The idea behind the definition is that 
because the Fermi energy is inversely proportional to the mass of the electron, the 
specific heat shown in Eq. (6.78) is proportional to it. Therefore, one can account 
for specific heats deviating from (6.78) by pretending that the metals are built from 
effective particles whose mass differs from that of the electron. 

This idea is a first example of what will be a common theme: using the con-
ceptual apparatus of a simple model, with modified parameters, to understand more 
complicated cases. 
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There are metals in the periodic table for which the free-electron estimate of 
the specific heat is seriously in error; by a factor of 10 for iron, for example. The 
heavy fermion compounds such as UBe^ or UPt3 have low-temperature specific 
heats that differ by a factor as much as 1000 from the free-electron estimates. The 
reason for their anomalous behavior will be discussed in Section 26.6.1. 

Table 6.2. Comparison of free-electron estimate of Sommerfeld 
parameter 7 with experiment 

Metal Z 7 (mJ mole -1 K - 2 ) Metal Z 7 (mJ mole"1 K~2) 
Expt. Eq. (6.78) Expt. Eq. (6.78) 

Li 
Na 
K 
Rb 
Cs 
Cu 
Ag 
Au 
Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 

1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 

1.65 
1.38 
2.08 
2.63 
3.97 
0.69 
0.64 
0.69 
0.17 
1.6 
2.73 
3.64 
2.7 
0.64 
0.69 

0.74 
1.09 
1.67 
1.90 
2.22 
0.50 
0.64 
0.64 
0.5 
0.99 
1.51 
1.79 
1.92 
0.75 
0.95 

Al 
Ga 
In 
Sn 
Pb 
Sb 
Bi 
Mn 
Fe 
UPt3 

UBe13 

3 
3 
3 
4 
4 
5 
5 
2 
2 

1.35 
0.60 
1.66 
1.78 
2.99 
0.12 
0.008 

12.8 
4.90 

450 
1100 

0.91 
1.02 
1.23 
1.41 
1.50 
1.61 
1.79 
1.10 
1.06 

Experimental results are obtained from an extrapolation to low tempera-
tures assuming that c\>/T ~ 7 + ßT2, as in Figure 13.11. The theoretical 
estimate uses electron densities n from Table 6.1. Data are presented 
for metals for which the comparison is fairly successful, for several met-
als for which it fails noticeably, and for heavy-fermion compounds for 
which it fails spectacularly. Source: Stewart (1983), and Stewart (1984). 

Problems 

1. Product wave functions: 

(a) Show that a product of wave functions obeying Eq. (6.3), 

N 

l=\ 

satisfies Eq. (6.2), and show that the energy £ is given by the sum of energies 



172 Chapter 6. The Free Fermi Gas and Single Electron Model 

(b) The wave function (6.79) is actually not acceptable for many electrons, be-
cause the Pauli principle demands that wave functions be antisymmetric under 
interchange of any two coordinates. The correct form of a wave function is 

Φ = ^ Σ ( - 1 ) 5 Π ^ , ( θ ) , (6.80) 

where the sum over s denotes a sum over all the permutations of N integers, 
( — 1Y gives the sign of the permutation, and si denotes entry / in the permu-
tation. Verify that the energy of Φ as given in Eq. (6.80) is the same as that 
found for (6.79). 

2. Ground states: Consider a free Fermi gas with N electrons. Find the energy 
of the ground state of the gas as yv varies from 1 through 15. 

3. Pressure: Find the pressure of the ideal Fermi gas in three dimensions at zero 
temperature. 

4. Densities of states in low dimensions: Find the density of k and energy states 
for an ideal noninteracting Fermi gas in one and two dimensions. 

5. Fermi pancakes: Consider a thin layer of silver, 106 Â wide and 106Â long 
along x and y. 

(a) Take the layer to be 4.1 Â thick along z- Treat the layer as a free Fermi 
gas, demanding that the wave function vanish at the boundaries along the z, 
direction. Find the difference between the energies of the lowest- and highest-
occupied single-particle states, and compare this difference to the bulk Fermi 
energy. 

(b) Repeat the previous problem with a layer 8.2 Â thick along z-

6. Sommerfeld's integrals: Prove Eq. (6.65). 

(a) Show that an may be rewritten as 

1 f d\2n i°° , bebx 

a„ — -—— I — I 

(b) Evaluate 

(2«)! \db) dx . (6.81) 
*=o7-oo ex+\ 

oo bebx 
dx Assume 0 < f c < l . ( 6 . 8 2 ) 

oo ex+\ 
by performing a contour integral over a rectangle in the complex plane with 
corners —R, R, R + 2πί, and —R + 2πί and letting R —» oo. There is a single 
pole within the contour whose residue must be evaluated. 

(c) Obtain Eq. (6.65) and use it to find a\ . . . a^. 
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(d) Show by expanding 1/(1 + e x) in a Taylor series that 

1 β' = Σ^4- ( 6 · 8 3 ) 
ι=ι 

7. Densities of states in all dimensions: 

(a) Find the volume of a sphere Vd(R) of radius Rind dimensions. In order to 
accomplish this task, first find the surface area Ad of a sphere of unit radius in 
d dimensions by considering the integral 

t, = / * , * , . . . a « . - « - M - * * . (6.84) 

On the one hand, /</ is easy to evaluate as a product of d separate integrals. On 
the other hand, it can also be evaluated in polar coordinates, where it equals 

Id= [ drrd-xAde-'2. (6.85) 

By comparing Eqs. (6.84) and (6.85), find Ad. As a consequence, find 

Vd(R)= / drrd-lAd. (6.86) 
io 

(b) Find a general expression for the density of k and energy states for an ideal 
noninteracting Fermi gas in all dimensions. 

8. Fermi function: 

(a) Consider the electron density appropriate to aluminum. Assuming the con-
duction electrons to be free noninteracting fermions, find the chemical poten-
tial numerically to two place accuracy at 0 K, 300 K, and 10 000 K. 

(b) Compare these results with the corresponding results of the Sommerfeld ex-
pansion at lowest nontrivial order. 

(c) Draw accurate pictures of the Fermi function / (£ ) for these three values of 
the chemical potential. 
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7. Non-Interacting Electrons in a 
Periodic Potential 

7.1 Introduction 

While Sommerfeld's theory of the free-electron gas provides an excellent starting 
point for the study of metals, it leads to a new fundamental difficulty. "The main 
problem was to explain how the electrons could sneak by all the ions in a metal 
so as to avoid a mean free path of the order of atomic distances. Such a distance 
was much too short to explain the observed resistances, which even demanded that 
the mean free path become longer and longer with decreasing temperature" [Bloch 
(1976), p. 26]. Bloch (1928) had provided the solution of the problem in his thesis. 
Analyzing a single electron moving in a perfectly periodic potential, he says, "... I 
found to my delight that the wave differed from the plane wave of free electrons 
only by a periodic modulation. This was so simple that I didn't think it could 
be much of a discovery, but when I showed it to Heisenberg he said right away: 
'That's it!' " [Bloch (1976),p. 26.]. 

Immediately, the problem was altered from a hard one: "Why is the mean free 
path so long?" to an easier one: "Why is the mean free path so short?" Scattering of 
electrons is caused not by the lattice itself but by defects in the lattice, due either to 
thermal fluctuations or to impurities. At low temperatures, electron mean free paths 
in metals should increase up to a limit that is set by impurity density (Chapter 18). 
This behavior is observed experimentally and gives great plausibility to Bloch's 
great idea to study crystals through single electrons in periodic potentials. 

7.2 Translational Symmetry—Bloch's Theorem 

The free Fermi gas of Chapter 6 treats solids as if they are empty boxes filled 
with electrons that interact neither with nuclei nor each other, apart from effects 
due to the Pauli exclusion principle. Bloch (1928) added back some some of the 
ingredients missing from this simplified view of solids. He first added back the 
interaction of electrons with the nuclei, treated as a static external potential. 

For general potentials U(r) the problem is still nearly intractable, and Bloch 
settled on an additional simplification. He posed the problem of electrons moving 
about in a periodic potential U(r), one which obeys 

U(7 + R) = U(7). For all R in a Bravais lattice. ( 7 .1 ) 
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Figure 7.1. The setting for Bloch's theorem in one dimension is a potential U(x) of period 
a on a periodic domain of length L. 

The Hamiltonian is 
. P2 

K=— + U(R). (7.2) 
2m 

Now the model contains just the right balance of simplicity and realism. The sym-
metry (7.1) permits remarkable analytical progress and makes numerical solutions 
of Eq. (6.3) tractable. The model is realistic enough to predict many physical prop-
erties of crystals such as the fact that some are metals and others are electrical 
insulators. 
7.2.1 One Dimension 

The basic features of wave functions in periodic potentials are easiest to understand 
in one dimension. Writing out Schrödinger's equation in the position representa-
tion gives 

-^■^ψ{χ) + υ(χ)ψ(χ) = εψ(χ) (7.3) 

Take U(x) to be periodic with period a as shown in Figure 7.1. 
The one-dimensional space where ψ is defined is of length L. Take ψ to be 

periodic so that 
Periodic boundary conditions simplify the calculations considerably 

ih(x 4- / ) = i/i(r) without substantially affecting any feature of the solutions. The pe- ιη Λ\ 
Ψ\ > ) Ψ\ )■ riodicity of ψ over distance L should not be confused with the peri- ^ ' ' 

odicity of U over distance a. 

Suppose that the potential U(x) was just U(x) = 0. Then it would be easy to 
write down all the solutions. They would be 

rl>k(x) = 4= (7.5) 

When the potential U(x) is not zero, the solutions retain the same basic structure, 
but change to 

ilex ( \ , i \ & U\X) While φ is normalized over the . , 
Wk\X) = 7FE -, whole system, u is normalized ( ' · " ) 

V^» over a single unit cell. 

where u(x) is a function that like U(x) is periodic with period a, and where N = L/a 
is the number of cells in the full periodic system. That is, as shown in Figure 7.2, 
the solutions are plane waves exp[/fcc] modulated by a periodic function u{x). 
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Periodic function u(x) 

φ(χ) = exç[ikr]u{x) 

Figure 7.2. Bloch wave functions are periodic functions u(r) modulated by a plane wave 
of longer period. The lower portion of the figure displays the real part of ψ(χ). 

The following derivation shows how this form arises, and shows that each and 
every solution of Schrödinger's equation has the form of Eq. (7.6). 

Fourier's theorem [for example, Tolstov (1978)] says that every periodic func-
tion can be written as a sum of all the complex exponential functions exp[/fcc] that 
share the same period. Because ψ is periodic with period L, φ(χ) can be written 
as a sum of Fourier components expD'g'x] where q' is of the form q' = 2irl'/L and 
/' G (—oo . . . — 1, 0, 1 . . . oo) is any integer: 

ψ(χ) = —j= ^ 1p(q')e'qx The sum over q' is thi 
V L ~f /' with q' = ΙπΙ'/L. 

normalization. 

the same as summing over (7 .7 ) 
The factor of \/L fixes 

U is periodic with period a = L/N, and it can be written as a sum of Fourier com-
ponents exp[/ÄJt] where the reciprocal lattice vector K is of the form K — 2πΙ/α, 
and / is an integer: 

U(x) = Σ UKeiKx. (7.8) 
K 

Substitute Eqs. (7.7) and (7.8) into Eq. (7.3), finding 

This equation must hold separately for each Fourier component exp[/gx],a condi-
tion imposed formally by choosing q = 2TTI/L, multiplying Eq. (7.9) by exp[—iqx]/L 
and integrating from 0 to L. It is easy to verify that 

-t 
L Jo 

dx ei(q'-q)x = A I Γ dxe^'+K-^X = ôn/ Jq,q' ; LJo 'Jq',q-K-

Therefore 
2^2 hzq 
2m 

■i,{q) + Y^5q,^K^{q')UK = ^{q). 
q'K 

(7.10) 

(7.11) 
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=>(E°q-E)tp(q) + J2 Φ(α~Κ) UK = 0 . ε» is defined in Eq. (6.8). ( 7 . 1 2 ) 
K 

Equation (7.12) is a restatement of Schrödinger's equation in Fourier space and 
it has a remarkable property. Each solution as a function of q is zero except at a 
discrete and evenly spaced set of q values, like a comb. Here is why. 

Suppose one has a solution. There must be at least one k = lirm/L for which 
ip(k) is not equal to zero. The equation for ip(k) involves ip(k — K) for all K of the 
form 2-rrl/a. Pick any of these wave function components, say xp(k — K'), and ask 
what Eq. (7.12) implies. It says 

(E°k_K,-E)t(k-K') + J2i;(k~Kl-K)UK = 0 (7.13) 
K 

^ (££_*-, ~E)ïp(k-K')+y 1p{k-K) UK_K<=0. Send * - K -AT'as (7.14) 
~^ the sum index. 

K 
Equation (7.14) is a different equation from Eq. (7.12) with different coefficients, 
but it involves exactly the same discrete set of wave function components: compo-
nents of the form ip(k-K) where K = 2πΙ/α is in the reciprocal lattice. Therefore, 
Eq. (7.12) can be viewed as a collection of algebraic equations for this set of wave 
function components, and all other components can be zero. This structure of the 
matrix Hamiltonian is illustrated in Table 7.1. 

So solutions of Eq. (7.12) have the form 
γ-Λ The UK are constants. The independent variable is q, and 

1p{q) — / Oq^^K U/(. k is some value of q for which ip(q) is not zero. Do not ( 7 . 1 5 ) 
„ worry about signs of the index K, since both K and —K 

are in the reciprocal lattice. 

Block's Theorem. Transform Eq. (7.15) back into real space by inserting it into 
Eq. (7.7) to find 

^ w = 4 τ Σ < W + * u«eiq'x=-7f Σ «* e'{h+K)x <7·16) 
VL q,K VL K 
eikxu(x) 1 => ψ(χ) = -±-L where u(x) Ξ — V uK e'Kx. N = L/a is the (7.17) 

y yV \Ja ^f number of unit cells. 

Equation (7.17) is Bloch's theorem. It says that when a single particle moves in 
a periodic potential the solutions are products of two pieces (Figure 7.2). The 
first piece is just the plane wave elkx the particle would adopt in an empty box 
(Eq. (6.7)). The second piece is a periodic function u{x) with the same period 
as the potential U{x). Since u(x) is built entirely from plane waves of the form 
exp[/ÄJt], it must be periodic with period a. 

To capture all solutions of Eq. (7.12) the notation must be generalized. To 
index all solutions φ, one begins by specifying some Fourier component k for 
which the solution is not zero. It is customary to affix the index both to ψ(χ) and 
u(x), denoting by ι/^(*) a solution such that 

φκ(χ) = e^^^1pk(x + a) = Mx)e,ka. (7.18) 
yv 
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Table 7.1. The structure of Bloch's Hamiltonian in reciprocal space 

/ / 
UK2 

UK_ 

-υ«, 
v« 

UK2-M 
\ \ 

( 

£L_,+^o/ 
(£-1+UK0 UK_, 

UK, ε°. '*ι+«Ί + UK0 

\ I 

Φ{Κι) 
ψ(Κ2) 

\ 

■Φ{κΜ-Λ 

Ψ(*ι+*ι) 

V / 
This matrix contains blocks that link together wave function components ip(km + Ki) for 
a given m, where km = 2wm/L and K/ = 2πΙ/α. There are no matrix elements connecting 
■ip(q) 's when the q's do not differ by reciprocal lattice vectors. The dimension of each block 
is M, the number of reciprocal lattice vectors retained in the calculation, while the total 
number of blocks is equal to the total number of unit cells, N = L/a. 

The Fourier component k is called the wave number and Hk is called the crystal 
momentum. 

Selecting k does not specify a single unique solution V^(*)· As shown in Table 
7.1, choosing k means selecting one of the blocks that links together wave func-
tions φ with Fourier components of the form q = k+K. The block matrix as shown 
is of dimension M, and has M eigenvectors. Each of these eigenvectors is a wave 
function ψ with crystal momentum k. Cataloging these solutions can be done with 
an additional index n called the band index. Actually, M is only finite if the po-
tential U(x) can be constructed from a finite number M of Fourier terms; since in 
general the number of Fourier terms needed for U is infinite, M —> oo. 

Choosing k specifies a set of Fourier components q = k + K from which the 
wave function ψ^ will be constructed. Choosing k + K' picks out exactly the same 
set. From this point of view, two wave numbers k are physically distinct only if 
they do not differ by any reciprocal lattice vector K. This means that indices k 
should be chosen from 

2nm π π, 
— whence [ - - , - ] Taking k in the interval [0, 2π/α] would do (7.19) 

just as well. 

This collection of k — 2irm/L, m e [—N/2, N/2 — 1] is called the first Brìllouin 
zone, and will be defined in greater generality in Section 7.2.4. 

Thus a complete set of solutions to Eq. (7.12) is 

^nk(x) 
elkxunk{x) 

VN 
with band energy £„&. (7.20) 
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where k lies in the first Brillouin zone, and the band index runs from 0 to oo. 
The significance of band energies £„* in explaining the behavior of solids can-

not easily be overstated. They contain information on whether a solid is a metal, 
semiconductor, or insulator. Their slopes give electron velocities, and therefore 
they predict electrical transport properties. Details of their shapes can be used to 
calculate minimum energy crystal structures, and even magnetic properties. Sev-
eral of the following chapters will be devoted to learning how they can be calculated 
and to examining their consequences. 

Since there is still an infinite number of unknown solutions, of what use is 
Bloch's theorem? Finding that solutions are of the form shown in Eq. (7.20) re-
duces the computational cost of solving Eq. (7.12) by a factor of N, where N is 
the number of unit cells in the crystal. In short, the computational time has been 
reduced by about a factor of 1023. By solving a problem in a single unit cell one ob-
tains a solution that applies to a crystal of arbitrary size. Bloch's theorem provides 
a scaling theory relating microscopic computations to macroscopic phenomena. 

7.2.2 Bloch's Theorem in Three Dimensions 

Extending Bloch's theorem to three dimensions involves no substantially new ideas, 
but the notation becomes a little more involved than in one dimension. Gener-
alize to a box of volume V = L3 in which the wave function φ{?) is periodic: 
ip(x + L, y, z) = ψ(χ, y, z), and the same holds for the y and z components. Thus, 
choosing q as in Eq. (6.7), 

^ = - i Σ ^)erqrr. (7.21) 
q 

The three-dimensional periodic potential U(r) described in Eq. (7.1) is com-
posed entirely of Fourier components exp[iK ■ R], where K are reciprocal lattice 
vectors (Section 3.2.5) of the Bravais lattice R. This claim is easily proved, since if 
a Fourier component is unchanged after translation by a Bravais lattice vector, then 

β =e . A function can only be periodic over S if each (J .11) 
of its Fourier coefficients is periodic in the 
same fashion. 

But Eq. (7.22) is nothing other than the condition in Eq. (3.17) for a wave vector 
k = K to belong to the reciprocal lattice. So 

i/(r) = Ç ^ ? i / £ . (7.23) 
K 

A more formal demonstration of the same fact is obtained by taking the Fourier 
transform of U(r), explicitly: 

ί df e-^7U{r) = Σ L d7 e-^äU{r + R)e-^7 Use U(7+R) = u{7). (7.24) 
^ cell 

= Ω5>-'*%?, (7.25) 
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where Ω is the volume of the unit cell, and 
Γ df —- As a subscript on the integral Ω means that 

£/- = / — e ~ l q r U(r). the integral is over a unit cell. Substituting ( 7 . 2 6 ) 
K for q gives a specific prescription for U^ if 
U{r) is known. 

The sum over Bravais lattice vectors appearing in Eq. (7.25) obeys the conve-
nient identity, derived as Eq. (A.29) in Appendix A, 

R it K 

Therefore, applying an inverse Fourier transformation to Eq. (7.27) gives 

vw = \ Σ ̂  ν Σ δ0υκ = Σ **-%■ (7·28) 
Ά k k 

Given the forms (7.28) and (7.21) for wave function and potential, one can 
write Schrödinger's equation in Fourier space. Acting upon ψ with 'K — £, using 
the Hamiltonian of Eq. (7.2) gives 

0 = - Σ [εψ - £ + U(rj\ Ψ$)^''Τ Recall that E\, = H2q'2/2m. (7.29) 

= k Σ [(£?' - ̂ ql'7 + Σ ^ + ? , ) · ^ ] V>tf) (7.30) 

^°=E/f[(4-£)^'^ ) ' '+E^+9 '"?)^]v'(? /) (7.31) 
Ά1 k 

= Σ [(4 - ε)<%' + Σ h-k«>Uk] 1>&) (7-32) 

=Φ (ε0
ξ-ε)ψ{ξ) + ΣυζΦ(3-Κ) = 0. (7.33) 

Equation (7.33) generalizes Eq. (7.12) to three dimensions. It has similar implica-
tions. Suppose that ψ(£) is nonzero. Then all the components of ip(q) involved in 
Eq. (7.33) are of the form <φ(ί + K), where K is in the reciprocal lattice, and 

lb (a) = N S-- - Up. The coefficients «^ are again constants ( 7 . 3 4 ) 

k 

Thus similar to Eq. (7.17) 

e M- ( r ) N = V/Q equals the number of points in the 
ib-('r) = lattice and is convenient to introduce to nor- in 'X'>s\ 
^Ί<\ ' /Tj malize uj(r) within each unit cell. 

where u^(r + R) = u^(r) is a periodic function on the Bravais lattice. Mirroring 
the one-dimensional case, there is an infinite number of solutions i/j^(r) for each 
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k. Now k is called the Bloch wave vector, and hk is again called the crystal mo-
mentum. The many solutions for each k are again distinguished by the band index 
n, which also decorates φ as in 

- - u ^(r)eik'(7+Ri 
VV^+tf) = VV^V*·* = -JÈ^ · (7-36) 

Saying that -φ^ solves Schrödinger's equation means that it solves the eigen-
value equation (7.33), and the corresponding band energy is denoted £^. 

It is also valuable to restate Eq. (7.33) in terms of Dirac notation; it is 

Λ = Σ \q')£%{q'\ + £ tf)Ufrtf -K'\. Compute <$|Α-ε|ψ> ( 7 . 3 7 ) 
-, _ , - , to regain Eq. (7.33). 
q' qK, 6 H 

7.2.3 Formal Demonstration of Bloch's Theorem 

Since Bloch's theorem follows from symmetry of the potential U, there must be 
some way to derive it that focuses on symmetry and does not require grinding 
through long computations. Indeed there is, but the derivation is fairly abstract. 
Recall that the operator generating a translation through a vector R is 

f- — g - ' ^ / ' i See, forexample, Landau and Lifshitz (1977), (7 3 8 ) 
R ' p. 45. 

where P is the momentum operator and R a Bravais lattice vector. Since the com-
ponents of momentum commute, all of these operators, for allowed values of R, 
commute with one another and with the Hamiltonian (7.2) (shown in Problem 2). 

Therefore [Landau and Lifshitz (1977), pp. 14 and 34; Schiff (1968), p. 154] 
all of these operators and the Hamiltonian can be diagonalised simultaneously. 
Any eigenvector of the Hamiltonian can be taken as an eigenfunction of all the 
translation operators as well: 

Τΐ\ψ) = elP'Rln \tp) = Cs I ψ) ■ H e r e CR i s a constant that is yet to be determined. ( 7 . 3 9 ) 

Operating with the bra vector (r\ (eigenfunction of position) on Eq. (7.39) gives 

1p(? + R) = Cfi1p(r). Because φ{7) = (r\ip) and {r\f! = (r + R\. (7.40) 

On the other hand, operating with the bra vector (k\ (eigenfunction of momentum) 
on Eq. (7.39) gives 

€&*(ϊ\ψ)=εη(Ϊ\ψ) (7.41) 

=*► either Cn = eilâ or (k\ip) = 0. (7.42) 

Therefore, \φ) can have nonzero overlap with only a single (k\, and that value of k 
is used as an index to label the eigenfunction ψ^. 
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Since for a given value of k, there is still the possibility of many energy eigen-
values, one must introduce the band index n. The classification of eigenfunctions 
made possible by periodicity is completed by writing 

n^nÙ = ε Λ > (7.43a) 
fÎ\ï[) - ) = eik'^\lp y). Combine Eqs. (7.39) and (7.42). In the posi- ( 7 . 4 3 b ) 

R "* "*■ tion representation, this reproduces Eq. (7.36). 

From Eq. (7.43b) the previous forms of Bloch's theorem can be obtained. Acting 
with (7\ gives 

Ψώ?+κ) = <Ρ'ηΨώ?)· (7·44) 
One can also proceed to define 

U y (7) ΞΞ \JN e~~ ih y (7). When ψ is normalized over the volume ( 7 . 4 5 ) 
™ ™ V, u is normalized over the unit cell Ω. 

It follows from Eq. (7.44) that u is periodic; 

u(7 + R) = u(7). For all R in the Bravais lattice. ( 7 . 4 6 ) 

7.2.4 Additional Implications of Bloch's Theorem 

Effective Hamiltonian. By virtue of Bloch's theorem, the original Hamilto-
nian, (7.2), can be transformed into an effective Hamiltonian whose solution no 
longer needs to be sought over the whole crystal. This Hamiltonian is easily found 
by searching for the equation to be obeyed by u. Writing ψ in terms of u from 
Eq. (7.45) and writing out (Ä - Ε)ψ = 0 yields 

h2 - -
5kw(r) = — [ -V 2 -2 i* · V + k2}u(7) + U(7)u(r) = Eu(r). (7.47) K 2m 

Because u is periodic, this equation can be restricted to a single unit cell, subject to 
the boundary conditions that whenever 7 lies on one boundary of the unit cell, and 
7 +Ris another boundary point of the cell, then 

u(7) = u(7 + R) R is a Bravais lattice vector. ( 7 . 4 8 a ) 

and 
h(7)-Vu(7) = -h(7 + R)-'S7u(7+R). n(f) is a unit normal to the cell ( 7 . 4 8 b ) 

boundary at 7. 

Using the relation (7.45) between u and ψ, one can equally well write down Schrö-
dinger's equation, and solve it in a single unit cell, subject to the boundary condi-
tions 

eiM^k(7) = fi(7+R) (7.49a) 
and 

eiUn{7) ■ V ^ ( r ) = -n{7+R)-V^l{7 + R). (7.49b) 
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In a crystal with IO23 atoms, Eq. (7.47) requires 1023 times less numerical effort to 
solve than Eq. (7.2). 
Counting k. The demonstrations of Bloch's theorem relied on periodic boundary 
conditions. As a consequence, as discussed in Section 6.3, there are restrictions 
on the permitted values of the Bloch wave vector k. In a cubic crystal of volume 
V = L?,k takes the form given in (6.7), just as for free electrons. The density of 
allowed k states is therefore still given by Eq. (6.13). 

These results can all be generalized to crystals that are not cubic. Consider any 
lattice described by three primitive vectors a\, 02, and 03 as in Eq. (A. 17). The 
vectors k consistent with periodic boundary conditions are of the form 

3 
](_ = \ Jy, 0 < mi < Ml Ml g'v e s the total number of lattice points along ( 7 . 5 0 ) 

*--' Mi ' — ' direction /; the total number of lattice points is 
'=1 MtM2M}. 

where b\ . . . ^3 are primitive vectors of the reciprocal lattice and are chosen to 
satisfy 

bi -aii = 2πδ[ΐι. (7.51) 

The primitive vectors b\ . . . £3 describe the boundaries of a primitive cell in 
reciprocal space, and the k of (7.50) form a fine network of vectors filling this prim-
itive cell. It is possible to adopt a convention where k takes values outside of this 
cell, allowing the integers ni\ to continue on to values greater than M\. However, 
the resulting k will be redundant, in the sense that they must differ from some k 
within the primitive cell by a reciprocal lattice vector. Any two k that differ pre-
cisely by a reciprocal lattice vector K share the eigenvalue e\p[ik-R] in Eq. (7.43b), 
since exp[/^ R} = 1 · Because k is nothing but a label for this eigenvalue, two such 
k can be regarded as physically identical. 

According to Eq. (7.50), the total number of k states in a primitive cell in k 
space is M1M2M3, which is also the number of lattice points N in the original real 
space lattice. So one has the convenient and general result that the 

Number of physically distinct 
Bloch wave vectors k = Number of lattice sites, N. 

Brillouin Zone. The primitive cell in k space spanned by arbitrary primitive 
vectors t>\ . . . b^ is not convenient to use, because it is not uniquely specified, 
nor does it have the full symmetry of the crystal. A primitive cell that overcomes 
these defects is the Wigner-Seitz cell of the origin in reciprocal space. As in the 
one-dimensional case, it is called the Brillouin zone, or first Brillouin zone. Sums 
such as in Eq. (7.57) over k or q are always carried out over the net of vectors in 
Eq. (7.50) filling the first Brillouin zone. However, any sum over K is carried out 
over a very different set, the reciprocal lattice vectors given by Eq. (3.24d). 
Density of States. As in the case of free electrons, it is useful to be able to convert 
sums over k into integrals. To carry out a calculation analogous to Eq. (6.10), one 
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needs to know the volume of reciprocal space associated with each point k. From 
Eq. (7.50), this volume is 

b\ ■ (b2 x £3) The volume of any paralleliped whose ( 7 . 5 3 ) 
M1M2M3 edges are given by three vectors A, B, 

C is A-(BxC). 

2-7Γ b\ ■ (p2 x (a\ x aj)) 
ατ, ■ (a i x Ü2) M1M2M3 

( 2 π ) 3 

Use Eq. (3.24c). (7.54) 

Using the identity ( 7 . 5 5 ) 
M1M2M3Ö1 - ( 2 2 X 0 3 ) Âx(BxC)=B(Â-C)-C(Â-B) 

(2π)3 

V is given by the number of lattice points. 
Mi A/2M3, times the volume of each 

Because the total volume of the crystal ( 7 . 5 6 ) 
is given by the ' "-«■ ------
M1A/2AÎ3, timi 
primitive cell. 

Therefore any sum that needs to be carried out over the states k in the first 
Brillouin zone can use the relation 

Σ ^ = ν j[dk]Fh (7.57) 
la 

using the density of states in Eq. (6.15) just as for free electrons. The density of 
energy states in the nth band is similarly given by 

D „ ( £ ) = f[dk]8{E-Eni). Compare with Eq. (6.19). ( 7 . 5 8 ) 

Energy Bands and Group Velocity. One of the most important pieces of physical 
information to be obtained from the energy functions £n£ is the velocity υ^ of 
electrons in the rath band with wave number k: 

T» _V7^P ^ Vj means that one takes derivatives with respect /η c q \ 
nk 7j k nk to components of X. 

Without embarking on the careful but lengthy justification of this relation to be 
provided in Chapter 16, one can note that Eq. (7.59) is nothing but the statement 
that solutions of wave equations generally have a group velocity v = θω/dk. In 
the context of wave mechanics, a particle is actually a wave packet, which is a 
sum over wave functions that is contrived so as to have a large peak at position r, 
and simultaneously a dominant wave vector k. The flavor of calculations for wave 
packets is easiest to share if one imagines solutions of Schrödinger's equation with 
energy £^ and for which u^(r) varies only very weakly in space. Then define 

/

Here φ is a Bloch wave, and w 
[di'] w(k' - k) e-^'^th, (?), is a f i m c t i 2 n sharply peaked (7.60) 

K about k — k! = 0; thus W is 
mainly built out of waves with 
wave vector k. 
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njk-r-iw* j{sr] wÇk") / M - v i £ i , / ^ w ; ; ( ? ) j » ^ x (761) 
J exponent to first order in k", 

because w is peaked about 
jfc" = 0. 

^ fk-7-iE-kt/Hcr(-;_f] e , / t \ Assuming the spatial variation of u~k(r) can be ne- ,_ „ . 
~ e Jy VkGkl'n> glected. The value of the integral 5" does not mat- \'·ΌΔ> 

ter; just the fact that it is in the form of a traveling 
wave moving at v^ = Vj£j//i = Vju^. 

7.2.5 Van Hove Singularities 

In the course of computing the energy densities of states defined by Eq. (7.58), it 
is common to encounter divergences called van Hove singularities. 

In one dimension, suppressing the index n on fir. gives 

D(£) = ί dk (2/2π)ί (£ - £*) (7.63) 

= — / § (£, — £ t ) An additional factor of two comes generally (7 6 4 ) 
nj \d£k/dk\ V ' from the fact that £* = £_*. 

2 1 

When explicit solutions of Bloch's equation are found, as in Figure 7.7, it will 
emerge that £„& is a periodic function of k and that dZnkjdk vanishes at the edge of 
the Brillouin zone. As a result, the density of states must diverge there. Assuming 
that dE,nk/dk vanishes linearly as k approaches π/α, the divergence is of the form 

D(E) -. . Taking (7.66) 
k-π/α V £ m a x - £ 2 * ~ e m a x - C ( * - 7 r / a ) 2 , w i t h 

C some constant near the zone 
edge. 

The only way for dE/dk to vanish in one dimension is at a maximum or a mini-
mum. Therefore, van Hove singularities in one dimension tend to occur only at the 
beginning or the end of a range of allowed energies. In two and three dimensions, 
van Hove singularities typically occur in the midst of energy intervals as well—as 
for example in Figures 13.9 or 18.4. The generalization of Eq. (7.65) is 

Γ - 2 
D(E) = I dk δ(Ε — £ r ) . Thenumberof dimensions d might be 2 or 3. ( 7 . 6 7 ) 

Integrals in the form of Eq. (7.67) can also be expressed as integrals over the en-
ergy surface on which δ = £^. To obtain the correct expression, begin with the 
observation that 

0 ( £ - £ j ) - 0 ( £ - £ 2 - £ / £ ) 
'nV ~ d~Ë 

δ(Ε — ε vi = — — FordE very small. 
V nk > J O 

(7.68) 
As shown in Figure 7.3, Eq. (7.67) is therefore given by 

integrating over the energy surface £ = £ r with surface measure άΣ,, 
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• multiplying by the normal distance to the surface £ = £ ^ + dE, and 

• dividing by dE. 

What is the normal distance between the two surfaces? First, note (Problem 1 ) that 

Vt£r 
" = ΚΓΤΜ ( 7 · 6 9 ) 

is a unit normal between the two surfaces. Next, let dk be any k vector such that 
^l+dk = £% + dE. The normal distance between the surfaces is therefore dk ■ h. But 

£-l+dl = £-l + dk- V ^ ^ Taylor expansion. ( 7 . 7 0 ) 

=>dk-'ViEi = d£. (7.71) 

dl 
^dk-ri = —— (7.72) 

ΙνΐολΙ 

Figure 7.3. Two energy surfaces are separated by distance d£, with a vector dk running 
from one to the other, the normal direction between the surfaces given by V^£. 

Therefore, denoting by άΣ an integral over the energy surface, Eq. (7.67) can 
be rewritten as 

2 f dE 
D(ß) = / The integral is a (d — 1 ) dimensional integral (7 7 3 ) 

in fc-space carried out over the energy surface 

Comparing with Eq. (7.59), this means that the density of states has a singularity 
at points in reciprocal space where the electron velocity υ^ vanishes. The origin 
of this singularity, in a one-dimensional context, is illustrated in Figure 7.4(A). 
In addition to the maxima and minima of the energy function, there can also be 
singularities at saddle points, [Figure 7.4(B)] which are at a maximum along some 
direction but a minimum along another. 

In two and three dimensions, van Hove singularities behave as 

D(E) ~ In | £ / £ n — 1 | o r $ ( i £ ) In two dimensions; the first expression at sad-(7.74) 
die, second at maximum or minimum. 

VE for £ > 0, 0 else, 
D(£)~< Of In three dimensions, at maximum or mini-(7.75) 

— mum. At saddle, have square roots meeting 
-c for t < 0, 0 else, in cusp. 
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Figure 7.4. (A) If the states that contribute to some process are those that lie between £ 
and E+dE, then the number of states becomes singular when E coincides with an extremal 
point on the energy surface. Compare with Figure 16.11. (B) A saddle point. 

These claims are verified in Problem 3. 
The van Hove singularities manifest themselves in a variety of physical con-

texts. They appear in calculations of electronic densities of states, shown through-
out Section 10.4, in calculations of density of vibrational states as shown in Section 
13.3.1, and are measured to a limited extent in experiments involving optical ab-
sorption, as shown in Section 23.4. 

Uniqueness of Label k. It may appear that one now has many more wave functions 
than one had in the case of free electrons. All states of free electrons can be labeled 
by the index k. For electrons in a periodic potential, one has an additional index n 
as well. In fact, the number of eigenstates has not multiplied; the apparent difficulty 
is caused by a certain arbitrariness in how to label states. 

Given any k, one can find a set of wave functions 

with differing energy eigenvalues, but with the same eigenvalues exp[ik-R] when 
acted upon by 7"J. Choosing K in the reciprocal lattice, consider now the eigenval-
ues of ψη £ £. Because 

ei{UKyR = eik-R^ ( 7 J 7 ) 

it follows that 
φ j i n = ^ , 7 . For some integer n' φη, since ψ^ are defined ( 7 . 7 8 ) 

n,k+K n ,k tQ ^e a | j t n e w a Vg functions with translational 
eigenvalue exp[ik ■ R\. 

There now are two possible ways to ensure that the set of all φ ^ will be a com-
plete and linearly independent set of wave functions. The first, called the reduced 
zone scheme is to limit the collection of k vectors. In this convention, k is permitted 
only if it belongs to the first Brillouin zone. Choosing k's in this way guarantees 
that no two of them can satisfy k = k'+ K. 

The second way to avoid overcounting states is to drop the index n but allow k 
to range through all of reciprocal space; this is the extended zone scheme. A state 
that was labeled φ^ in the reduced zone scheme will be labeled Φι+^ (for some 
reciprocal lattice vector K„) in the extended zone scheme. 



Translational Symmetry—Bloch 's Theorem 189 

Example: Free Electron. One can choose to regard a free electron as periodic 
over any lattice desired. This gives great freedom in indexing the states. Moving 
to the one-dimensional case for the purpose of illustration, suppose one uses the 
fact that a free electron Hamiltonian is periodic subject to translations through R. 
Bloch's theorem says in this case to index the wave function in the form 

lhnL· = e e' n One can regard n either as the band index, ( 7 . 7 9 ) 
or as describing the multiple of the recipro-
cal lattice vector K to add to k. 

where K is a primitive vector of the reciprocal lattice, and —K/2 < k < K/2 is the 
first Brillouin zone. In the reduced zone scheme, the name of the wave function in 
Eq. (7.79) is ψ^, with n a band index. In the extended zone scheme, the wave func-
tion is instead named φ^, with k' = k + nK. These two ways of viewing Eq. (7.79) 
are drawn in in Figure 7.5, together with a third convention, called the repeated 
zone scheme, which shows what would happen if both k and n were allowed to 
range freely over all possible values. 

Summary. To recapitulate, first index solutions of Schrödinger's equation by a 
vector k that lies in the first Brillouin zone. For every value of k there is a count-
ably infinite number of energy bands, which can be labeled by band index n (re-
duced zone scheme) or by adding reciprocal lattice vectors Kn to k (extended zone 
scheme). Allowing k to range over all reciprocal space and also retaining the band 
index n duplicates each eigenstate infinitely often (repeated zone scheme). 

7.2.6 Kronig-Penney Model 

Kronig and Penney ( 1931 ) found an exactly soluble model that illustrates the nature 
of energy bands. Suppose that in each unit cell of a one-dimensional lattice with 
lattice points R = na and reciprocal lattice vectors K, there is a potential of the 
form 

UoaÔ(x), a i s t h e l a t t i c e spacing. ( 7 . 8 0 ) 

where i/o has dimensions of energy. Then UK as defined in Eq. (7.26) is simply 

UK = U0, (7.81) 

and Eq. (7.33) becomes 

0 = (ε°-ε)φ(ς) + ΣνοΨ(ς-Κ). (7.82) 
K 

Define 

Ö, = £>(<?- * ) · (7-83) 
K 

Then Eq. (7.82) becomes 
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3π/α 

3π/α 

Figure 7.5. Three indexing schemes for labeling k states are illustrated by plotting £5 
for the free electron. The first Brillouin zone is taken to extend from — π/α to π/α. The 
extended zone scheme allows k to range throughout all reciprocal space. In the repeated 
zone scheme, one plots £j, £ j + ^ , £^_^ · · ·· Finally, in the reduced zone scheme, all 
wave vectors are mapped into the first Brillouin zone, so that energy levels originating 
from k + nK are now regarded as belonging to an nth band. The extended zone scheme 
is the most natural way to plot free electron energy levels; however, in the presence of a 
periodic potential, E-k is discontinuous in the extended zone scheme and is continuous in 
the reduced zone scheme. 

#?) + girrgßi = 0· 

Note from its definition (7.83) that 

for all reciprocal lattice vectors K. So 

i/o 

Qq = Qq-K 

1p(k-K) + -g Qk-K = 0 J u s t evaluate Eq. (7.84) alq = k-K. 

Σ k(k-K)+ i/o 

^k-K £ 
Qk z= 0 Sum on K and use Eq. (7.85). 

β*+Σ 
i/o 

PO _ c 
K ^k-K ° 

Qk = 0. Definition Eq. (7.83). 

(7.84) 

(7.85) 

(7.86) 

(7.87) 

(7.88) 
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Figure 7.6. In order to solve Eq. (7.89), choose a value of k and then find when the sum 
S*(£) = Σκ l/(£*-if ~~ £) equals — 1/f/o by varying £. The sums are carried out for a 
chain of spacing a. In the upper portion of the figure, £ lies along the vertical axis, and 
5jt(£) is plotted on the horizontal axis for k = 0.2ΛΌ, where Ko = 2π/α. In the lower portion 
of the figure, this procedure is carried out for 10 consecutive values of k. For each plot of 
Sk(£), one checks to see where Sk equals —I/UQ, shown as a vertical line. The intersection 
point is a solution of Eq. (7.89), and the collection of intersection points gives £^. By 
varying UQ, one varies the shapes of the bands £/;. When UQ is small, they are free-electron 
like, while when i/o is large they are very nearly fiat. 

Assuming that Qk does not vanish, one has finally that 

-— = Y-ΊΑ =S t(£). (7.89) 

Equation (7.89) is easy to solve numerically. The method is illustrated graphically 
in Figure 7.6. 

Energy levels for the periodic array of delta-function potentials appear in Fig-
ure 7.7. This figure should be compared with Figure 7.5. The effects of the po-
tential are especially strong at the edges of the first Brillouin zone. It is crucial to 
note that £& is now discontinuous in the extended zone scheme but continuous in 
the repeated and reduced zone schemes. The origin of the gaps between the energy 
levels will be the subject of Section 8.2. 

The motivation for creating the repeated and reduced zone schemes should 
now be evident. These index energy states so that energy levels remain continuous 
functions of k in the presence of a periodic potential. The band energy £„£ is a 
continuous, periodic function of k. 
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Extended Zone 

Repeated Zone 

-3π/α -π/α k π/α 
Reduced Zone 

3π/α 

Figure 7.7. Bands resulting from Eq. (7.89) with U0 = -l0h2K$/(2m) and for a one-
dimensional lattice of lattice constant a, shown in the reduced, repeated, and extended 
zone schemes. The calculation sketched in Figure 7.6 produces the bands in the reduced 
zone scheme directly; by translating these bands through various multiples of the reciprocal 
lattice vector KQ = 2π/α, the upper two plots can be produced. 

7.3 Rotational Symmetry—Group Representations 

Consider a lattice with a collection of point group operations {G} leaving it invari-
ant. All the possible operations are represented by 3 x 3 unitary matrices and have 
been listed in Table 2.10; rotations through 60°, 90°, or 120°as well as reflections. 
The stereograms of Table 2.9 allow one to read off the sets of symmetry operations 
that correspond to the 32 point groups. 

The theory of group representations describes the consequences of these sym-
metries for solutions of Schrödinger's equation. These consequences are not as 
dramatic or important as those that follow from translational freedom, as reflected 
in Bloch's theorem. Bloch's theorem takes a problem involving 1023 atoms and 
reduces it to a problem involving only one or two. By comparison, the simplifi-
cations provided by rotational symmetries may only reduce computational effort 
by a factor of something like 3 or 24. The significance of group representations 
lies elsewhere. By carefully describing the possible symmetries of electron states, 
one can obtain selection rules that predict when light or other external agents are 
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Figure 7.8. First Brillouin zone of the fee lattice, with conventional notation for points of 
special symmetry. The reciprocal lattice of fee is bec, with lattice spacing of 4π/α, so this 
polyhedron is the same as in Figure 2.3(B). In units of 2π/α, Γ = (0 0 0), X = (0 1 0), 
L = ( l /2 1/2 1/2), W = (1/2 1 0), AT = (3/4 3/4 0), and t / = (1/4 1 1/4). 

capable of inducing transitions from one electron state to another. Predicting the 
strength of an allowed transition requires lengthy, detailed, and often question-
able calculation. By contrast, distinguishing between allowed and forbidden tran-
sitions depends upon knowledge of symmetry alone. For this reason, the notation 
of group representations decorates experimental diagrams in numerous branches 
of condensed matter physics, particularly those involving optical absorption. 

Figures 7.8 to 7.10 show the Brillouin zones of the fee, bec, and hexagonal lat-
tices, annotated with points of special symmetry. For many purposes, it is enough 
to refer back to these figures as a reference for the conventional notation, without 
knowing the theory of symmetry that accompanies them. The theory is developed 
at some length, from various points of view, by Bradley and Cracknell (1972), 
Koster (1957), Lyubarskii (1960), Murnaghan (1938), or Tinkham (1964). 

Group Operations. To develop the theory, suppose one has any set of symmetry 
operations (matrices) {G} that form a group. The definition of a group demands 
that the collection {G} satisfy three requirements. 

1. The group must contain the unit matrix, which in this subject is traditionally 
denoted by E. 

2. The product of any two matrices G\ and Gj in the group must be another 
matrix G3 in the group. 
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Figure 7.9. First Brillouin zone of the bcc lattice, with conventional notation for points of 
special symmetry. The reciprocal lattice of bcc is fee, with lattice spacing of Απ/α, so this 
polyhedron is the same as in Figure 2.2(B). In units of 2π/α, Γ = (0 0 0), H = (0 1 0), 
N = (1/2 1/2 0), and P= (1/2 1/2 1/2). 

Figure 7.10. First Brillouin zone of the hexagonal lattice, with conventional notation for 
points of special symmetry. Using coordinates b\ = Απ/α\/3 (\/3/2 — 1/2 0), t>2 = 
Απ/aVÏ (λ/3/2 1/2 0) and 2TT/C (0 0 1) ; Γ = (0 0 0), A = (0 0 1/2), M = (1/2 0 0), 
K=(l/3 1/3 0 ) , / / = (1/3 1/3 1/2), andL= (1/2 0 1/2). 
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3. The inverse of every matrix in the group must also belong to the group. 

To obtain a representation of the group {G}, pick some function ipj(r), which 
in practice might be a wave function. Next, create all the functions ipj(Gr); that 
is, take W> ana" rotate and reflect it using all the symmetry operations in {G}. 
Actually, ipj{Gr) rotates ipj through G~\ not G, but because G_1 is also in the 
group, it does not matter. Even if the number of matrices in the group, its order, is 
h, the number / of linearly independent functions ip(r) generated in this way will 
generally be less than or equal to h. For each element G in the group, one must 
have 

^i{Gr) = YjA{G)ij^j{r). (7.90) 
j 

In this fashion, one obtains a matrix A(G) corresponding to each symmetry oper-
ation G; the set of matrices {A} is called a representation of the original group of 
symmetry operations. The dimensions of the matrices A generally are quite dif-
ferent from the dimensions of the original matrices G, because the dimension of 
A is determined by the number of linearly independent V>'s one happens to obtain 
by applying rotations and reflections G to ipj, while all G's are three-dimensional. 
Lyubarskii (1960), p. 44, shows that the matrices A can all be taken to be unitary, 
so one can assume 

/\* =z A a s Well a s G* = G This is just the definition of a unitary matrix. (7.91) 

in everything that follows. 
Two group representations {AM} and {A(m)} are equivalent if there exists a 

single invertible matrix M such that 

M'iA(n){G)M = A(m\G) This relation has to hold with a single M for 
all the different matrices A(G) produced by 
varying G. 

(7.92) 

which means that one obtains {A(n)} from {A(m)} just by changing coordinate sys-
tems. By making a good choice of M, one will often be able to simplify the matrices 
[A] substantially, by bringing all of them into the form 

/ an aw 

ain . . . aw 
>11 

bi"\ 

\ 

b\i' 

bi"i" Ì 

l' and /" need not be the same, and there 
could be more than two independent blocks. 

(7.93) 
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The reason that putting all matrices {A} into form (7.93) provides such an advan-
tage is that it means that the wave functions ipj break into two subsets, one contain-
ing /' wave functions, the other containing /" wave functions, each of which trans-
forms exclusively into itself. The original I — I' + /"-dimensional representation 
has been simplified into an /'-dimensional representation and an /"-dimensional 
representation, and the original representation is called reducible. If, on the other 
hand, no M exists which can put all matrices into the form (7.93) simultaneously, 
the representation is called irreducible. 

Faced with 24 ten-dimensional matrices, the task of finding whether there ex-
ists some M to bring them into block diagonal form seems rather daunting. The 
whole question can, however, be settled by diagonalizing a single ten-dimensional 
matrix. Begin with an absolutely arbitrary matrix X, let {A(m)} and {A(n)} be any 
two representations of {G} both of dimension /, and form 

M = ^ A ( m ) ( G ) X A w ( G * ) . (7.94) 
G 

Then 

A{m){G)M = Y^A(m){G)A{m\G')XA{n){G'*) 
G' 

=Σ A(m)(GG>)χ A(n)(G'*)SeeProblem6 
G' 

E A(m)(G') X A(a)(G'*G) Change order of summation by v ' v ' sending G ' ^ C G ' 
G' 

= Σ A(m)(G0 x A(n) (G'*)A(n)(G) = MAW (G). 
G' 

Comparing with Eq. (7.92), at first it appears that all representations have been 
proved to be equivalent. However, A(m) andA(n) are only equivalent if M has an in-
verse. One can use M to best advantage by remarking that M* also obeys Eq. (7.98), 
and therefore so does M + M* = P, which is Hermitian. So now one has a Hermi-
tian matrix P with 

Aw(G)/5 = PA(m)(G). (7.99) 

Because P is Hermitian, it can be diagonalized and has an orthonormal basis of real 
eigenvalues. Express all the matrices A{m)(G), A{n)(G), and P in this basis. One is 
now in a position to decompose any given representation into irreducible pieces 
and to show that different irreducible representations are orthogonal. 

To accomplish the first task, let n = m be the same, and drop this superscript 
for the moment. In the basis where P is diagonal, one has for the ij element of 
Eq. (7.99) 

A(G)ijPjj = PiiA(G)ij => (Pii-Pjj)A(G)ij = 0 (7.100) 

So there are two possibilities. Either P,·,· = Pjj, or else A(G)ij = 0. However, if 
even a single off-diagonal element such as A(G)n vanishes for all G, then A is 
reducible. The reason is this: Saying that A(G)i2 vanishes means that no group 

(7.95) 

(7.96) 

(7.97) 

(7.98) 



Rotational Symmetry—Group Representations 197 

operation transforms ψ\ into V>2- This statement means in turn that as one scans 
over all the wave functions Οφ\, none of them can be transformed into ^2 either, 
for if one could, then the product of the two group operations would take ψ\ into 
ip2- Because the sets of wave functions generated by Ωψ\ and G1P2 are disjoint, the 
representation is reducible. 

If there are, say, ten nonzero eigenvalues, of which three have value P\ \, two 
have value P44, and the rest are all different from one another, then one has reduced 
the original ten-dimensional representation into one three-dimensional represen-
tation, one two-dimensional representations, and five one-dimensional representa-
tions. If, on the other hand, {A} is irreducible, then all the Pa are the same, and 
therefore P and M are simply multiples of the unit matrix. 

When the matrix X in Eq. (7.95) is chosen randomly, then the representations 
uncovered by Eq. (7.100) are almost certainly irreducible. There are definitive 
tests that allow one to decide this question with certainty, resulting from the fact 
that either two representations are equivalent or else they are orthogonal to one 
another, shown as follows: 

Suppose the representations {A{m)} and {Aw } are both irreducible in Eq. (7.99). 
Problem 6 shows that from Eq. (7.99) one can also deduce 

A(m){G)PP* = PP*A(m\G) => (F$-PJj)A(m)(G)ij = 0. (7.101) 

Because by assumption {A(m)} is irreducible, one cannot allow even a single off-
diagonal element of A{m) (G) to vanish for all G, and accordingly all of the diagonal 
elements P» are equal. If they are nonzero, then P must be invertible, and accord-
ingly {A(m>} and {A(n)} are equivalent. If, on the other hand, {A(m)} and {A(n)} are 
inequivalent, then all diagonal elements Pa must vanish, for all starting matrices X 
in Eq. (7.94). 

It is interesting to examine the consequences of choosing for X a matrix whose 
only nonzero element is at position βγ 

Xij = SißSh (7.102) 

=> Μαδ = Σ A{m)(G)ai öißöh AM(G*)js (7.103) 
G,i,j 

= ^ A W ( G ) Q ^ w ( G * ) 7 ä . (7.104) 
G 

Suppose first that {i4(m)} and {Λ(η)} are not equivalent. Then according to the 
discussion following Eq. (7.101), P and hence M must vanish. Therefore 

V A ( m ) ( G ) a / 3 A ( " ) ( G * ) 7 5 = 0. If {A«»>} and {A«} are not (7.105) 
~? equivalent representations. 

If, on the other hand, {A(m)} and {A(n)} are the same and irreducible, then M must 
be a multiple of the unit matrix, and 

V A(G)aßA(G*)lS = Cßl δαδ The precise multiple Cßl of (7.106) 
~f the unit matrix depends 

upon the choice of βη in 
Eq. (7.102). 
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=> Y V A(G)aeA(G*)-ya = ICß^ Evaluate fora = 5 and then (7.107) L—' z—' K ' K ' sum on a. 
a G 

n See Problem 6, Eq. (7.133). 
= £ A{G*G)ßl = hößl =► Cßl = -δβΊ r ^ n h Ä e w n 0 f ( ? · 1 0 8 ) 

G 
L· h is the number of elements 

=» £ A(G) a / 3 A(G*) 7 5 = - f y 7 i a i . in the group {G}. ( 7 1 0 9 ) 

G ' 

Finally, Eqs. (7.105) and (7.109) can be combined into the grand orthogonality 
theorem 

u I is the dimension of the 
J2A^(G)aßA^(G%ö = ΊδηηιδβΊδαδ. Γ ^ ^ Γ Ξ Γ ο " (7·1 1 0) 
G group elements. 

7.3.1 Classes and Characters 

In the discussion of Section 2.4, transformations divided naturally into various 
classes, which were all denoted by the same symbol. For example, all rotations 
by 60° about z form one class. The formal definition of a class of operations con-
taining some group element Gì is that it is the set of all transformation matrices 
obtained by subjecting G\ to G~[lG\Gi, where i ranges over all elements of the 
group. The intuitive meaning of this definition is that two transformations belong 
to the same class if by changing coordinate systems according to symmetries of 
the group, one transformation turns into the other. In this sense, all the symmetry 
operations belonging to a class are really the same. 

Example: D^· Consider the point group Dj,d Its symmetry elements are given in 
Table 7.2: 

Table 7.2. Symmetry elements in D^ 
E Identity 
i Inversion 
{2C3} Rotation about z through ±120°; two elements in class. 
{253} Rotation-inversion about z through ±60°; two elements in class. 
{3C2} Three two-fold rotation axes. 
{3σ} Three mirror planes. 

Because the symmetry operations within a class are physically indistinguish-
able from one another, it is valuable to find mathematical features of group repre-
sentations that are constant within a class. The most easily calculated quantity of 
this type is the character of a representation, 

X(G) = ^Aaa(G) = T r [ A ( G ) ] . The character is the trace of the matrix A. (7.111) 
a 
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The character of two different members of a class must be the same because for 
any G\ and G2 in the same class, one obtains 

v ( G | ) = T r [ G i ì = T r [ G Ì G 2 G 3 Ì G, and G2 are in the same class, by definition, (7 .1 12) 
if there exists Gj so that G\ = G^GiG^,. 

= T r [ G 2 G 3 G ; ] ( 7 . 1 1 3 ) 

= TriG?l = Y(GI) Using the cyclic property of the trace, (7 114) 
1 J A V ' Tr[ASC]=Tr[BCA], easily derived by 

writing everything out in component 
form. 

In terms of the characters χ, the orthogonality theorem, Eq. (7.110) can be 
recast as 

Σ A{m){G)aaAi"\G*)11 = Σ y<WSo7 (7.115) 
GQ7 αη 

^YJX{m)(G)x{"\G*)=h5nm (7.116) 
G 

=> y NkXi'"){Ck)x(")*{Ck) = Ιΐδηιη. The sum on* is over the distinct classes Q o f ( 7 . 1 17) 
*—' G, each of which has M elements. * 

One use of Eq. (7.116) is to provide a sure test of whether a representation is 
irreducible or not. If the representation is irreducible, then taking the traces of all 
the matrices that compose it, taking their absolute square, and summing over all 
the matrices, one must get just the order of the group h. If, on the other hand, 
the representation is reducible, when one forms the sum described by Eq. (7.116) 
with n = m, it must come out to more than h. The reason for this claim is that 
the character of each matrix equals the sum of the characters of the irreducible 
representations that compose it. If irreducible representation p occurs sp times, 
then the character corresponding to G is Σ spxip)(G), and instead of getting h 
upon performing the sum in Eq. (7.116), one gets h J2 S

P-
A final orthogonality relation can be obtained from Eq. (7.117), if one assumes 

a theorem whose proof is slightly too lengthy to include here, given by Murnaghan 
( 1938) p. 84, that the number of classes equals the number of irreducible represen-
tations. Given this fact, the characters can be used to form square matrices 

X{m){Ck) = Qmk- x^*(Ck)Nk = Q'km (7.118) 
^YJQmkQ'kn = hönm (7.119) 

k 

=> Σ Q'nkQkm = hÔnm Using the fact that the matrices ( 7 . 1 2 0 ) 
are square, so Q' = Q '. 

=» Σ HnXik\C„)xw*(Cm)=hSnm. ( 7 . 1 2 1 ) 
k 

The square matrix Qmk is called a character table. All the traces x{m)(Cn) are 
integers; using this fact with Eqs. (7.117) and (7.121), it is often possible to work 
out all the entries of Q without further information. 
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Table 7.3. Character table for the 
group DM 

E 
U 1 
L'2 1 
L2 1 
L \ 1 
L3 2 
L'3 2 

i 
1 

-1 
1 

-1 
2 

-2 

2C3 

— 1 
-1 

2/C3 3C2 3/C2 
1 1 1 

-1 1 -1 
1 -1 -1 

-1 -1 1 
- 1 0 0 
1 0 0 

Example: D34. 
Consider again the point group D^. It has six classes, with a total of 12 sym-

metry elements. One irreducible representation is very easy to find: Map every 
element of the group to 1. All the characters χ are 1 in this representation, giving 
the top row of the character table. A column of the character table is easily deter-
mined by examining Eq. (7.121) when n = m and choosing for Cn the class of the 
identity operation E. In an /-dimensional representation, the identity operation is 
always represented by an /-dimensional unit matrix, and its character is just /; that 
is, x{m){E) = lm. Therefore, according to Eq. (7.121), one obtains 

Y,l2
m = h. (7.122) 

m 

When h = 12, and there are six integer /'s over which to sum, there is only one way 
to make things work out, which is to have four representations with / = 1 and two 
representations with / = 2. Accordingly, the first column of Table 7.3 is as shown. 
There is one other class with only one element, inversion /. The column below 
this class can only contain the same integers that lie under E, because the sum of 
their squares must still be 12, but negative signs are also allowed. The only way to 
make this column orthogonal to the preceding one is to distribute minus signs as 
shown. The minus signs could be ordered a bit differently; for example, the first 
occurrence of 2 could be negative rather than the second, but this would in the end 
correspond only to relabeling the rows. Proceed next to the two classes with two 
elements. The sum of squares of entries in this column must add up to six, a goal 
that can only be achieved if all entries are ± 1. There are only two ways to make 
vectors of ± 1 that are orthogonal to the preceding two columns, and these appear 
underneath 2C3 and 2/C3. Finally, one must find two columns of integers where the 
sum of squares of the entries adds up to four, and which must again be orthogonal 
to all preceding columns. 

Notation for Cubic Group O^. A companion of the theory of group represen-
tations is conventional notation for symmetrical functions. The irreducible repre-
sentations of Oh are referred to particularly frequently because they describe wave 
functions and lattice vibrations in cubic crystals, including those with the diamond 
structure, as in Figures 23.15 and 23.16. Notation for these irreducible representa-
tions appears in Table 7.4. 
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Table 7.4. Irreducible representations of 0/, 

BSW 
Γ, 
r2 
Γ12 
Γ|5' 
Γ 25' 
I> 
Γν 
Γ12' 
Γ,5 
Γ25 

K d 
Vf 1 
Γ+ 1 
Γ+ 2 
Γ+ 3 
Γ+ 3 
ιγ ι 
r?- ι 
Γί 2 
Γ4 3 
Γ5- 3 

Basis functions 
1 
x\y2-z2)+y\z2-x2)+z\x2-y2) 
[z2_{x2+y2)/2]ì [x2_y2] 

[yz(y2-z2)], [zx{z2-x2)], [xy(x2-z2)} 
[xy], [yz], [ζχ] 
xyz {x\y2-z2) +y4(z2-x2)+z4(x2-y2)} 
xyz 
[xyz{z2-(x2+y2)/2}}, [xyz{x2-y2}} 
M , M , [z] 
[x(y2-z2)}, [y(z2-x2)], [z(x2-y2)\ 

Irreducible representations of Of,, using the notation of Bouck-
aert, Smoluchowski, and Wigner (1936)—BSW—and of Koster 
(1957)—K; also listed are the dimension d of the representation, 
along with a set of basis functions that transform into each other in 
accord with each representation. 

7.3.2 Consequences of point group symmetries for Schrödinger's equation 

Point group symmetries and the theory of group representations have two imme-
diate implications for solutions of Schrödingers's equation in periodic potentials. 
First, they may be used to reduce the computational effort in calculating energy 
bands, and second they may be used to identify places in k space where energy 
bands will be degenerate. 

The first application is fairly obvious and requires no knowledge of the repre-
sentations. Suppose one has a point group symmetry G—for example a rotation 
matrix. No physical measurement can vary if one subjects the crystal to the op-
eration of G. In particular, if one begins with a wave function at wave vector k, 
φ^ = e'k'ru^(r), then another wave function at wave vector Gk results from con-
structing 

1pGl = e'Gk'rU^(G~lr). Note that ~k-G*r = G~k-r because the dot prod- ( 7 . 1 2 3 ) 
uct is invariant when both vectors in the prod-
uct are rotated by the same matrix. 

The two wave functions ψ^ and ψ Gi can be made orthogonal to one another if 
need be, and have the same energy eigenvalue. So for all point group symmetries, 

£ r = £ rt. (7.124) 
n,k η,υκ ν ' 

Because the first Brillouin zone is invariant under such point group operations, it 
makes sense to divide the Brillouin zone into regions, called irreducible zones, 
that can be repeated under point group operations to fill out the complete Brillouin 
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zone. Each irreducible zone is a copy of all the others and has identical energy 
surfaces, so one can restrict attention to one such zone. 

These arguments, however, rely upon the assumption that the symmetry oper-
ation G acting upon k produced a wave vector physically distinguishable from it, 
which is not the case if k and Gk differ only by a reciprocal lattice vector. While 
this assumption is true in general, it fails at special points in the irreducible zone. 
For these points, a symmetry operation that leaves the wave vector unchanged (up 
to a reciprocal lattice vector) may or may not produce a new wave function when 
it acts on the wave function one begins with. If the new wave function produced 
by the symmetry operation is just a multiple of the old one, there is no particularly 
interesting conclusion. But if the symmetry operation produces a linearly inde-
pendent wave function, then more than one wave function corresponds to a single 
wave vector in the irreducible zone at a given energy; one has a degeneracy. 

It is intuitively clear that some points in the Brillouin zone are more symmet-
rical than others. In Figure 7.11, the point Γ is obviously the most symmetrical of 
all; points along T are symmetrical, but not as symmetrical as K. The point q is 
not symmetrical at all. The formal definition of the degree of symmetry for a point 
in the Brillouin zone is very simple. For a given vector k in the Brillouin zone, the 
group of that vector is the group of point group operations < G > such that 

Gk = k-\- K: The conventional notation for symmetry point K ( 7 . 1 2 5 ) 
and reciprocal lattice vector K are easily confused. 

for some reciprocal lattice vector £,·. For example, the points along T are left 
invariant when the hexagon is reflected around Γ; the point K is left invariant by 
that reflection, and also can be operated upon by two more reflections and two 
rotations, which move it to the corners indicated in Figure 7.11. The point Γ is 
invariant under all point group operations. 

Thus, the application of group representations to Schrödinger's equation pro-
ceeds by choosing some k, such as K in Figure 7.11, and taking the group of oper-
ations {G} which leaves k invariant up to a reciprocal lattice vector. Once {G} has 
been determined, certain consequences follow from its irreducible representations. 
The only necessary fact is that to the group corresponds a collection of integers, 
which are the dimensions of its representations. At least one of these integers is 
1. If some of these integers are greater than 1, then there must exist some energy 
levels at this wave vector with the corresponding degeneracy. Unfortunately, the 
information provided by these dimensions is rather like a political spokesman who 
raises various possible scenarios, but refuses to confirm or deny any particular one. 
Any particular energy level could have any degree of degeneracy made possible 
by any of the dimensions. It could even have greater degeneracy than at first ap-
pears possible, if parameters of the Hamiltonian are specially chosen so that two 
generically different levels coincide, leading to an accidental degeneracy. 

Example: Symmetry Points in Figure 7.11. The symmetry group of Γ is C^v. In-
spection of Table 2.9 shows that this group has six classes: the identity operation, 
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Figure 7.11. Symmetries of an hexagonal unit cell; Γ, M, and K label points, while Σ, T, 
and T' label lines. All points labeled K are equivalent because they differ only by addition 
of a reciprocal lattice vector. 

one 180° rotation, two 60° rotations, two 120° rotations, and six mirror planes, 
split into two classes of three each. Referring to Figure 7.11, one class of mirror 
planes contains those bisecting the faces of the mirror planes, while the other class 
contains the mirror planes passing through the corners of the hexagon. The number 
of elements in each class of C^v is exactly the same as the number of elements in 
each class of D^v, Table 7.3; therefore, as discussed in that case, C(,v must have four 
one-dimensional irreducible representations and two two-dimensional irreducible 
representations. Therefore, it is possible for an energy level at k = Γ to be twofold 
degenerate. The symmetry group at K is obtained by decorating the hexagon of 
Figure 7.11 with the three circles labeled K. The symmetry classes are the identity, 
two 120° rotations, and three mirror planes. The sums of the squares of the three ir-
reducible representations must sum to six; there must be two one-dimensional irre-
ducible representations and one two-dimensional irreducible representation. Thus 
a wave function with Bloch index located at K can also be twofold degenerate. The 
symmetry groups at all other points allow only one-dimensional irreducible rep-
resentations. At M, for example, the symmetry classes are the identity, one 180° 
rotation, and one mirror plane, leading to three one-dimensional irreducible repre-
sentations. Wave functions therefore have no reason to be degenerate with Bloch 
index at M. 

Problems 

1. Normals to surfaces: Consider a function f(r), and consider the surface 
defined by 

/(?) = £, (7.126) 
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where £ is a constant. Let ?(i) be a curve that lies within the surface defined 
by Eq. (7.126), parametrized by t. Observing that 

d_ 
dt 

mt))=o, (7.127) 

show that V / is normal to the surface. 

2. Commutation: Show that the translation operators 7^ defined in Eq. (7.38) 
commute with each other, and with the Hamiltonian (7.2), using the symmetry 
Eq.(7.1). 

3. Van Hove Singularities: 

(a) Consider an energy surface defined by £ = F^. Show that V ^ is perpen-
dicular to all vectors lying parallel to the energy surface, and therefore points 
in the normal direction. 

(b) Suppose that one has a two-dimensional crystal and finds a value of k near 
which 

(7.128) F - K, F — k2 

Find the singularity that will be produced in D(F). 
(c) Repeat this problem for a three-dimensional crystal. 

4. Kronig-Penney numerics: Use a computer to reproduce Figure 7.6 by the 
methods described in the caption of the figure. 

5. Kronig-Penney model: Consider an electron in one dimension in the pres-
ence of the potential shown in Figure 7.12: 

e 
o 

P-, 

u0 

0 b a 

Distance, x 

Figure 7.12. Potential energy of Kronig-Penney model. 

U(x) = ^2 Uo9(x — ma)9(ma + b — x). (7.129) 
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(a) Restrict attention to a single unit cell, and write down the boundary condi-
tions on Schrödinger's equation that lead to Bloch states in this unit cell. 

(b) Solve Schrödinger's equation in this cell by taking sums of plane waves and 
imposing suitable boundary conditions at 0, b, and a. The result is a condition 
on the Bloch index k. 

(c) Take the limit 

h2a-2 

b~>0, i / o - x » , UQb->Woa . (7.130) 
m 

The condition on the Bloch index should become 

W0 cos ka = — sin ΑΏ + cos Ka, (7.131) Ka 

where 
K=y2mi/Hz. (7.132) 

(d) Produce plots of the two lowest energy bands following from Eq. (7.131) for 
a = Ì, m = 1, H = 1, and Wo = 0.5. Display the bands in the reduced zone 
scheme and the extended zone scheme. 

6. Group Representations: 
Consider a group representation {A} in which all the matrices are unitary. 

(a) Show that the matrix A(E) representing the identity element of the group 
{G} is always the unit matrix. 

(b) Show that 
A(G)A(G')=A(GG'). (7.133) 

(c) Show that Eq. (7.101) follows from Eq. (7.99), by taking the conjugate of 
Eq. (7.99). 

7. Regular representation: The regular representation provides an automatic 
procedure that tracks down the irreducible representations of a symmetry 
group. The procedure can be implemented quite generally in symbolic al-
gebra. 

Suppose one has a collection of rotation matrices G\ . . . G/,, that form a 
group, so GjGj = Gi for some /. The regular representation is a set of h 
hx h matricesA(l) . . . A(J'\ 

{i (,„) = j 1 if GmGi-Gj, ( 7 1 3 4 ) 
0 otherwise. 

That is, A(m) is a matrix whose entries encode the rules for multiplying all the 
matrices in the group by Gm. Each /-dimensional irreducible representation 
appears within the regular representation I times. 
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(a) In a symbolic algebra program, create the six rotation matrices that constitute 
the group D3. 

(b) Form the six matrices A{>) . . . A{6) that constitute the regular representation. 
(c) Form the matrix M defined in Eq. (7.94), and P = M + M*. 
(d) Find the eigenvalues and eigenvectors of P. 
(e) Rewrite each of the matrices A(m) in the basis of these eigenvectors, and 

verify that it assumes block diagonal form. 

8. Optical transitions: Optical transitions have an amplitude proportional to 
matrix elements such as (1|PX|2), where Px is the x component of the mo-
mentum operator, and (11 and |2) are two wave functions. Consulting Table 
7.4, determine whether symmetry allows or forbids the following transitions, 
where state (1| has the first symmetry and state |2) has the second. When a 
representation contains more than one basis function, one has to determine 
whether any of the functions could make the transition possible. 

(a) Γ, -^Γ2 5 , 
(b) r 2 y - , r 1 5 

(c) r2 y -+ r2, 

(d) Γ 1 5 -+Γ 2 
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8. Nearly Free and Tightly Bound 
Electrons 

8.1 Introduction 

A rich set of problems becomes available for study when one puts electrons into the 
periodic potentials proposed by Bloch. However, two cases stand out as conceptu-
ally and historically important. These two cases are the nearly free electron model 
and the tight binding model. They sit at opposite ends of a conceptual continuum. 
Nearly free electrons are those that sit in a very weak potential. Their behavior is 
almost the same as that of electrons in a free Fermi gas. In the opposite limit, ions 
are treated as very strong attractive forces that bind electrons tightly and keep them 
nearly immobile. 

The nearly free electron model was introduced by Peierls (1930). Placing a 
single electron in a weak periodic potential results in a solvable problem with a 
surprise. The potential is never so weak that it can completely be ignored. For 
those electrons whose Bloch wave vector k meets conditions that would lead any 
wave to scatter strongly from a periodic crystal, the change in electron velocity is 
large. Only a small subset of electrons have wave vectors meeting these conditions, 
but they are important for transport properties, and there are easily measurable 
experimental effects. The response of metals to electric and magnetic fields is 
almost entirely due to the electrons of maximum energy, those that sit on the Fermi 
surface. The Fermi surface is a two-dimensional shell sitting in three-dimensional 
k space that can be measured and plotted. When Gold (1958) carried out some of 
the early experimental measurements, he noticed that to excellent approximation 
the Fermi surfaces of noble metals consisted in sections of spherical shells, sliced 
up, slid about, and reassembled in fantastic shapes. The nearly free electron model 
predicts precisely this behavior; it is a triumph of Perirls' approximation. 

Bloch (1928) began in the opposite limit. He modeled electrons as tightly 
bound to particular atoms, overlapping only weakly with neighbors. The tight-
binding model was put on firm formal ground by Wannier (1937), who showed 
how Bloch eigenfunctions could always be summed together to obtain a complete 
set of wave functions, centered at single atoms. This approximation turns out to 
be much richer than the nearly free electron model. It provides the possibility of 
studying both metals and insulators. It is the beginning of a systematic approach 
to investigating arbitrary potentials. Tight binding models have long provided the 
starting point to investigate many of the subtle conceptual questions surrounding 
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electrons in metals, including the origins of magnetism, superconductivity, and the 
effects of random disordering of atoms. 

8.2 Nearly Free Electrons 

Consider an electron traveling in a weak periodic potential. The electron may be 
viewed as a wave, and from this vantage point it has already been established that 
for certain rare values of the wave vector, the lattice will cause the electron to scat-
ter into new directions. The criterion, recorded as Eq. (3.38), is that an incoming 
wave with wave vector k scatters strongly off a lattice possessing reciprocal lattice 
vector K only when 

K k-K=]-K2. (8.1) 
2k-K 2 

This equation has two remarkable properties. First, it may be rewritten as 

-k2 = -k2-k-K+-K2 (8.2) 
2 2 2 

=>- c - = C- - 8S is the energy of a free electron, H2k2/2m. ( 8 .3 ) 

and in this form it emerges formally from perturbation theory as the condition for 
strong interaction between electron and lattice. Second, it defines a collection of 
planes in reciprocal space, which divide the space into a sequence of Brillouin 
zones, equal in volume but of increasingly complex shapes. The intersection of the 
boundaries of these zones with the Fermi surface plays a crucial role in determining 
dynamics of electrons. 

The first task is to show how Eq. (8.3) emerges from perturbation theory. Con-
sider an electron traveling in a weak periodic potential. It is natural to search for 
a solution in powers of the strength of the potential. However, perturbation theory 
must be applied with caution, because, as will be seen, it is possible to have nearly 
degenerate levels. To begin, return to the Schrödinger equation in form Eq. (7.33): 

(ε2-ε)ν (?)+Σ u^(q-k) = o. (8.4) 
K 

A formal means to treat the potential U as small is to define 

Up =r Δ ιχ)ϊ> Δ is the small parameter in terms of which (8 .5 ) 
"- * perturbation theory will expand. 

and view Δ as a small dimensionless parameter. Perturbation theory requires that 
one expand all quantities in powers of Δ; thus 

φ{ξ)=φ{0) {ξ)+ψ0) {q)A + ...; £ = £ ( 0 ) + A £ ( , ) + . . . . (8.6) 

Zeroth Order. Substituting Eqs. (8.6) and (8.5) into Eq. (8.4) and retaining terms 
that are independent of Δ gives 

r] (q) c 0 _ c(0) = 0. (8.7) 
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Compare Eq. (8.7) in the Extended and Reduced Zone Schemes. Solutions 
of Schrödinger's equation in a periodic potential are labeled with an index k that 
indicates how they transform under translation through arbitrary lattice vectors R. 
In the extended zone scheme, k ranges over all of reciprocal space, and there is 
one energy eigenvalue for each k. The requirement that φ^ transform according to 
Eq. (7.43b) is satisfied if one takes 

V ' f (q) = < % - = > ^ 0 ) (?) = eilT See Eq. (7.21). ( 8 .8 ) 

=> ε(0) = ε9 (8.9) 

In the reduced zone scheme, k must remain within the first Brillouin zone, 
and φ acquires an additional index n. The transformation requirement (7.43b) is 
satisfied if one takes 

Ψ™ (?) = h 4.Ï - =* -Φ™(?) = e^k+^rr (8.10) 

=r- G u = C j p. . Here K„ is chosen to be the unique reciprocal ( 8 . 1 1 ) 
lattice vector such that q — Kn lies in the first 
Brillouin zone. 

First Order. Again placing Eqs. (8.6) and (8.5) into Eq. (8.4) but now gathering 
terms linear in Δ gives 

Ι^-Φ^ (# + Ew*Vf (*-$-£( , )Vf (# = 0. (8.12) 
K 

Taking φ^ from Eq. (8.8) and evaluating Eq. (8.12) dXq = k gives immediately 

G = WQ. Only K = 0 survives the sum, because other- ( 8 . 1 3 ) 
v/\seip°(q-K) = 0. 

Next, solving Eq. (8.12) for φ^ gives 

^T ® = 1 Σ WK cO^pO ( Us in§ Ε<ϊ' ( 8 · 8 ) for Ό ? ) ' and subst i tu t ing ( 8 · 1 4 ) 
Ι,Λ^Ο k K+k ) K + kforqin the denominator. The exclusion 

of K = 0 results from Eq. (8.13). 

=> ^ ( ? ) ~ % + | Σ UkoJMof- I · Assembling ^<°)+ΔψΟ). ( 8 . 1 5 ) 

Equation (8.15) is of great utility in a wide variety of problems where potentials 
are effectively weak. However, there is an extremely interesting case where it fails. 
Whenever 

£ " = £x, _ This condition is almost exactly what was guessed ( 8 . 1 6 ) 
K+k j n gq.(8.3); replacing K by —AT, one recovers 

it exactly. 

the denominator vanishes, and the perturbation expansion fails to converge. It is 
precisely at the locations in reciprocal space where Eq. (8.16) holds that effects 
of the crystalline lattice are strongest and most interesting. One therefore must go 
back to the beginning of the calculation and proceed more carefully. 
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8.2.1 Degenerate Perturbation Theory 
This difficulty posed by degenerate or nearly degenerate energy levels is resolved 
by degenerate perturbation theory. Two states whose energies are close mix very 
strongly when perturbed, and one has to include both of them in the initial state at 
the beginning of perturbation theory, because even in the limit as U vanishes, the 
eigenfunctions will involve a sum of the two states. 

One way to obtain a resolution of this problem is to recast Schrödinger's equa-
tion in variational form, as discussed in Appendix B. According to Eq. (B.10) 
solving Schrödinger's equation is equivalent to finding extrema of the functional 

<V|(Ä —£)|V>- (8-17) 

This variational principle is exact, but it also suggests good approximations, be-
cause one can find approximate eigenfunctions and eigenvalues by performing the 
variation with a restricted set of wave functions \ip). In this approximation scheme, 
one restricts attention to / wave functions of the form 

|V) = ] T C M > · (8.18) 
i = l 

Carrying out the variation of Eq. (8.17) with respect to the / coefficients C* leads 
to the equation 

Ç M ( Î C - £ ) | ^ ) C ; = 0, (8-19) 
j 

which has solutions only when the / x / matrix 

Äf7=(V;|(Ä-£)|^·) (8.20) 

has vanishing determinant. Degenerate perturbation theory is an approximation of 
this type. In the present case, the plan is to restrict all attention to wave functions 
that are linear combinations of the two vectors \ip\) = \k) and \ψ2) = \k + K), but 
otherwise solve the Hamiltonian exactly. Returning to Eq. (7.37) and forming all 
the matrix elements needed for (8.20) gives immediately 

Setting the determinant of (8.21) to zero and solving for δ gives 

(8.21) 

ε° + ε° _ /[ε9-ε9 J 2 

*· k+K i , / L k k ^ l 
2 V 4 

c , , i I k+Kj-\ * * + £ _i_lJ7 12 Because t/(r) is real, i g w 

t = Uo-\ ±\l N ^ A H · U_R = U*. (8.22) 

At the point where ε9 _ = ε9 is exactly satisfied, one obtains 

t = e.\ + UQ±\Uk\. (8.23) 
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Thus the energy gap Eg between bands is 

£g = 2\UR\. (8.24) 

When k and K are far from obeying Eq. (8.16), the alteration of the free-electron 
energy is of order U2—much smaller than near the zone boundaries. 

Example: Application of Eq. (8.22) to a One-Dimensional Case. Consider an 
electron in a weak one-dimensional potential, for which the lattice constant is a. 
Then Eq. (8.16) obtains when k is in the neighborhood of π/α. In the neighbor-
hood of —π/α, it also obtains, with K — 2π/α, and generally at ηπ/α, substituting 
—2ηπ/α for K. These points are exactly those where discontinuities in £^ are 
visible in Figure 7.7. The size of the discontinuities in that figure are given by 
Eq. (8.24), as illustrated in Figure 8.1. 

1.5 

1.0 

oj 0.5 

0.0 

-0.5 
0 π/α 2π/α 

k 
Figure 8.1. Plot of Eq. (8.22), illustrating the gap between energy bands as it appears in 
the extended zone scheme. The dotted line shows the free-electron parabola for Ug = 0. 

As in Figure 7.7, the energy viewed in the extended zone scheme is discon-
tinuous, while energy in the repeated zone scheme is a continuous function of k. 
The significance of this calculation lies in its implications for electron transport. 
Electrons travel along continuous portions of the energy surfaces, and a gap as in 
Figure 8.1 will prevent electrons from traveling between the lower and upper parts 
of the diagram; it may even be able to turn a metal into an insulator. 

8.3 Brillouin Zones 

For electrons in very weak potentials, whose energies almost everywhere resemble 
those of electrons in no potential at all, it is perfectly natural to index states in 
the extended zone scheme, using just a single wave vector k. However, using this 
indexing convention, the electron energy bands are discontinuous whenever they 
reach a point in reciprocal space satisfying Eq. (8.1), or equivalently (8.3). To 
understand the implications of this result, it is helpful to cast it in geometrical 
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form. Rewrite Eq. (8.1) as 

k-^=X-K. (8.25) 

The set of points satisfying Eq. (8.25) is a plane that is perpendicular to the vector 
connecting the origin to K and lying precisely midway between 0 and K. Crossing 
this plane brings one closer to K than to the origin. Constructing many such planes 
by scanning over all possible K encloses the origin within a solid region. This 
region is nothing but the Wigner-Seitz cell of the origin in reciprocal space, or the 
first Brillouin zone, as all points inside it are closer to the origin than to any other 
reciprocal lattice vector. 

This construction is illustrated in Figure 8.2, for a two-dimensional centered 
rectangular lattice. If one travels on any straight line outward from the origin, one 
will pass one by one lines on which Eq. (8.25) holds. When one passes the nth 
line, one is closer to precisely n reciprocal lattice points than one is to the origin. 
Thus the nth Brillouin zone is defined to be the set of points in reciprocal space that 
is closer to n — 1 reciprocal lattice points than it is to the origin. The boundaries 
of these zones are the points in reciprocal space where nearly free electrons are 
strongly scattered by weak potentials. 

The shape of the nth Brillouin zone becomes rather elaborate as n becomes 
large; however, the total area of each zone equals the area of the first Brillouin zone. 
The reason is that the interior of the nth Brillouin zone is the collection of points 
closer to exactly n — 1 reciprocal lattice points than to the origin. If one translates 
the reciprocal lattice through any reciprocal lattice vector K, the interior of the new 
nth Brillouin zone cannot overlap the old one, because all points inside the old 
nth Brillouin zone are now nth nearest neighbors of K, and not the origin. On the 
other hand if one continues to translate the lattice through successive reciprocal 
lattice vectors, all of reciprocal space must eventually be filled with copies of the 
nth Brillouin zone, because any point one chooses has some nth nearest neighbor in 
the lattice. Therefore each Brillouin zone has the same volume as the first Brillouin 
zone and is a primitive cell. 

The importance of understanding the structure of energy bands near zone bound-
aries lies in the way that electrons in a crystal lattice behave under the influence 
of external fields. A free electron subjected to a small electric field gains energy 
indefinitely. An electron in a weak periodic potential subjected to a small electric 
field behaves similarly until its k vector approaches a zone boundary plane. At that 
point, the electron follows the branch of the energy surface which makes energy a 
continuous function of k. The analysis leading to Eq. (8.24) shows that the contin-
uous branch of the energy surface has energy E0. p, not £?. An electron traveling 
from the left to it/a along the lower branch in Figure 8.1 continues along the lower 
dashed line rather than jumping to the upper solid one. The central rule of elec-
tron dynamics is that an electron once in the nth Brillouin zone remains in the nth 
Brillouin zone. This claim will be demonstrated in Chapter 16. 

For most purposes, the first Brillouin zone is the most important. Almost all 
computations involving electrons in crystals are carried out using the reduced zone 
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Figure 8.2. Construction of Brillouin zones. (A) Perpendicular bisectors are drawn be-
tween the origin and all nearby reciprocal lattice points. These are the zone boundaries. 
(B) The first, second, and third Brillouin zones are shaded in different colors. The first 
zone is the set of points closer to the origin than any other reciprocal lattice point, the sec-
ond zone is the set of points that one reaches by passing a minimum of one zone boundary, 
and the third zone is the set of points that one reaches by crossing a minimum of two zone 
boundaries. 

scheme for the first Brillouin zone. From this point of view, the only wave vectors 
k that exist are the ones in the first Brillouin zone. Opposite edges of the zone 
whose wave vector differ by a reciprocal lattice vector are regarded as physically 
the same. Topologically, the first zone in Figure 8.2(B) is equivalent to the surface 
of a sphere. A path that appears to exit the zone at some boundary, just re-enters it 
from the opposite side, as shown in Figure 8.3. 

Because the only electrons that are able to contribute to transport phenomena 
are those that reside at the Fermi surface, the most important task is to understand 
how the shape of the Fermi surface is affected by the presence of a periodic po-
tential. The answer is that the Fermi surface is almost unchanged in the extended 
zone scheme, but dramatically altered in the reduced zone scheme, and it is the 
latter case that matters. 

Figure 8.3. The first Brillouin zone can be viewed 
as a closed surface whose edges are connected to 
each other. Therefore a path that appears to be 
leaving from one edge is actually entering from 
another, as shown in this representation of straight 
line motion. This view of the first Brillouin zone is 
motivated by the fact that physical quantities such 
as £jj are periodic functions over the first Brillouin 
zone. 
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Example: Brillouin Zone Boundary Intersection for Square Lattice in Two Di-
mensions. 

Suppose the lattice has two conduction electrons 
per lattice site. As discussed after Eq. (7.50), the num-
ber of k states in a Brillouin zone equals the number 
of lattice points, and because each k state can accom-
modate precisely two electrons, the volume that the 
electrons occupy in k space must equal the volume of 
the Brillouin zone. However, for a weak potential, the 
shape of the energy surface must be very close to the 
shape of the energy surface for free electrons—that is, 
a sphere. For a square lattice with lattice spacing a, the reciprocal lattice is also 
square, with lattice spacing 2π/α, and the volume of the Brillouin zone is 4π2/α2. 
The Fermi sphere for free electrons must have this same volume, which means 
trkf- = 4π2/α2 => kp = 2π/ ν

/πο = 1.128π/α. Because at its point of closest ap-
proach the Brillouin zone boundary is at a distance n/a from the origin of K space, 
the Fermi surface juts slightly out of the first Brillouin zone. 

8.3.1 Nearly Free Electron Fermi Surfaces 

The consequences of a Fermi surface intersecting a Brillouin zone boundary are 
depicted in Figure 8.4. This Fermi surface completely contains the first Brillouin 
zone, and it extends into the second and third zones. Band energies are continu-
ous in the reduced zone scheme, and the Fermi surface should be continuous and 
differentiable in the reduced zone scheme as well, as shown in Problem 2. The 
Fermi surface must therefore be modified slightly from its free-electron form near 
the Brillouin zone boundaries, as shown in Figure 8.4(A). Important as this fact 
may be for electron dynamics, it is nearly invisible in its effect on the geometry 
of the Fermi surface, so distortions near the zone edge will not be shown in sub-
sequent figures. Figures 8.4(B) and 8.4(C) show how to displace portions of the 
free-electron Fermi surface to make them continuous in the reduced zone scheme. 
In the case of the third Brillouin zone, some trial and error is needed to find ways 
to displace the disjoint regions through reciprocal lattice vectors so that the energy 
surface becomes continuous. Figure 8.4(D) illustrates the Harrison construction, 
which provides a systematic procedure by which to obtain pictures of the Fermi 
surface in the reduced zone scheme. The Harrison construction involves nothing 
but unions of intersections of spheres with the first Brillouin zone, and therefore it 
provides a convenient algorithm by which to generate pictures of Fermi surfaces in 
three dimensions. 

Figure 8.5 illustrates the application of this construction to the Fermi sphere 
of an fee crystal with three electrons per site. The left side of the figure shows 
portions of the Fermi sphere lying within the second and third Brillouin zones, 
while the right hand side of the figure shows how precisely the same sections of 
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Figure 8.4. (A) A free-electron Fermi surface completely enclosing the first Brillouin zone. 
The shape of the surface is slightly modified near the zone boundaries, as discussed in 
Problem 2. (B) The portion of the Fermi surface in the second Brillouin zone mapped back 
into the first zone so that the energy surface is continuous. (C) The portion of the Fermi 
surface in the third Brillouin zone made continuous by appropriate translations through 
reciprocal lattice vectors. Note that the contiguous portions of the third Brillouin zone 
cannot be mapped into the first Brillouin zone by any single reciprocal lattice vector. (D) 
The Harrison construction for Fermi surfaces shows how the surface in the «th Brillouin 
zone looks mapped back into the first Brillouin zone. The image of the interior of the Fermi 
sphere in the second Brillouin zone is given by all points in the first Brillouin zone that are 
inside two or more spheres (gray + dark gray regions). The image of the interior of the 
Fermi sphere in the third Brillouin zone is given by all points in the first Brillouin zone that 
are inside three or more spheres (dark gray regions). This geometrical construction can be 
implemented in terms of the operations of constructive solid geometry, and it was used to 
produce all the images in Figures 8.6, 8.7, and 8.8. 
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Brillouin zone Extended zone scheme Reduced zone scheme 
First Empty Empty 

Second 

Third 

Figure 8.5. Fermi surface for three electrons per site in an fee crystal. On the left the 
free-electron Fermi surface is shown in the extended zone scheme, while on the right the 
same surfaces are projected back into the first Brillouin zone in the reduced zone scheme. 

Brillouin 1 electron/cell 2 electrons/cell 3 electrons/cell 
zone 

First 

Second 

Third 

Figure 8.6. Nearly free electron Fermi surfaces for fee crystals. With three electrons per 
unit cell the Fermi surface extends slightly into the fourth Brillouin zone, but the pocket is 
very small and is not shown. 
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Brillouin 1 electron/cell 2 electrons/cell 3 electrons/cell 
zone 

First 

Second 

Third 

Fourth 

Figure 8.7. Nearly free electron Fermi surfaces for bcc crystals. 

the spherical shell appear after translation through reciprocal lattice vectors to form 
a continuous surface. Figures 8.6, 8.7, and 8.8 provide a summary of the shapes of 
nearly free-electron Fermi surfaces for the three most common Bravais lattices and 
for a variety of electron densities. As discussed in Section 16.5.2, shapes similar 
to these can be measured experimentally, and in some cases such as aluminum 
the experimentally measured Fermi surface is surprisingly close to the nearly free-
electron prediction. 
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Brillouin 2 electrons/cell 4 electrons/cell 4 electrons/cell 
zone with hep extinction 

First 

Second 

Third 

Fourth 

Figure 8.8. Nearly free electron Fermi surfaces for hexagonal crystals. The middle col-
umn shows the Fermi surface appropriate for an hexagonal crystal with four electrons per 
primitive cell. A different surface is sometimes appropriate for divalent hep crystals, be-
cause according to Eq. (3.68) no scattering takes place from the plane at π/c. The third 
column shows the Fermi surface reconstituted without discontinuities on this plane. Spin-
orbit coupling can lead to violations of Eq. (3.68), and it makes the second rather than third 
column appropriate for heavy divalent hep metals. 
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8.4 Tightly Bound Electrons 

8.4.1 Linear Combinations of Atomic Orbitals 

The free-electron gas has served to this point as the main conceptual model for 
the study of solids. This choice may seem surprising, for solids are made from 
atoms, and viewed as a collection of atoms, a solid seems to bear no relation to 
the free-electron gas. Imagine instead starting with a collection of isolated atoms 
and slowly bringing them together to form a crystal. Surely in some cases, the 
most appropriate approximation must begin with atomic wave functions. Such a 
starting point complements without contradicting the one developed until now, and 
it is called the tight-binding model. 

The idea works best for atoms where most of the electrons are closely held in 
closed shells, and the wave functions of the remaining electrons have an amplitude 
that decays rapidly away from the nucleus. The following discussion applies to 
the electrons of the outer shells, neglecting the ones in the inner core. Let af, be 
the wave function for an electron occupying an isolated atom; the index n' lets one 
choose more than one electron orbital. The wave function satisfies 

K*a*,{r) = -^2a*,{r) + U*\r)a*,{r) = £>*<,(?), (8.26) 

where the Hamiltonian and energy £f, refer to an isolated atom. Such atomic wave 
functions were computed by atomic physicists such as Hartree (1928) starting in 
the 1920's, but for the present discussion, their most significant feature is that like 
the wave function of the hydrogen atom, they decrease exponentially as one moves 
more than a few angstroms from the nucleus. 

Now imagine bringing many such atoms together to form a crystal with lattice 
vectors R, obtaining the Hamiltonian 

Ä = - i v 2 + [/(?) = - - V 2 + V t / a l ( r - a (8.27) 
2m 2m *—? 

R 

Using atomic waves functions to solve this Hamiltonian proceeds in two steps. 
The first is to build some wave functions that automatically satisfy Bloch's theo-
rem, Eq. (7.36). They are 

φ„'#) = "4 Σ e^a^r-R). (8.28) 
N *-? 

R 

A quick calculation verifies that 

Φ^Τ + R) = -j= £ eiU'an,(r-R' + R) (8.29) 

= ^ Σ ^ ■ ( * + * W - # ) = *nrk(7)eiU. (8.30) 
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If it seems too easy to solve the problem with a simple sum, it is. The wave func-
tions Φ are neither normalized, nor eigenfunctions of the Hamiltonian Eq. (8.27). 
Just because solutions of Schrödinger's equation must have the form of Eq. (7.36) 
does not mean that all functions of this form solve Schrödinger's equation. They 
can however be used as trial wave functions and summed together so as to get 
the best solution of Schrödinger's equation possible. This means creating wave 
functions of the form 

n' 

To choose the constants Cnn>, use the variational principle in Eq. (B.10). Forming 
(-0^|Ä — £\Ψηϊ) and varying with respect to C*n, gives 

This is an eigenvalue equation for E and C„. 
0 _ \ r· ; / φ -Ι3-Γ — £ | φ -\ Adding a subscript on £ acknowledges that 

^~f " the eigenvector C„ and eigenvalue £„ are linked. 
" The equation can be put in more familiar form 

=Φ- 0 = Σ Cnn< i^n"n' ~ £ / | S „ ' w ) b y ™,1αΡ1>ίη8 f r o m t h e l e f t ^ S ~ ' · ( 8 . 3 2 a ) 
n' 

where 
3im, = (Φηΐ\π\ΦηΙΪ) and the overlap matrix Sm, ΞΞ ( Φ ^ Φ ^ ) . (8.32b) 

As a first example of how this formalism develops in practice, specialize to the 
case of a Bravais lattice where the the vectors from any lattice point to the nearest 
neighbors are denoted by δ, and also specialize to the case of a single s orbital, 
meaning that there is just a single atomic wave function aat(r) which is spherically 
symmetric. Further computation makes use of the localized nature of the atomic 
wave functions. So, when an integral of the form 

[ draA{r + R')a*\r + R) (8.33) 

appears, set it to zero unless R and R' are equal, or are nearest neighbors separated 
by one of the vectors δ. Then there are only three overlap integrals that appear in 
the computation, namely 

a= f draat(r)aat{r + ô) 

U= I draat(r)[U(r)-U'dt{r)]aa\r). Recall that u(?) = ^ uM(r- R) 

t = Idraà\r)[U(r)-U'd\r + ì)}aa\r + ì). (8.34) 
and 

These integrals are independent of the direction of δ because the atomic wave func-
tion is spherically symmetric. Note that U'dt(r + 5) is not necessarily very small 
near the origin where aat(r) is large. Thinking of the hydrogen atom, for example, 
the ground state wave function falls off exponentially, but the potential falls off 
only as \/r. 
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Now return to Eq. (8.32). Since there is only one orbital, the indices n and n' 
range over only one value one can call s, and the single constant Css simply drops 
out. Thus one can write in the case of a single s orbital that 

£ = 5 W S „ . (8.35) 

To evaluate §ss write 

- " " 1 Γ §ss = V e'HR-R') — I dr aat(r-R)aal(r- R') The atomic wave 
■*-—' N J functions are real. 
RR' 

= 1 + V eir& I dr flat (r)aat ( r + δ) Whenever Λ = R' the 
J integral gives 1, and integral gives 1, and 

à there are N such 
terms. 

= ι+Σ^'*α (8·36) 

Next compute the numerator of Eq. (8.35): 

ÄÄ' y I + [U(r) - Uat(r-R')}aat(r-R>) 

f ~ v - o*aa\r-R)aa\r-R') t-iR-â') 
= dr y E i g 1 I- K) Because aal solves the atomic 

J ~ * N Hamiltonian with eigenvalue £al. 
RR' 

ik-( R Rf\ 

+ [ dr Σα*\7-Ε)[υ{?)-υα\7-Ε')}α*{7-ΐί')-
RR' 

= Eat(l+a^2eiU) + U + tJ2eiU- Usin§8·34· (8.37) 
δ δ 

Thus one obtains the estimate from Eq. (8.35), 

Jk £r « £at + ά , ^ . (8.38) 

Discarding terms of order ali and ai on the grounds that a, t, and U are already 
small, one obtains 

ει&εΛ+νί+ίΣβ'1*· (8·39) 

Equation (8.39) shows that the energy of tightly bound electrons is mainly given by 
the energy of the original atomic orbitals, plus a constant correction due to interac-
tions, plus a hopping term proportional to t that depends upon k, and describes the 
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interactions of electrons at one atomic site with neighboring sites. The reason to 
use the word "hopping" is that according to Eq. (7.59), electrons with wave vector 
k move from site to site at speed 

Thus the speed at which electrons move is proportional to t, and vanishes when t 
vanishes. 

Bandwidth. Letting z be the number of nearest neighbors over which the sum on δ 
is performed, the maximum value of £^ is TX + |t|z, and the minimum possible value 
is U — \t\z. The difference between maximum and minimum energies is defined to 
be the bandwidth; half this value is denoted by W, so in this case 

2W = 2z|t|. (8.41) 

Tight Binding for Lattice with Basis. Using the tight binding method for a 
single atomic orbital is a bit of a cheat because the method is originally billed as 
variational, and then it is applied to a single function, leaving nothing to vary. For 
more complex cases it is necessary to generalize the formalism to accommodate a 
lattice with a basis v\ . . . vi. This can be accomplished by writing 

φη'(?) = - ^ Σ efkrRa*,(r-R-vn,). (8.42) 
R 

Now the index n' ranges both over atomic orbitals, and also over basis vectors. The 
number of values of n' equals the sum over basis vectors of the number of orbitals 
at each site. With this understanding, the computations leading to Eq. (8.32) are 
unchanged. Problem 5 shows how to apply the method to obtain an estimate of the 
band structure of graphene. 

8.4.2 Wannier Functions 

Calculations employing atomic orbitals can be put on a much more general footing 
by constructing Wannier functions. These are a set of orthonormal wave functions 
that one can always construct from Bloch functions and which are plausibly local-
ized on atomic sites. 

Suppose that one has found all the eigenfunctions of the Hamiltonian and has 
arranged them as allowed by Bloch's theorem in the form Eq. (7.44). Then the 
Wannier function for electrons from band n centered at lattice site R is defined to 
be 

(7\R) = Wn (R 7) = \ e~ ψ - (7) N is 'he number of lattice sites, and also the 
number of k in the first Brillouin zone, over 
which the sum in k is performed. 

(8.43) 
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The Wannier functions form an orthonormal set, as may be seen by computing 

J drwn(R, r)w*m(R', r) = J dr £ £ ^ ^ ^ ^ M ^ ^ ) (8-44) 
k V 

kk' 
= δ—,,δ„ m The sum is normalized because as shown in (8 4 6 ) 

R,R "."*· Section 7.2.4, the number of t in the first Bril-
louin zone equals TV. 

If one should happen to know the Wannier functions, the Bloch functions can 
be recovered from them by computing 

-j= Σ W»(R, r)eiU = φηϊ(7). (8.47) 

Ambiguity in Definition of Wannier Functions. At first it seems that the Wannier 
functions are completely determined by the prescription given in Eq. (8.43). How-
ever, there is a subtle ambiguity. Each Bloch function is determined only within an 
overall phase factor, so the Wannier functions can be rewritten 

w„(R, r) = -j= Ç e-^+^Hjf), (8.48) 
k 

where </>(&) is a completely arbitrary real function. Addressing this ambiguity re-
quires an investigation of the phases of wave functions. 

8.4.3 Geometric Phases 

Geometrical phases have been discovered and rediscovered many times. The ear-
liest paper is probably by Pancharatnam (1956). In the special case of electro-
magnetic vector potentials, they appeared in Aharonov and Böhm (1959), and then 
with much greater generality in a paper of Berry ( 1984) after whom they are widely 
known as Berry phases. 

These phases appear very generally in the study of quantum mechanical prob-
lems. Suppose one has a Hamiltonian Ή^ that depends upon some collection of 
parameters λ = (λι (t), Xiit) . . . λ„(ί). These parameters change in time, but they 
change very slowly, meaning one can treat λ as small. These slow changes are 
also called adiabatic. What are some specific examples? An experimentalist might 
very slowly lower the temperature of a sample, in which case X = T. An electron 
within a solid might move through electric and magnetic fields that vary weakly in 
space, in which case the electron's wave vector k = λ can be viewed as as slowly 
changing. 

To see how geometric phases arise, let |Φ^) be an eigenstate of the Hamiltonian 
ίΚ^ with eigenvalue £^. According to the adiabatic theorem — conventional proof 
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in Landau and Lifshitz (1977) and later refinements discussed by Zhao (2008) — 
if A changes slowly enough, a particle once placed in state |Φχ) will remain in 
state |Φχ). Saying that a particle is in an eigenstate, however, says nothing about 
the phase. Indeed, the collection of wave functions (Γ|ΦΧ) will in general have 
arbitrary phases, just like the Wannier functions of Eq. (8.48). 

One feature of this arbitrary phase is wise to demand at all times; require that 
the phase be continuous and differentiable. This requirement is not quite as trivial 
as it sounds, because it extends to cases where the parameter space for A is periodic. 
For example, if the parameter is the wave vector k, one should require Φ^ to be 
continuous and differentiable as a function of k for k lying in the first Brillouin 
zone, as in Figure 8.3. 

Now examine what the time-dependent Schrödinger equation says about phases: 

In the adiabatic limit where A changes slowly, guess a solution of the form 

|φ ( ί ) ) = ^ ( ί ' / β ) / ο ώ ' ε Λ( ,0^(0 | φ χ ( ο ) ; (8.50) 

the wave function equals Φχ up to a phase factor, and the phase factor has two 
pieces. The first is what one would first guess based upon the time dependence of 
eigenfunctions, and the second φ is a correction. 

Inserting Eq. (8.49) into Eq. (8.50) gives 

/ λ · ( Φ χ | - ^ | Φ χ ) (8.52) 
dt ~"x χ^λ Ι3Α 

r\(t) The line integral is performed over the circuit 
=^φ{ΐ) — φ{ϋ)= I dX-Ckx λ follows from time 0 to/; there is no depen- ( 8 . 5 3 ) 

J'XfQ) dence on the speed of traversal so long as it is 
slow enough. 

where α χ = / ( φ - | ί φ χ ) (8.54) 
ολ 

The quantity 3ίχ is called the Berry connection because it connects wave functions 
for slightly differing values of the parameter A. In many applications |Φχ) is a 
periodic function of A. Then in Eq. (8.53), one can choose a circuit such that A 
starts and ends at the same point; the result is in general nonzero, and known as the 
geometrical phase or Berry phase 

Τ=φάλ·ΰΙ^. (8.55) 
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Application to Wannier Functions. 
For Wannier functions to serve their intended purpose as localized basis func-

tions, they should have as small a spatial spread as possible. This condition can be 
applied equally well to any of the functions indexed by R, and so will be applied to 
the one centered at the origin R = 0. Dropping for the moment reference to R = 0 
to avoid cluttering the notation, the center of the Wannier function is given by 

fn= dr W*{?) r W*(r) Suppressing notation R = 0. ( 8 . 5 6 ) 

A measure of the spread of the Wannier function is 

—=- f _. _\ i-, -aio +/->\ ~ϊ ι=*ι2 The definition of ?^ should be 
δΐ~= / dr W^(f) \r — r\ Wn(r) = r„ — \rn\ . clear. Obtain the last identity by ( 8 . 5 7 ) 

J multiplying out the square. 

(r2 1 ' « 
: las 

multiplying out the square. 

As shown in Problem 9, 

r„ = \ ^ !R - The sum is over the N wave ( 8 . 5 8 ) 
Z—/ nk vectors in a single Brillouin zone. 

k 

where in this case the Berry connection involves the periodic Bloch functions of 
Eq. (7.45) 

Λ The integral is over one unit cell as in 
\ l = i Jn dr u^^iu^f) E* <7·26>· (8.59) 

Also, 

^=-Eld7<k(7MunM (8-60) 
k 

Take advantage now of the freedom expressed in Eq. (8.47) to modify M ^ by 
an arbitrary real function φη (k) of k, periodic over the Brillouin zone. Problem 
9 shows that by manipulating φ one can minimize the spread 6r^ of the Wannier 
function through the condition 

V^n{k) = Vr\l. (8.61) 

In general, this is as far as one can go without proceeding to numerical solutions of 
the Poisson equation, of which examples can be found in Marzari and Vanderbilt 
(1997). However, in one dimension, one can write immediately 

fk 
φ(1ή-φ(0)= / dk' Rk,. (8.62) 

Problem 10 shows that for a one-dimensional lattice of spacing a, Wannier func-
tions defined with this choice of phase are eigenfunctions of the position operator, 
provided that the positions R are quantized according to 

Γα ί2π/α 

R = la-\ ; Γ = / dk Ulk>. I* an integer and Γ is defined also in Eq. (8.55). ( 8 . 6 3 ) 
2π Jo 
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8.4.4 Tight Binding Model 
Thus, by manipulating the phase φ, one can optimize the Wannier functions and 
make them drop off as fast as possible when r moves away from R. Kohn (1959) 
first proved that Wannier functions in one dimension decay exponentially away 
from their centers, and Nenciu (1993) generalized the proof to three dimensions. 
The precise rate of decay is not easy to determine without detailed computation, 
but it is related to the size of the energy gap separating different bands of Bloch 
wave functions from each other. The larger the energy gap separating a band from 
all other bands, the more completely localized its Wannier functions can be. 

Looking forward to the band structures in Section 10.4, this observation im-
plies that electrons in insulators can safely be regarded as sitting in localized Or-
bitals around specific atoms. However, while Wannier functions can be defined for 
metals, they are not guaranteed to be localized at atomic sites. 

If the Wannier function centered at R does decay exponentially once it leaves 
site R, then it is very useful to write Schrödinger's equation in terms of a Wannier 
function basis. This calculation is much more concise than the one with atomic 
orbitals. Denote the state vector corresponding to wn(R, r) by \R), and write 

Ìi = ^2\R'){Rl\'k\R){R\. (8.64) 
RR' 

The Hamiltonian in (8.64) is not the full Hamiltonian, but has been restricted to the 
nth band. It is not difficult to add an extra index and consider many bands, but that 
is not needed for the following discussion, so the index n will be dropped. 

Expression (8.64) is useful if the Wannier function centered at R becomes small 
enough once it is further away from R than the nearest neighbors of R. In this case, 
one can neglect the matrix element 

•Km, = {R'\K\R} = I dfwl (/?', r) [ - ^ - + u(f)]w„{R, r) (8.65) 

unless R and R' are nearest neighbors. Problem 6 shows that 

MRR' = Σ ~^nleil{'R'R')- ε"* is the energy ot a Bloch state of wave (8·66) 
7 ' * number k in band n. 
k 

Therefore, <KR-R-, depends only upon the difference between R and K. Furthermore, 
when R and κ are nearest neighbors, symmetry often dictates that "K^, equal a 
single constant t, while when R = R', one can denote Ή^ by a constant U. In this 
case the Hamiltonian (8.64) becomes 

_, _, _ ^ _, _, δ is again a set of vectors pointing from R 
ΉτΒ = 22 \R) t (R + S\ +22 \R)U(R\· t 0 i t s n e a r e s t n e i ë h b o r s · T h i s notation helps ( 8 . 6 7 ) 

suggest the idea of hopping from site R + δ to 
Rö R H 

The Hamiltonian appearing in Eq. (8.67) is the tight-binding Hamiltonian. The 
first term on the right hand side of (8.67) is the hopping term that allows electrons 
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to move from one site to another. The second term is an on-site term that describes 
the energy of placing an electron at a lattice site. 

The tight-binding Hamiltonian has a simple exact solution. Dehne 

R 

for k in the first Brillouin zone, so that one has the inversion formula 

\R) = —j= y e \k), Sum only over k in the first Brillouin zone. ( 8 . 6 9 ) 

k 

Inserting Eq. (8.69) into Eq. (8.67) gives 

ÄTB = Σ - Σ \k)ie-iU+ik'iii+^(k'\ + Y^ - Σ \k)Ue-iM+il'rR(k'\ (8.70) 
RS kk' R kk' 

= ΣΦ(ί\ (8.71) 
k 

with 
8-k = u+tYi

e'u- (8·72) 
5 

This expression is identical to Eq. (8.39) if one identifies U with £at + It. 
Although Eqs. (8.72) and (8.39) are identical, they represent a different phi-

losophy. In the first case, there is a series of approximations, and eventually an 
approximate result is derived in a particular instance. In the second case, gener-
ality is maintained whenever possible, and there is only a single approximation, 
which consists in neglecting interactions except between nearest neighbors. It is 
easy to pose new questions by modifying the tight-binding Hamiltonian. For ex-
ample, what happens if the on-site energies U in Eq. (8.67) vary from site to site? 
This question leads to the theory of localization (Section 18.5). Or what happens if 
one moves beyond the single-electron approximation, and modifies Eq. (8.72) so 
that the Hamiltonian has an additional repulsive energy when more than one elec-
tron sits on a given site /?? This question leads to studies of electron correlation 
and magnetism in Chapter 26. 

Problems 

1. Nearly free electrons: 

(a) Consider a two-dimensional square lattice of lattice constant a and take 

t/(r) =-4C/ 0 cos — c o s — . (8.73) 
a a 

Find the Fourier transform UQ from Eq. (7.26). 
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(b) For ^ι = (π/α, π/α), ip(k\) will couple strongly to three other components 
of φ, ipfa) ■ ■ ■ I/JCU). What are fo · · · &4? Identify the values of K that one 
must include when doing perturbation theory to find φ(ϋ\) . . . ip(kn) to first 
order in UQ. 

(c) Evaluate Ug for the necessary values of K. Show that Ug = U_^ is nonzero 
only for one value of K. Therefore perturbation theory can be reduced to the 
subspace involving only ψ(ϋ\) and, say, ^(fo)· 

(d) Write down Schrödinger's equation in the subspace involving only ψ(ΐί\) 
and ?/>(&2)· 

(e) Solve the resulting 2 x 2 system of equations and find the two allowed ener-
gies at Bloch index k\. 

a 

0 

A 

(f) Sketch £^ for the lowest two bands along the line T-T, and indicate the size 
of the energy gap. 

2. Smoothness of Fermi surface: 

(a) Show that the unit normal to the Fermi surface must be continuous in the 
reduced zone scheme, if the energy £ ^ is continuous and differentiable. 

(b) Show that in the nearly free electron approximation, the Fermi surface is 
perpendicular to the Brillouin zone boundary. 

3. Reciprocal lattice: 

(a) Consider a two-dimensional lattice with primitive vectors 

fl(l,0), α ( ^ , Ι ) . (8.74) 

Find primitive vectors for the reciprocal lattice, and draw pictures of the first 
and second Brillouin zones. 

(b) Find the areas of the first and second Brillouin zones. 

4. Two-dimensional Fermi surface: Find the Fermi surface for a triangular 
lattice in two dimensions, with six noninteracting spin 1/2 electrons per site. 

(a) Calculate the size of the Fermi sphere. 
(b) Draw the reciprocal lattice of the triangular lattice on a piece of tracing paper, 

and indicate the first three Brillouin zones. 
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(c) Draw the Fermi sphere on a separate piece of paper at the same scale used for 
the Brillouin zones, and by moving the tracing paper over the Fermi sphere, 
find the Fermi surface. 

5. Tight-Binding Band Structure of Graphene: Graphene is a honeycomb 
lattice (Eq. (1.5)) with lattice spacing a = 2.46 Â (Table 2.1). The electronic 
band structure of graphene can be computed to reasonable approximation 
from s and p orbitals. The bands break into two groups. There is a first 
set of bands that come from the interactions of the s orbital and the px and py 

orbital, assuming graphene sits in the x-y plane. These are the σ bands, which 
require solution of a 6 x 6 matrix problem, described by Saito et al. (1998). A 
second set of bands comes from the pz orbitals, called the π bands. These can 
computed completely independently from the σ bands because all integrals of 
the form / dra^z(r)af(r) or J drdfiffla^r) vanish by symmetry. Thus for 
the 7Γ bands there is only one orbital a^ to consider, cylindrically symmetrical 
in the x — y plane, and with symmetry like z in the z direction. Because the 
honeycomb lattice is built from two basis vectors, the matrix in Eq. (8.32) is 
2 x 2 . 

(a) Refer to the two Bravais lattices corresponding to the two basis vectors of 
the honeycomb lattice as the A and B sublattices. Show that the matrices Ή 
and S have the form 

χ= ur „r s= :r r ( 8 · 7 5 ) 

Use Eq. (8.42). 
(b) Show more specifically by ignoring overlap integrals between any atoms 

farther apart than nearest neighbors that 

where 

£P t/(Z)\ (1 af(k)\ 
trCk) zP ) s _ Ur(*) i ) (8J6) 

f(k) = Ê>-'V/V3 + 2e<V/(2v/3) c o s ( ^ a / 2 ) . (8.77) 

Find the definitions of £p, a and t. 
(c) Show that the energies of the two bands that result are 

£p±tw(k) 
ε% = -z- y- (8.78) 

1 ±aw(k) 
where 

w(k) = ^\f(k)\2. (8.79) 

(d) Setting tp = 0 because it is just a constant, and taking t = -3.033 eV, a = 
0.129, plot Eq. (8.78) between Γ and K (Figures 7.10 and 7.11). Show that in 
the vicinity of Ä̂  the two bands are degenerate and have the form of ±\k — ÌCK\ 
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6. Wannier functions: 

(a) Show that matrix elements of the Hamiltonian between Wannier function 
coming from different bands must vanish, and that it is therefore legitimate to 
write down Eq. (8.64). 

(b) Show that the matrix element (R\K\R') depends only upon R — R', where (R\ 
is the Wannier function defined in Eq. (8.43). 

7. Tight-binding model: Consider a tight-binding Hamiltonian that acts upon a 
single band of localized states in one dimension, 

Ä = 2 t ^ { Ì ( | / ) ( / + 1| + | / ) ( / - 1 | ) + C O S [ 2 7 T / T 3 ] | / ) ( / | } (8.80) 
/ 

with 
T3 = f. (8.81) 

The integer / should be thought of as indexing sites along a chain of atoms; 
the state |/) locates an electron on atom /. 

(a) What is the periodicity of the Hamiltonian? 
(b) Use Bloch's theorem to reduce the eigenvalue problem associated with 

Eq. (8.80) to the solution of a small finite matrix equation. 
(c) Compute and plot the bands for k throughout the Brillouin zone. This task 

will have to be carried out numerically. 

8. Berry phases: The definition of the Berry connection of Eq. (8.54) appears to 
require knowledge of the wave function Φ^ for adjacent values of λ in order 
to compute the derivative. However, the expression can be recast to involve 
wave functions at only one point in λ space. 

(a) Let m and n index separate eigenfunctions and eigenvalues of the Hamilto-
nian in Eq. (8.49). Show that 

<*«xlVXl*»x> = ^ Λ ^ - Α ^ (8.82) 

(b) Specialize to the case where λ has three components. Return to the definition 
of the Berry phase Eq. (8.55). Let A be any surface whose boundary is the line 
around which one integrates λ. Using Stoke's Theorem, show that 

Γ = - [ dh-Vn (8.83) 
JA 

where « is a unit normal integrated over surface A and 

v» = lmL· ( ε , _ ε , ) 2 ( 8 · 8 4 ) 
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9. Localization of Wannier functions: 

(a) Verify Eqs. (8.58) and (8.60). 

(b) Replace unk-(r) with un^(r)e'^k\ where <j>(k) is periodic over the Brillouin 
zone. Show that fn is unchanged when the phase φ(1ί) changes, and find how 
r\ changes as a functional of φ{Κ). 

(c) Minimize Sr% with respect to φ(κ) and show that the condition on φ(ί) is 
Eq. (8.61) 

10. Wannier functions in one dimension: The phases of Wannier functions can 
be determined in general by the prescription that the spread of the functions be 
minimized. For one-dimensional systems, there is another way to arrive at the 
same conclusion, proposed by Kivelson (1982). In one dimension, Wannier 
functions with phases given by Eq. (8.62) are eigenfunctions of the position 
operator. 

Dropping the band index n and specializing to a one-dimensional crystal with 
N unit cells of length a, let w(R, r) be Wannier functions, satisfying 

w(R, Ό = 4 ^ Σ e-M+imMr), (8.85) 
yJy k 

where φ(Κ) satisfies Eq. (8.62), and Eq. (8.59) becomes 

%L = Ì Ja drul{r)^uk{r). (8.86) 

In one slight departure from other calculations, assume that the Bloch func-
tions îpk{r) rather than w&(r) have their phases arranged so as to be periodic 
functions of k over the Brillouin zone [0, 27r/a]. Making use of Eq. (8.85) and 
■0/t(r) = exp[ikr]uk(r) show that 

(a) Show that 

rw{R, r)=Rw(R, r) 

( ■ 
-(2πί·/α)Λ+ί0(2π/α) _ Λφ{0) Mr) 

V^V (8-87) 

(b) Multiply the last term of Eq. (8.87) by w*(R', r) and integrate over r. Show 
that the result vanishes for all R' and that therefore this last term is zero. 

(c) Show that the condition for the second term of Eq. (8.87) to vanish is the 
quantization condition on R Eq. (8.63). 
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9. Electron-Electron Interactions 

9.1 Introduction 

Bloch's theory for periodic solids brilliantly solves the problem of a single electron 
in a periodic potential. While engaged in the process of solving this problem, it is 
easy to forget the severity of the approximations needed to reduce a real periodic 
solid to a single-electron problem. The problem has two different sides. First, how 
conceptually can interacting electrons be treated within a one-electron framework 
at all? An answer to this question will be provided in Section 17.5 by Fermi liquid 
theory. Yet Fermi liquid theory provides little practical guidance in constructing 
the effective one-electron potential it shows may exist. The construction is instead 
provided by a sequence of approximations, whose validity is in principle not quite 
clear but in practice lies behind all attempts at realistic calculations. There is no 
internally consistent test for the validity of these calculations, and sometimes they 
fail rather badly. Even more often, however, they achieve detailed comparison 
with experiment that is much better than might have been expected. The goal of 
this chapter is to describe only those treatments of electron-electron interactions 
leading to practical band structure calculations. 

The Hamiltonian that one really should solve is Eq. (6.1), in which electrons 
and nuclei all appear on an equal quantum-mechanical footing. A first simplifica-
tion is to remove the nuclei from the quantum mechanics problem. Because nuclei 
are thousands of times more massive than electrons, they move that much more 
slowly. Born and Oppenheimer (1927) suggested an approximation scheme that 
is employed quite universally throughout condensed matter physics. So far as the 
electrons are concerned, take the nuclei to be static, classical potentials, and solve 
the electronic problem without worrying about the nuclei further. So far as the nu-
clei are concerned, the electrons are a rapidly moving shroud of charge that follows 
them wherever they go. Because the motion of nuclei is accompanied by charge 
redistribution, the energies involved in moving nuclei about depend upon the so-
lution of the electron problem, and the nuclei interact with complicated effective 
potentials. All the ideas of different types of interatomic bonding arise from this 
viewpoint and will be discussed further in Chapter 11. 

The Born-Oppenheimer approximation may have to be abandoned whenever 
the electrons and nuclei cannot be disentangled so neatly. The world is full of 
phenomena where the approximation fails. For example, in striking a flint to create 
a spark, mechanical motion excites electrons into a plasma that then emits light. 
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Adopting the Born-Oppenheimer approximation, the electrons in Eq. (6.1) 
solve 

-h2 N N e2 

where Φ is an antisymmetric function of the immense number N of electrons in 
a solid. This problem is still intractable, even on the largest computers, for more 
than several hundred electrons, a number that makes it impossible to investigate 
large molecules or solids. The numerical problem grows exponentially with the 
number of electrons; for macroscopic solids it will never be solved by brute force 
on a conventional computer. Contemplating this situation in the first days of quan-
tum mechanics, Dirac wrote that "the underlying physical laws necessary for the 
mathematical theory of a large part of physics and the whole of chemistry are thus 
completely known, and the difficulty is only that the exact application of these laws 
leads to equations much too complicated to be soluble" [Dirac (1929), p. 714]. 
The paradox of condensed matter physics is contained in this simultaneous cry of 
triumph and despair. The fundamental equations are known, but fundamentally 
unwilling in their original form to answer most physical questions. 

9.2 Hartree and Hartree-Fock Equations 

All the computational difficulty arises from the Coulomb interaction. Perhaps this 
term may somehow be replaced by something more computationally tractable, such 
as an effective electron-electron potential Uee(r). A first guess at such an effective 
potential in which to study the motion of electrons is that each electron moves in a 
field produced by a sum over all the other electrons. Analogy with classical physics 
suggests that the potential corresponding to electron-electron interactions could be 

Uee(r)= [dr>e-^Q, (9.2) 
J \r-r'\ 

where n is the number density of electrons 

η(?) = Σ/\φ](?)\2. (9.3) 
i 

This guess can immediately be inserted into the Schrödinger equation, giving 

-h2 
— V2Vv + \UioJr) + Ute(r)]lp[ = £/?/>/. Α derivation follows, but one can ( 9 .4 ) 
2m simply write this down in the 

spirit of Eq. (6.3). 

Equation (9.4) is the Hartree equation, which lay behind the first systematic at-
tempts by Hartree (1928) to deduce atomic spectra from first principles. 
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9.2.1 Variational Principle 
In order to improve upon the Hartree equations, it is desirable to find a formal way 
to derive them from Eq. (9.1). The best method is the variational principle derived 
in Appendix B which states that wave functions solving Schrödinger's equation are 
extrema of the functional 

FM {Φ} = <Φ|Α|Φ>, (9.5) 

subject to the constraint that (Φ|Φ) = 1. As discussed in Section 8.2.1, approxi-
mate solutions of Schrödinger's equation are obtained by restricting the search for 
extrema to a subset of all possible wave functions. The Hartree equations follow 
from restricting one's search to wave functions Φ of the form 

N 

* = 1[Ψι(7ι), (9-6) 
1=1 

where the ψι are orthonormal. If one considers wave functions of this form, uses 
Lagrange multipliers S;- to enforce the constraints (ißj\ipj) = 1, and demands 

SFK δ ̂ E^7^W^(^) = 0 (9.7) 

the Hartree equations (9.4) result almost immediately, apart from one small and 
slightly annoying discrepancy. The formal calculation indicates that each electron 
interacts not with the full charge density of the system, but with the charge density 
minus the density due to the electron itself. The calculations are left as Problem 1, 
but the more difficult case of Hartree-Fock will now be performed explicitly. 

9.2.2 Hartree-Fock Equations 

The central failing of the Hartree equation is that it does not recognize the Pauli 
principle. The true many-body wave function must vanish whenever two electrons 
occupy the same position, but the Hartree wave function cannot have this prop-
erty. The Pauli principle forces electrons in metals to occupy single-particle energy 
states with energies on the order of 10 000 K, even in the ground state—such large 
energies that this effect must be included in any calculation from the outset to have 
any hope of realism. 

Fock (1930) and Slater (1930) showed that the way to obey the Pauli prin-
ciple is to work within the space of antisymmetric wave functions. Absolutely 
the simplest possible type of antisymmetric wave function is obtained by taking a 
collection of orthonormal one-particle wave functions and antisymmetrizing them: 

Φ(πσ, . . . ΐΝσΝ) = -= ν ν - Ι ) ^ , ( η σ ι ) · · · il>SN(rNaN) The sum is over (9.8) 
w/\J\ Δ—' all permutations 
v " s s of 1 . . . N. σ, 

is a spin index. 
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N\ 

ψι(7\σ\) Ψι {ησ2) Ψ\(τΝσΝ) 

ψΝ{7\σ\) ipNihvi) ΨΝ(7ΝΟ-Ν) 

This type of 
wave function is 
called a Slater 
determinant. 

(9.9) 

Because this wave function is not a simple product, but a sum of products, the par-
ticles are no longer independent. Varying a single index, 7\ for example, causes all 
the particles to shift around. Thus the Pauli principle induces correlations among 
the particles. Under these circumstances, it is impossible to be completely casual 
about spin degrees of freedom, tossing them in at the end of the calculation as a 
factor of two. Therefore, the spin index σ, taking values ±1 is included in every 
wave function. So long as the Hamiltonian does not involve the spin explicitly, the 
equations will be solved by giving ψ the simple form 

,_, . ; /-» \ / \ The spin function χι is either the "spin-up" fune-
WlVi^i) = Φΐνί)Χΐ\σί)· tion,5i,ffl., or the "spin-down" function <5_ι,σ/. (9 .1Ü) 

It is cumbersome to carry around the arguments of ψι, so adopt the shorthand 
notation 

To obtain the Hartree-Fock equations, one repeats the variational problem that 
led to the Hartree equations, but now employing the wave function (9.8) rather than 
(9.6). The calculation is more difficult. The first step is to take the expectation value 
of the Hamiltonian with the wave function (9.8), and the next step is to require that 
its functional derivative with respect to each φι vanish. This expectation value can 
be obtained by working explicitly with the wave function in Eq. (9.8). However, 
such computations are exactly what second quantization was designed to simplify. 
Obtaining the Hartree-Fock equations is therefore a sensible starting point to gain 
practice with second quantization. 

As described in Appendix C, given a complete set of states such as ψι, the 
Hamiltonian (9.1) can be rewritten as 

A = 5 ] c Ì c Z Ì ( ^ ( l ) | ^ ^ V ? + i / i o n ( r i ) | # ( l ) ) (9.12) 

+ \ Σ c/
t4Q-Q»(V/(l)#(2)| 

//'/"/" r\-r2\ 
#,»(1)#»(2)>, 

or, denoting {φι ( 1 ) | by (/1 to make the notation even more compact, 

2 a W-k Ä = χ ; cjcr <z | — — v ? + i/ion (n ) |/' 
2m 

(9.13) 

+ 2 Σ ήέι>έΐ'"έΐ"{1ΐ 
ΙΙΊ'Ί'" n-r2 

\l"l'"). 
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The product wave function Φ takes a very simple form in second quantized 
notation. One can write it as 

|Φ) = 111111 . . . 10000. . .) (9.14) 

which means that states I . . . N are occupied, and all other states are unoccupied. 
The Hartree-Fock calculation proceeds by computing 

(Φ|Λ|Φ) (9.15) 

and choosing the functions ψι to make the expectation value as small as possible. 
To compute the expectation value, first consider 

(Φ|φ/ / |Φ). (9.16) 

When C[> acts upon Φ it gives 0 unless /' is one of the states obeying /' < N so that 
it is occupied in Φ. The annihilation operator c/' removes this state from Φ, which 
now can be written 

s ^ l ' i * 
/ / / / / 

c/ΙΦ) = |11. . . 1011... 100...) (9_17) 
When the creation operator c\ acts on (9.17), it had better create an electron 

in state at /' again, or else when (Φ| acts from the left, the result will be zero. So 
(9.16) is zero unless / = /', and the first term in Eq. (9.14) becomes 

Σ {if^-^ì + ÙUmi) (9-18) 
/^Occupied States 

To compute the expectation value of the Coulomb operator in Eq. (9.13), con-
sider 

<*|cjcj,c//«c///|*>. (9.19) 
Unless /" and /'" are among the states occupied in |Φ), which is to say /" < N 

and I < N Eq. (9.19) immediately gives zero. Furthermore / and /' must create 
again the states that /" and /'" have just destroyed. There are two ways this can 
happen: 1 = 1 and I = I or I = I and / = /. In the first case, using Eqs. (C.3c) and 
(C.2b) one obtains from (9.19) the value +1. In the second case, use Eq. (C.3a) to 
swap cj and e],. Thus one obtains from (9.19) the value — 1. The conclusion is 

( Φ |cJcJ/C;'//C/" j Φ ) = δΐ'ΐδιι — δ['ΐδιι And / and/'must be occupied states ( 9 . 2 0 ) 

which implies 

1(Φ| J]] c)clcv„cv,(lï\-^— \1"1'")\Φ) (9.21) 
— r i — r? 

^ e2 

= \ Σ [<SH"<W"-<W'<$H<"'IF——ι\ι"ΐ") (9·22) 
— ri — ro\ 

\ J2{ll'\^e_^,\W) - (ll'\r
e_^.\l'l) (9.23) 

,// i r i - ^ 2 | \r\-r2\ 
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Adding together Eqs. (9.23) and (9.18) gives 

(Φ|:Κ|Ψ) Σ / αηΦΐ(ΐ) 
-ft2V2 

2m φί(ί) + υ(7ι)\Φί(\)\2 

/ ■ + 2 / dr\dr2-^ 
r\ -r2\ 

Σ [iVi(i)i2i^(2)i2-v?(i)^(2M-(2)^(i; 
σ\σ2 

(9.24) 

The first of two terms in the double integral in (9.24) is called the Coulomb 
integral. It is precisely the term that appeared in Eq. (9.3). The second is more 
noteworthy; it is called the exchange integral and may be interpreted as saying that 
particles 1 and 2 flip places in the course of interacting. Because of the antisym-
metry of the wave function, such an interaction comes in with a relative minus 
sign. 

Having found this expectation value, the next task is to vary the functional 
(9.24) with respect to every single-particle function φ and require each variation to 
vanish subject to the condition that the t/>'s be orthonormal. The real and imaginary 
parts of φ are completely independent functions, so one must vary with respect to 
them separately. Instead of doing it quite that way, it is legitimate and simpler to 
treat φ and φ* as independent functions and vary with respect to φ* holding φ 
constant. In order to restrict the search for wave functions to the space in which all 
the ^ 's are orthonormal, use the method of Lagrange multipliers to enforce the N2 

constraints Σσι I άτ\φ*{\)φj{\) = <5iy·, and add 

Σ ^ Σ [ αηΦΐΜΦ^ι) 
ij σ, 

(9.25) 

to the functional before taking the functional derivative. 
The result is that 

Σ£#) 

φί(1) + υ(?ί)φί(1) h2v 
Im 

N 

+φι(1) j dr2 Σ 

- Σ vv(i) Σ / 

e2\M2)\2 

\r\-r2 

„2 
dr2 

β
2φ){2)φί{2) 

\f\ -hi 

(9.26) 

Of course, one can vary with respect to φί(τ) instead, and then take the complex 
conjugate of the ensuing expression. The result is exactly Eq. (9.26), except that 
E,j is replaced by £^·. This proves that £,; = £ (̂ so the matrix £i ; is Hermitian. 
Therefore the Hartree-Fock equations can be simplified a bit further. Suppose in 
Eq. (9.9) that the wave functions φι are replaced by 

<Α· = Σ ^ · (9.27) 
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This replacement is equivalent to multiplying the matrix of -0's by the matrix W 
inside the determinant, and therefore it alters the wave function Φ only by mul-
tiplying it by the determinant of W. If one chooses W to be a unitary matrix, its 
determinant is one, and Φ takes exactly the same form in terms of the V'S that it 
did in terms of the ^ ' s . The effect of this transformation upon, for example, the 
kinetic energy term is 

Jdrj2iï(™y -h
2V2 ~ _ 

2m 
φί(τσ) 

^ Σ Σ %rj(^)-^Wu^r(ra) 
ισ )ϊ 

2m 

^Σ^7^*(?σ)-
2ντ2 

°Jf 
2m ■Ψ](?σ) 

-h2V2 

dr Σ ψ* (ra) ^ ipj (?σ). 
J<7 

2m 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

Similarly, all of the other terms in (Φ|ΙΚ|Φ) are invariant when ψ is turned in for 
ψ. However, the Lagrange multipliers change to 

Σ ]T tfWZEijWwtpr = E ΨιϊινΨν, 
ij IV IV 

where 
έ , , - Σ ^ Ϊ ^ ÌV 

(9.32) 

(9.33) 

is the matrix £!y in the new basis. Because £ is Hermitian, there exists a basis in 
which £ is diagonal; one may as well therefore just take δ to be diagonal to begin 
with. Employing this simplification and carrying out the spin sums in Eq. (9.26) 
gives finally the Hartree-Fock equation 

£,·&(?) = 

2v72 

2m ■φί{Ψ) +U(r)4>i(r) 
N n i2 *%(OI 

N 

Σ SXXJ <AK'S) / dr1 β
2φ){7')φ^) 

SXiX, is 1 if states i and j have the same spin 
and zero otherwise 

(9.34) 

9.2.3 Numerical Implementation 

Hartree-Fock calculations divide into two groups, restricted and unrestricted. Re-
stricted Hartree-Fock calculations are ones in which there is an even number of 
electrons, and one assumes that wave functions divide into two groups: spin-up 
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Figure 9.1. (A) For two well-separated H atoms the ground state cannot be described by a 
single spatial wave function multiplied by two different spin states. (B) But for the same 
collection of particles assembled as an He atom, it can be. 

functions and spin-down functions. The spatial part of a given spin-up electron is 
exactly the same as the spatial wave function of some corresponding spin-down 
electron. Unrestricted Hartree-Fock makes no such assumption. Suppose one has 
two protons, very far separated, as in Figure 9.1. Each has its own private elec-
tron, and the ground state places an electron of definite spin on each atom. By 
contrast, if the same particles are placed in a helium atom, the ground state places 
both electrons in the same spatial state, differing only in their spin. In the first case, 
unrestricted Hartree-Fock is necessary, while in the second case, one can cut the 
size of the computation in half by doing restricted Hartree-Fock. 

Whether one attacks a restricted or an unrestricted problem, the Hartree-Fock 
equations are a complicated set of nonlinear equations that can only be handled 
numerically. A first instinct would be to describe the various functions on some 
sort of cubic grid. This approach is used for atoms, but for molecules it is a terribly 
inefficient idea. A better way to solve the Hartree-Fock equations for molecules is 
to write each φι as a linear combination of basis functions that represent informed 
guesses about the actual shape of the wave functions and that are easy to integrate. 
The fewer basis functions one needs to represent electronic wave functions, and 
the easier it is to integrate products of the basis functions, the better off one will be. 
One set of examples of basis functions is provided by STONG. The STO stands 
for Slater-type orbitals, while NG stands for N Gaussians. Experience has shown 
that the electronic wave function at the /'th nucleus looks roughly like e~x>\r~ri\. 
The problem is that if there is more than one nucleus, one has to do integrals of the 
form 

[ dre-W-^e-W-^, (9.35) 

and these are numerically expensive integrals. A way to reduce the computational 
effort is to find a least-square fit to these exponentials using Gaussians, 

Ίι = ΣΑινβ-α^-«>')\ (9.36) 

where all the coefficients are chosen to make 7 look as much like the desired ex-
ponential as possible. One develops a whole family of functions of this form, 

71)72 · · · IK, (9.37) 
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designed to look like best guesses about the actual shapes of the electronic wave 
functions. The functions 71 . . . 7A- are supposed to provide a basis in which to 
describe an arbitrary function, so K 3> N, but one hopes by choosing the basis 
functions well to make Λ̂  as small as possible. The different 7's are not orthonor-
mal, in general. So one writes 

K 

Ψι = Σ Bi^k, (9.38) 
k=\ 

and by substituting this form into the Hartree-Fock equations finds a large nonlin-
ear matrix equation for the coefficients B^. One also must write \/\r\ — ?2| as a 
sum of products of basis functions, so that inside the Coulomb and exchange in-
tegrals one has products of four basis functions to integrate over. The size of the 
matrix is K x K, which illustrates the importance of choosing as small a basis set 
as possible. The equations are solved iteratively, starting with a guess for a set of 
N wave functions. Using these, one calculates all of the Coulomb and exchange 
integrals. The result is a linear K x K matrix equation, which is diagonalized us-
ing standard numerical routines developed for this purpose. After carrying out the 
linear algebra, there is a new set of K wave functions. Choosing the N of lowest 
energy, one again calculates all the Coulomb and exchange integrals, continuing 
until, if all goes well, the calculation has converged. The most time-consuming 
part of the process is the calculation of all the Coulomb and exchange integrals, 
because there are of order K4 of these (one has to do an integral of the product of 
any four basis functions). Even if all the necessary integrals are done in advance 
and stored in memory, just calling up the results to add them together is a K4 pro-
cess. These considerations provide a simple explanation for the fact that quantum 
chemists use a huge portion of the world's supercomputer resources. 

What sorts of results may be obtained by carrying out Hartree-Fock calcula-
tions? One first of all has an approximation to the ground-state wave function that 
can be used to calculate such experimentally measurable quantities as the dipole 
moment. Second of all, one has all of the excited states that were found while 
diagonalizing the Hartree-Fock Hamiltonian, but not included in the ground state. 
The lowest lying excited state provides an estimate of the ionization potential of 
an atom or molecule. Third, one can calculate how the total energy of a molecule 
varies with the external potential and in this way try to calculate the equilibrium 
geometry of a molecule. Table 9.1 gives some representative examples of the re-
sulting accuracy compared with experiment. 

Hartree-Fock does not do particularly well at computing dipole moments. It is 
able to calculate only to within about 0.1 in atomic units and may even get the sign 
wrong, as in the case of CO. Bond lengths come out better than dipole moments, 
but ionization potentials are again obtained only at about a 10% level. In the case 
of N2, Hartree-Fock incorrectly identifies the first excited state. The molecules in 
this table have 10 electrons, and therefore they are rather simple test cases. Ones 
conclusion must be that Hartree-Fock provides only a qualitative guide and is not 
adequate for precise molecular calculations. To obtain better accuracy, chemists 
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Table 9.1. Theory versus experiment for Hartree-Fock 
Molecule CH4 NH3 H2Q FH CO 
Bond length (À): Hartree-Fock 2.048 1.890 1.776 1.696 
Bond length (Â): experiment 2.050 1.912 1.809 1.733 
Ionization potential (eV): Hartree-Fock 0.546 0.428 0.507 0.650 
Ionization potential (eV): experiment 0.529 0.400 0.463 0.581 
Dipole moment (e À): Hartree-Fock 0.653 0.785 0.764 -0.110 
Dipole moment (e Â): experiment 0.579 0.728 0.716 0.044 

Bond lengths, ionization potentials, and dipole moments, comparing Hartree-Fock, 
and experiment. In the delicate case of CO, even the sign of the dipole moment is 
incorrect. Source: Szabo and Ostlund (1982). 

have moved to considerably more elaborate wave functions, including sums of 
large numbers of determinental wave functions. The name given to effects that 
cannot be calculated within Hartree-Fock is correlation: the tendency of electrons 
to respond to the details of each others' presence above and beyond the implica-
tions of the Pauli principle and Hartree-Fock theory. Pines posed the problem of 
correlation this way: 

... we have neglected the effect of correlations in the position of the elec-
trons introduced by the Coulomb interactions. The correlations will tend 
to keep the electrons apart, so that the energy of the system is further re-
duced This gain in energy will be designated the correlation energy 
here. Thus, we define the correlation energy as the difference between 
the energy calculated in the Hartree-Fock approximation and that calcu-
lated using any better approximation ... the Coulomb interaction, which 
on physical grounds makes an independent particle model appear un-
likely, on closer mathematical investigation renders it untenable in prac-
tice. 

—Pines (1955), pp. 373-374 

These observations end the brief view of the program of doing chemistry by 
computer. Chemists have found it crucial to find approximations much better 
than Hartree-Fock in order to obtain satisfactory accuracy, while the portion of 
the physics community that carries out calculations of the electronic properties of 
crystals by necessity contents itself with approximations that are worse. However, 
the two communities have been converging toward a common approach based upon 
density functional theory (Section 9.3). 

9.2.4 Hartree-Fock Equations for Jellium 

The Hartree-Fock equations can be solved exactly for jellium, a name that may 
have come from a comment by Tonks and Langmuir ( 1929) concerning plasmas 
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that "when the electrons oscillated, the positive ions behave like a rigid jelly with 
uniform density of positive charge ne." Jellium is just a collection of electrons, into 
which ions are introduced as a spatially uniform background to maintain overall 
charge neutrality. The Hartree-Fock equations are in this case solved by plane 
waves. For N electrons in a volume V they take the form 

Kinetic energy Interaction with ions 
—h2V2 N f e2 

2m V J \r—r2\ 

+Φι(7) f dr2 E i JMif - - £ δΧιΧ^(7) f dn 
Coulomb interaction Exchange interaction 

Insert a plane wave of the form 

„iki-r 
e 

V 

(9.39) 

(9.40) 

The allowable set of k's as in Section 6.3 is given by imposing periodic boundary 
conditions on the system, producing the usual conclusion that the density of k states 
per volume and per spin is 1/(2π)3. The kinetic energy term in Eq. (9.39) produces 

-^Φι^)- (9.41) 

The interaction with the ions and the Coulomb interaction cancel against each other 
because \φ]{τ2)\2 — 1/"V. The only calculation remaining is the exchange interac-
tion, which becomes 

e 
J^ e*J7 f dfi e'^i-^'72 

;=1 VV J V \r-r2 

= e\ N / S^ _, Changing the variable of integration to ( 9 4 3 ) 
4 ^ J V r ' XhXi r' = r2-r. V ' ' 
7=1 
N 

= β2φι y ^ — — =i δχι χ ■ The Fourier transform of 1/r is Α-κ/k2. ( 9 . 4 4 ) 
j=xV\k-kj\2 

/
kF SÎ, Λ __ Assume that states are occupied up to a Fermi 

wave vector and turn the sum over j into an (Q Λ C \ 
(27r)3 1,2 I I,2 _ yi, Ί, integral. However, the restriction that χι = 
\ ) Kl -f K ΔΚ- Kj c u t s i n half the density of states in Section 

6.3. 

= e φι (r) ——- ί kF — kf J In < — > + 2kikf . Write k-k,= kk, cos Θ, integrate 
2νΓ*/ Lv ' ykp-ki) J firstdcos0ythenk2dk 

(9.46) 
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So plane waves solve the Hartree-Fock equations, and the energy of state / is 

(9.47) 
vP-iP- 1P2 

El = ^-—kFF(kl/kF), 
2m π 

where the Lindhard dielectric function F(x) is 

1 
F(x) 4x ('-*>{^H (9.48) 

This expression has certain peculiarities. In particular, dE/dk is infinite at the 
Fermi surface, which means that the group velocity of electrons at the Fermi sur-
face should be infinite, a conclusion that would have catastrophic consequences 
for transport properties were it not both unphysical and incorrect. The source of 
the difficulty is visible in Eq. (9.44); it arises from the divergence when ki —> kj, 
which in turn arises from the very slow decay at long distances of the Coulomb 
interaction 1 /1r — r'|. An effect that the Hartree-Fock approximation has missed is 
screening. The effective interaction of two distant electrons actually falls off much 
faster than \/\r — 7*21 because the many electrons in between them adjust their po-
sitions to hide the distant electrons from one another, but Hartree-Fock misses this 
fact because the nature of the approximation leads it to treat only two electrons at 
a time. Screening is the subject of Problem 3 and is reviewed by Echenique et al. 
(1990). 

The energy of a collection of independent electrons is given by a sum of the 
one-particle energies. This simple relation does not hold for the energies £/ of 
Hartree-Fock theory. The sum of all £; counts terms resulting from the Coulomb 
and exchange interactions twice. The correct expression for the total energy is 
therefore, as shown in Problem 2, 

ε = Σ tfk] 
2m -kFF 

7Γ 
F from Eq. (9.48). (9.49) 

-N 
! * - 4 

3A f 
7Γ 

The integration is straightforward, although ( 9 . 5 0 ) 
care needs to be taken as k —> kp. 

9.3 Density Functional Theory 

While in the end it will produce formulae that look a great deal like Hartree-Fock, 
density functional theory has a rather different flavor. In principle, it is an exact 
account of the many-body wave-function, while in practice it spurs on varied types 
of daring approximations. 

The starting point of the theory is the observation of Hohenberg and Kohn 
(1964) that electron density contains in principle all the information contained in 
a many-electron wave function. The electronic density of a many-electron system 
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at point 7 is defined to be 

N 
n(r) = (^\J2ô(r-Rl)\^) (9.51) 

= N J d?\... drN**(ru h . . . ΓΛ,)5(Γ-Γ,)Φ(ΓΙ . . . rN). (9.52) 

Hohenberg and Kohn pointed out that if one knows the density of the ground state 
of a many-electron system, one can deduce from it the external potential in which 
the electrons reside, up to an overall constant. It must be kept in mind that the only 
ways in which two many-electron problems can differ are in the external potentials 
U and in the number of electrons that reside in the potentials. According to this 
result, both of these external parameters are determined by the electron density, so 
one can say that the density completely determines the many-body problem. This 
statement is surprising, because the density is a real function of a single spatial 
variable, while the complete quantum mechanical wave function needs N variables 
for its description. 

To prove the claim, suppose that it is false. Suppose that there exist two ex-
ternal potentials U\ (?) and t/2 (?) that result in the same charge density. Call the 
Hamiltonians that result from them 3ΐι and Ä2 , and let the ground state wave func-
tions for the two Hamiltonians be Φι and Φ2. Assume that the ground states of the 
two Hamiltonians are nondegenerate; this is a technicality that will be avoided 
completely by an improved version of the argument to be presented shortly. Then 
the ground-state energy of "K\ is realized only by Φι. So 

£ ι = ( Φ ι | ί Κ ι | Ψ ι ) < ( Φ 2 Ι Ή 1 Ι Φ 2 ) Because Ψ2 is not the ground ( 9 . 5 3 ) 

state of "K\. 

=> ε, < ( Φ 2 | Ή 2 | Φ 2 > + < Φ 2 | ( Λ Ι - Λ 2 ) | Φ 2 ) (9.54) 

=> ε ι < £2 + / drnir) \U\ (?) - U2 (?)} . T w o Hamiltonians with the same ( 9 . 5 5 ) 
J number of electrons can differ only 

in the potential. 
However, one can equally well switch indices 1 and 2 to obtain 

£2 < £i + j d? n(?) [U2(?) - U\ (?)] . (9.56) 

Adding Eqs. (9.55) and (9.56) gives 

ει + ε 2 < ε 1 + ε2, (9.57) 
which is a contradiction. Therefore the potentials U\ and i/2 must be the same. 

As a result of these observations, one can imagine being handed many different 
solid systems, told that they consist of electrons interacting with one another via 
Coulomb potentials, moving in potential U, and obeying Schrödinger's equation. If 
in each case one is given the charge density, as a function of space, then in principle 
one can deduce U and solve for all properties of the system. Thus one can think of 
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the ground-state energy £, kinetic energy T, and so on as being functionals of the 
density, and can write the following, to indicate this fact: 

Here n really means n(r), a function of space, 
ε\η] = Τ\n] + U\n} + UeeIn]. T'?the^cenergy*vis,theP°tentialdue (9.58) 

L ' L J L J e e L ' to ions, and Uee is the Coulomb interaction v ' 
between electrons. 

Hohenberg and Kohn next observed that if one can find the functional £ [n], 
then the true ground-state density n{r) minimizes it, subject only to the constraint 
that 

/ 
dr n(r) = N. (9.59) 

This assertion is proved by noting that if one starts with the "wrong" density, AÎ2, for 
Hamiltonian Ή\, then «2 should really be associated with a different Hamiltonian 
Ä2, which has ground-state wave function Φ2 and which does not minimize 

<φ2|:Κι|Φ2> = ει[«2]. (9.60) 

Only n\ minimizes £1 [n{\, and this is just what needed to be shown. 
The most intriguing feature of this view of the many-body problem is that one 

can write the energy functional £ as 

E[n] = j drn(r)U(r)+FHK[n}, (9.61) 

where FHK is the sum of kinetic and Coulomb energies: 

FHK[n} = T[n] + Uee[n}. (9.62) 

The functional FHK does not depend upon the potential U(r), and so it constitutes 
a universal functional for all systems of N particles; if one only could find this 
functional, it would solve all many-body problems for all external potentials U. 

Second Derivation of Energy Functional. It is desirable to have a second demon-
stration of the existence of the energy functional £ for two reasons. First, the 
demonstration given so far relies crucially upon assuming that ground states are 
nondegenerate. It is worth knowing whether this requirement is a dull technicality 
or a fatal flaw. Second, it might be possible to find a charge density n(r) that cannot 
result from any conceivable potential U(r). In this case, the functional £[n] is not 
yet even properly defined. Both these points are answered by defining a functional 
F[n] that is the minimum over all wave functions producing density n(r): 

F[n] = min (* | r + t / e e |*) . (9.63) 

This functional F can be defined even if there does not exist a potential U that 
would produce density n for some quantum-mechanical ground state. The process 
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of finding the ground state £o of a many-body system may therefore be carried out 
in the following way: 

£0 = min(*|7 , + £/ + t/ee|1') (9.64) 
Φ Minimize over all wave functions 
• r · / ,τ,ΐτ i H i H Ι,ΤΛΙ Ψ that produce density n, and / r i ̂ c\ 

min[min(*|r + i7 + i/ee|*)J then minimize over all densities. (9 -65 ) 

πιΐη(Φ|7' + £/ββ|Φ) + [ U(r)n(r)d. 

f> ] + [ U{r)n(r)dr 

n ψ^„ 

min Because the potential U depends ( 9 . 6 6 ) 
only upon the density. 

mm 
n 

(9.67) 

= mia E\n]. (9.68) 

The problems of defining £ in general and accommodating degenerate ground 
states are therefore solved simultaneously. 

In principle, what has been accomplished here is enormous. In principle, there 
exists a universal functional F[n] that needs to be found once and for all. One adds 
to it any particular set of nuclei, in the form of the potential £/(?), and then has only 
to find the function n(r) that minimizes it in order to solve the full complexities of 
Schrödinger's equation. As is often the case, the gap between accomplishments in 
principle and in practice is also enormous. The functional F is a magical lookup ta-
ble that is supposed to solve all of quantum mechanics upon request. No one knows 
the true F, and no one ever will, so it is replaced by various uncontrolled approx-
imations. The decades-long process of discarding approximations that disagree 
with experiment and improving on the ones that are more successful has encoded 
a great deal of accumulated physical insight within apparently simple functional 
forms. 

9.3.1 Thomas-Fermi Theory 

The simplest approximation providing an explicit form for the functionals F [n] or 
£[n] is Thomas-Fermi theory. The basic idea of the theory is to find the energy of 
electrons in a spatially uniform potential as a function of density. Then one uses 
this function of the density locally even when the electrons are in the presence of 
an external potential. 

The problem of electrons interacting by a Coulomb interaction in a uniform 
background (jellium) is unfortunately not possible to solve exactly, except in the 
limit of high density. It was solved approximately with the Hartree-Fock approxi-
mation in Section 9.2.4. The strategy here will be to use the results of the Hartree-
Fock approximation to obtain an approximate account of any term in Schrödinger's 
equation that cannot automatically be expressed in terms of density. The first term 
of this sort is the kinetic energy; the kinetic energy of a single k state is H2k2/2m, 
and one must sum over all available k, so that the total kinetic energy is 

f -* H2k2 

T = V [dk\— See Eq. (6.15) for the definition of [dk] (9.69) 
J 2m 
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= V ^ - = V — - ( 3 τ τ ψ \ 5 / \ Using Eq. (6.29). ( 9 . 70 ) 
2m5irz 2m 5 

The electron-electron interaction results within the Hartree-Fock approxima-
tion in two terms. The first part, the classical piece, is a functional of electron 
density automatically, because it equals 

- ί dr2dr/n^)n}\2). (9.71) 
2 J \r\ -r2\ 

The second piece, the exchange term, was evaluated in Eq. (9.50) for jellium, where 
it was shown to be 

3e2kF 3 / 3 \ ' / 3 , 4 / , 
—TV = —V— — ) e n . Ju s t rewrite Λ? and kp in terms of density. ( 9 . 7 2 ) 

4 π 4 \πJ 
The idea of Thomas-Fermi theory is to assume that in a system where the 

charge density is not uniform, but varies slowly, the kinetic energy and exchange 
term will be given by the same expressions given above, but evaluated locally and 
integrated over all space. The kinetic energy is 

T[n] = jdr^n
3-{3n2)2/3n5/\r), (9.73) 

and the exchange energy is 

ixc = - j dr\ß\ß e2n^(r). (9.74) 

So finally a first explicit density functional is 

£[n} = J-ï (3π 2 ) 2 / 3 ί drn5l3{?)+ ί drn{r)U(r) 

+ ' / M ipm -far 1β) Φ Mfiffl. <«5) 
2 J \r\ -r2\ J 4 \ιτ J 

Actually, this functional constitutes Thomas-Fermi theory only if the last term, 
due to exchange, is simply omitted; with the exchange term included, the theory is 
called Thomas-Fermi-Dirac. 

The conventional Thomas-Fermi-Dirac equation is obtained by writing down 
the condition that the functional (9.75) be minimized by n, subject of course to the 
constraint that the integral of n be N. One has 

δε 
u The chemical potential μ arises as the La- ( 9 . 7 6 ) δη Cf) grange multiplier enforcing the constraint that 

density be conserved. 

£ M2/\y\r) + U(r)+ [α72^-(3-)1/\\^(7) = μ. (9.77) 2m V / J \r — r2\ \πJ 
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Omitting the last term on the left-hand side of Eq. (9.77) gives the Thomas-Fermi 
equation. 

Thomas-Fermi theory is simple, but not particularly accurate, so its solution 
is relegated to Problem 4. One result of solving Eq. (9.77) is that the energy of 
an atom of nuclear charge Z is approximately — 1.5375Z7/3 Ry. For small atoms, 
this result is large by a factor of two when compared with Hartree-Fock; even for 
an atom as large as Xe (Z = 54), where one has better hope for an approxima-
tion based on slowly varying charge distributions, the equation is still in error by 
20%. The Thomas-Fermi-Dirac equation gives energies that deviate even further 
from reality. Another disturbing feature of the equations is that Thomas-Fermi 
and Thomas-Fermi-Dirac equations predict that atoms never bind into molecules; 
the energy of a supposed molecule is always lowered by pushing the nuclei further 
apart. This subject is discussed by Lieb (1981). 

Thomas-Fermi theory smooths out the charge distribution, because it has no 
way to know that electrons arrange themselves into separate shells. Thomas-
Fermi-Dirac is even less physical; it predicts that at some finite radius the charge 
distribution drops instantaneously to zero. There have been attempts to develop 
improved theories of this type by bringing in dependence upon gradients of the 
charge distribution. The original Thomas-Fermi theory is most accurate for nearly 
uniform charge distributions, so it is natural to work out the corrections that would 
occur for an electron gas in a linearly varying potential, a quadratically varying 
potential, and so on, using these results to construct an expansion in terms of gra-
dients of the density. However, none of the theories of this type has gained wide 
usage. 

9.3.2 Stability of Matter 

A different type of application of density functional theory is to address the ques-
tion of the stability of matter. That is, why does the attraction between electrons 
and nuclei not lead to a collapse in which the electrons crowd in upon the nuclei, 
producing solids with an atom every 10^15 m rather than every 10~10 m? On this 
point there is no need even to turn to experiment; common experience says that 
elements and compounds are stable. However, it is interesting to find the features 
of quantum mechanics that make the obvious possible. 

To the obvious fact corresponds an obvious answer; the Heisenberg uncertainty 
principle forbids electrons to come too close to nuclei. The momentum of an elec-
tron confined within a box of radius a must scale as h/a, so the kinetic energy must 
scale as h2/ma2. However, the potential energy to be gained by coming close to 
the nucleus only scales as —e2 ja, so the kinetic energy term seems to win. While 
this argument is essentially correct, it does not provide the formal tools needed to 
show that matter is stable. The tools need to provide a good estimate of the kinetic 
energy of electrons based upon their density, and the Heisenberg uncertainty prin-
ciple does not do a good job of it. The precise statement of Heisenberg's principle 
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is that 

/ 
drh2\V^Y I drr2\^\2 

t 2 The root mean square momentum times the 
y. . root mean square fluctuation in position of / n ηο\ 
— 4 ' a wave function must have a product greater ^ ' ' 

than fi/2; ψ is normalized, and is assumed to 
be centered at the origin. 

it can be used to bound electron kinetic energies T through 

T[n}> hl 

%m J dr r2n(r) (9.79) 

-$-

= ^ 

Figure 9.2. Profile of a wave function for which the Heisenberg uncertainty principle 
provides a particularly poor estimate of kinetic energy. 

However, (9.79) can be satisfied by wave functions looking like the one shown 
in Figure 9.2. The broad base can be chosen to contain, say, half the wave function 
probability and, by being made of width L, can turn Eq. (9.78) into no more than 
the weak requirement that kinetic energy be greater than H2/mL2. In the meantime 
if the central peak in Figure 9.2 is placed over a positive ion, it can lead to huge 
amounts of potential energy that the weak estimate (9.79) does not counteract. 

The vague feeling that a wave function shaped as in Figure 9.2 is cheating does 
not remove the need to find a way to improve the argument that matter does not 
collapse. Lieb showed that for a collection of yv electrons interacting with each 
other and with nuclei, the kinetic energy of the electrons is bounded below by 

T[n]> 
W- 9.116 drn5/3. (9.80) 
2m (8TT)2/3 

Note the very strong resemblance of this exact result to the approximate expression 
for the kinetic energy of a collection of fermions obtained by using Hartree-Fock 
theory, as shown in Eq. (9.70). The density n appears raised to the 5/3 power in 
both cases. 

The arguments leading to Eq. (9.80) are rather elaborate, and those that follow 
from it to prove the stability of matter are no simpler. Therefore, rather than devote 
more attention to Eq. (9.80), this section will show how an identical but simpler 
technique can be used to prove the stability of atoms, and in particular the hydrogen 
atom. 
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As shown in Problem 6, the kinetic energy of any wave function 

h2 r 
T\n} = — Jdr\V^\2 (9.81) 

obeys the inequality 

where 

T\n]>^f* j drn5'\ (9.82) 

ΛΓ5 = 3(ΤΓ/2)4 /3 , (9.83) 

and with the density n given by 

η(7) = \ψ(7)\2. (9.84) 

Therefore, for the hydrogen atom, the energy of a wave function ψ is bounded 
below by 

*-K, [ drn^-i dr^à. (9.85) 
2m J J r 

The variational equation that can be used to minimize this functional subject to the 
constraint 

λ ( 1 - f drn)=0 (9.86) 

is 
s2 5 h 

K_ n I (7) — g / r + λ = 0 Here λ is a Lagrange multiplier enforcing the (9 8 7 ) 
3 2 m ' constraint (9.86). 

There is also the constraint that n has to be positive. One way to enforce this 
constraint is to define n = σ2 and carry out variations with respect to σ. One for-
mally finds in this way that n = 0 is an acceptable local minimum of the functional 
Eq. (9.87); of course one can't have n — 0 everywhere or Eq. (9.86) is violated, but 
instead 

n{7)=i{6m[e2/r-X}/(5Ksh2)}3/2 forr<e2/X (g g g ) 

[ 0 else 

One fixes A by requiring the integral of n to be 1, and one finds that 

3me4 . 7Γ4. i /-, 
λ = 5ΡΕ(Τ>,/3: <989) 

inserting this form of n into Eq. (9.85) gives a lower bound to the energy of 

9me4 , -Ko« 6me4 12„ 
- (2ττ2)2/3 = --— = - - R y . (9.90) \0h2Ks 5 h2 5 

The correct answer is of course that the ground-state energy is — 1 Ry, so the esti-
mate is not so bad. 
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In this way, without explicit solutions of Schrödinger's equation, one can place 
limits upon the total energy to be gained through compression in the presence of 
Coulomb forces. Similar arguments prove the stability of matter using Eq. (9.80). 
What is really crucial is the fact that since one is considering an assembly of elec-
trons, the Pauli exclusion principle forbids them from occupying a single lowest-
energy state together. As a result, the kinetic energy penalty for compacting elec-
trons grows as w5/3 rather than just as n. The arguments by Lieb (1976) and Lieb 
et al. (1997) showing that many-electron systems are stable are rather elaborate, 
but the basic flavor is contained in use of the inequality for the very simple case of 
the hydrogen atom, and the end result is the same; matter does not implode because 
it would cost too much in kinetic energy. 

9.4 Quantum Monte Carlo 

9.4.1 Integrals by Monte Carlo 

Despite the intrinsic difficulties of solving Schrödinger's equation for many parti-
cles, there has long been a tenacious effort to solve it with as few approximations 
as possible. The most impressive progress has come from quantum Monte Carlo 
methods. The starting point is the Monte Carlo method (Section 5.4.1), now ap-
plied to the computation of integrals in large-dimensional spaces. 

The Monte Carlo idea can be used to compute the average of any function in a 
probability distribution. Consider a function g(x) where x may be a vector in a n-
dimensional space. Suppose that the probability of being at point x is iP(x), where 
to be a legitimate probability distribution 

3>(x) > 0; / dnx ?(x) = 1. (9.91) 

The average of g is 

g = Jdnxg(x)nï)- (9-92) 
To compute this average, follow the same steps as in Section 5.4.1 : 

1. Pick a starting value, xo, and compute go = g(xo)-

2. Pick a random vector Δχ, all of whose components range between — e and e, 
where e is some constant. 

3. Compute 7 (xo + Ax). 

(a) If 7(xo + Ax?)/!P(jeo) > 1 then accept the move: 2\ — XQ + Δχ. 
(b) If ^(fo + AX)/7(XQ) < 1, choose a random number p between 0 and 1. 

i. If iP(xo + Ax)/CP(Jco) < p, then again accept the move so that x\ =XQ + 
AX. 

ii. Otherwise, reject the move and take 1\ = XQ. 
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In any case, compute g\ = g(x\), and accumulate the sum of go and g\ in a 
variable G. 

4. Return to step 1 and repeat M times, continuing to assemble the sum of g in 
the variable G. 

Finally, compute 
G V M , 9: 

(9.93) 
G _ Σ £ ι Si 

° M M 
An estimate of the convergence of the integral is provided by the standard error, 

1 γ(α.-ο)2 
ΔΡ = \ = — . Actually, this expression underestimates the ( 9 . 9 4 ) 

\/~M V M — I error in the integral because results of suc-
cessive Monte Carlo steps are not completely 
uncorrelated. 

Not only averages, but any integral can be computed this way. To integrate f(x), 
choose any probability distribution obeying Eq. (9.91) and write 

J d"x f(x) = J d"x 7^n% = JW/W)- (9-95) 

Problem 7 provides a simple example of how to use this method to compute 
integrals. 

9.4.2 Quantum Monte Carlo Methods 

Starting with the ability to compute high-dimensional integrals, the quantum Monte 
Carlo method sets down two paths, variational Monte Carlo and diffusion Monte 
Carlo. Diffusion Monte Carlo is the more powerful of the two techniques, but it is 
quite complicated and will not be described here. Essentially the method involves 
constructing random walks whose probability is determined by the potential en-
ergy terms of the Hamiltonian. However there are complications due to the fact 
that wave functions change sign under interchange of particles. This fermion sign 
problem means that as the random walkers walk along, the sum one would like to 
accumulate gets both positive and negative contributions that nearly cancel, leading 
to a horrible loss of numerical accuracy. See Foulkes et al. (2001) for a descrip-
tion of clever ideas used to evade this problem and details of how to implement 
diffusion Monte Carlo. 

Variational Monte Carlo is more straightforward. Let y\ be shorthand for the 
space and spin variables Τ\σ\. Choose a trial wave function ty(y\ . . .y^) and com-
pute the ground state energy 

„ ( dNy^*(y{ . . .yM^iyx . . .yN) 
t, = -—: — - . Integrals over y are shorthand for integrating 

I d^y Φ * ( 7 ι . · . .y/vì^CVl ■ · · J/v) over spatial variables rand summing over spin 
variables σ. 

( 9 . 9 6 ) 
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Varying parameters in Φ, the goal is to find the lowest possible energy, and there-
fore an estimate of the ground state energy. The Hamiltonian "K might, for ex-
ample, be the fundamental Hamiltonian Eq. (9.1) for a number of classical nuclei 
interacting with quantum mechanical electrons. The nuclei and some valence elec-
trons might be replaced by pseudopotentials (Section 10.2.1). The calculations 
might be carried out in a periodic system where each cell contains N electrons and 
M nuclei, and the whole many-body system repeats periodically to simulate a solid. 
In all cases, the basic task is to come up with as good a variational wave function 
Φ as possible, and then to compute the integrals in Eq. (9.96). 

The first ingredient of conventional trial wave functions is a solution of the 
Hartree-Fock equations Eq. (9.34) for the Hamiltonian one has decided to solve. 
This numerical problem is not simple, but techniques to address it are advanced and 
described in Section 9.2.3. Call this wave function ^HF(J I · · · 9N)- There would 
be no sense using <]/HF itself as the trial wave function in Eq. (9.96) since the energy 
that would come out in the end would have to be the energy in the Hartree-Fock 
equations. The main defect of Hartree-Fock wave functions is that they do not 
account for correlations between electrons. Correlations can be included by using 
wave functions of the Jastrow form, which means 

Φ(?ι ...yN) = ΦΗΡ(?Ι · · ■ yN)e^>=> x ( ? ' H Σ < ^ Β ( Α Λ ) (9.97) 

The functions χ and u are varied to make the energy in Eq. (9.96) as low as possible. 
A constraint upon u is that it must obey the cusp conditions. Assume that u is of 
the form 

u(yh yj) = Ησ, ,σ2 {ni). Where ry = \r, - rj\ (9.98) 

Then if spins are opposite (σ\ φ ai), 

dun 

drtj 
— ÜQ is the Bohr radius. ( 9 . 9 9 a ) 

while if they are the same 
du TT 
dnj 

~ (9.99b) 
2ao 

These relations are derived in Problem 8. 

9.4.3 Physical Results 

The most significant result obtained from Quantum Monte Carlo concerns the be-
havior of jellium, the interacting electron gas described in Section 9.2.4. Calcula-
tions concerning this basic system go back to the earliest days of quantum mechan-
ics. The results are usually reported in terms of the electron separation rs defined 
in Eq. (6.30) over the Bohr radius ao. When rs/ao is large, the electron gas is di-
lute, while when it is small the gas is dense. Somewhat surprisingly, the problem 
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is easiest in the limit where the gas is very dense. In this limit, the Hartree-Fock 
approximation is accurate and from Eq. (9.50) gives an energy per particle of 

«=?^_AA F = 5JL(^/4__Lì!(^y/32s. mm) 
N 5 2m 4π 5 2malv 4 ' r} 4π a0 \ 4 ) rs 

For a high-density gas, the largest energy comes from the kinetic energy of elec-
trons pushed into high-energy states by the Pauli principle. Coulomb interactions 
of electrons with each other cancel against the interaction with background charge, 
so the next contribution comes the exchange energy, is negative, and is smaller by a 
factor of rs/üQ. These results were confirmed by Gell-Mann and Brueckner (1957) 
using methods of quantum field theory, and several additional terms in powers of 
rs/ao were added to the sum. 

However, there had long been indications that an expansion in powers of rs/ao 
would not fully capture the behavior of jellium. Bloch (1929) performed further 
calculations using Hartree-Fock theory that predicted that at a certain electron den-
sity, the electrons should become completely spin polarized and ferromagnetic. 
The Hartree-Fock approximation was not thought to be reliable at the electron den-
sity at which this prediction was made, so it remained clouded in uncertainty. Soon 
after, Wigner ( 1934) examined the problem in the limit where the electron density 
became very low, rs/ao was large, and concluded that electrons should behave like 
classical particles and condense into a crystalline lattice, the Wigner crystal. Ob-
servation of such Wigner crystals in semiconductors with low conduction electron 
densities is discussed by Field et al. (1988). 

The electron densities where these transitions occur were first calculated by 
Ceperley and Alder (1980) using Diffusion Monte Carlo. To find the energy of 
electron gases, the calculations employed trial wavefunctions with Slater determi-
nants of plane waves times Jastrow functions as in Eq. (9.97). To find the energy of 
Wigner crystals, the electron wave function was instead taken to be a Slater deter-
minant of Gaussian peaks centered at bcc lattice sites, again multiplied by a Jastrow 
function. The transition from electron gas to Wigner crystal occurs when the best 
wave function of the second type has lower energy than the first. The calculations 
continue to be refined, and a phase diagram of jellium as a function of temperature 
and electron density appears in Figure 9.3. 

9.5 Kohn-Sham Equations 

Quantum Monte Carlo calculates properties of solids exactly, but is far too time-
consuming to use in all but the simplest cases. Even the Hartree-Fock Eqs. (9.34) 
are too slow to solve for systems with many atoms. Density functional theories 
such as the Thomas-Fermi equation are suitably quick, but unacceptably inaccu-
rate. The equation most frequently used in practice for large numerical calculations 
in solids is a cross between the two and was introduced by Kohn and Sham (1965). 
This theory constructs a density functional theory in such a way as to treat elec-

tron kinetic energies well, reproduce selected results from Quantum Monte Carlo 
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Figure 9.3. Phase diagram for jellium, as deduced by Quantum Monte Carlo methods. 
The onset of zero-temperature Wigner crystals at rs/ao = 106 ± 1 is the most reliable re-
sult; other details of the diagram should probably be viewed as more tentative. [Source: 
Càndido et al. (2004), p. 2] 

exactly, yet retain computational speed. In order to efficiently capture the kinetic 
energy associated with electronic configurations, Kohn and Sham retreated slightly 
from the plan of writing all material properties as functions of the electron density, 
and proposed using instead a set of N single-electron wave functions ψι (r) as the 
main ingredients, obtaining the density from them by 

N 

η(?) = Σ\Ψι{7)\2. (9.101) 
ι=ι 

In Kohn-Sham equations, the kinetic energy term of the energy functional is 

vi1 f 
2>] = Σ ^ J d7 lV^/ | 2 · (9-102) 

Apart from the kinetic energy, the energy functional has the same basic form as 
the Thomas-Fermi theory, Eq. (9.77). Instead of varying with respect to charge 
distribution, one now must vary with respect to the wave function, because one 
knows the density as a functional of the wave function but does not know the wave 
function as a functional of the density. Varying with respect to ψ* gives 

~vViW + U(r) + J „, e2n{f) ô£xc{n) 
dr ———■ + — 

\r — r\ on 
i>i(r) = £iM'!)· (9-103) 
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Table 9.2. Hartree-Fock and LDA compared with experiment 
Atom 
He 
Li 
Ne 
Ar 

LDA (KS) 
-2.83 
-7.33 

-128.12 
-525.85 

Hartree-Fock 
-2.86 
-7.43 

-128.55 
-526.82 

LDA (PZ) 
-2.92 
-7.50 

-129.27 
-528.39 

Experiment 
-2.90 
-7.48 

-128.94 
-527.60 

Total energies of atoms in Hartrees (27.2107 eV), comparing Hartree-Fock, the lo-
cal density approximation, LDA (KS) as first described by Kohn and Sham, the local 
density approximation LDA (PZ) as improved by Perdew and Zunger (1981), and ex-
periment. Source: Tong and Sham (1966) and Perdew and Zunger (1981). 

The class of approximations of the form (9.103) is referred to as the local density 
approximation (LDA). If one uses the exchange potential derived in Eq. (9.72), 
then 

-|Vw(r) + „ , -<e2n(r") 2 ( * , - Λ 1 / 3 ' U{r) + I df —A=7 -e2 -nÇ" \r—r\ \π 
Φι{7) = ει{7). 

(9.104) 
Apart from a much disputed factor of 3/2 in front of the exchange-correlation term, 
Eq. (9.104) was first written down by Slater (1951). 

But the exchange-correlation functional Zxc does not have to be approximated 
by Eq. (9.72). In principle it could compensate for all approximations and be set up 
to give exactly the right answer for interacting electron problems. However some 
approximation must be adopted for practical computation. The main idea in prac-
tice is to use the exchange-correlation energy of jellium, whose exact ground-state 
energy is known as described in Section 9.4.3. That is, the Kohn-Sham equations 
can be set up to give the exact answer when the external potential U vanishes, and 
once this is done they have proven wildly successful even after U is turned back 
on. 

The Kohn-Sham equations achieve reasonable correspondence with experi-
ment when applied to single atoms, as shown in Table 9.2. Calculations called 
ab initio or first principles are usually based upon Eq. (9.103). The best LDA 
calculations provide more accurate results than the Hartree-Fock approximation 
and approach the accuracy demanded by quantum chemists; surveys comparing 
computations in molecules with experimental results are provided by Curtiss et al. 
(1998a,b). Many different types of approximations have been tried to bring den-
sity functional theory into as close correspondence with experiment as possible. 
For example, the generalized gradient approximations (GGA) add extra derivative 
terms. See Martin (2004) for detailed descriptions of approximations currently in 
use. 

The pure research problem of painstakingly finding accurate solutions to the 
electronic energy of jellium thus turned out to have much more practical impor-
tance than one might have expected from such a simplified model system. From 
the quantum Monte Carlo calculations in jellium, it was possible to find the energy 
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of the electron gas as a function of density. Simple functional fits to these results, 
for example by Perdew and Zunger (1981), Lee et al. (1988), or Becke (1993), 
produce the exchange-correlation functionals on which current density functional 
codes are based. Papers containing these parameterizations win out over all recent 
Nobel Prize-winning results, and are the most highly-cited papers in all of physics. 

Problems 

1. Hartree equations: 

(a) Find the expectation value Fu of Eq. (9.1) in a state of form Eq. (9.6). 
(b) Take the variation of Fu, subject to the constraint that each φ be normalized: 

SFH δ 
δψι(7) δφι(7) Σ Ej j α7'φ*(7')φ](7') = 0. (9.105) 

(c) Add one extra term (without much justification apart from simplicity) so 
that the Coulomb interaction term of the Hamiltonian becomes the same for 
all wave functions. In this way, recover the Hartree equations. Notice that 
demanding that each φ be normalized is sufficient to result in an orthonormal 
set of functions. 

2. Koopman's theorem: 

(a) Evaluate the total energy of a collection of TV electrons in jellium, obtaining 
Eq. (9.49). You must add also the energy of the positive ionic background. 

(b) Compare the result with the sum over / of the single particle energies £/. 
(c) The ionization potential of an atom is the energy needed to remove the most 

energetic electron. Consider an atom with N electrons, and suppose it has 
been solved in the Hartree-Fock approximation, producing wave functions φι 
and energies £/. Suppose that when the electron of highest energy is removed, 
the remaining N — 1 wave functions continue to solve the Hartree-Fock equa-
tions, and that the energies £/ do not change appreciably. Show that in this 
approximation the ionization potential of the atom is £yy. 

3. Screening: The idea of screening comes originally from electrolytic solu-
tions. Imagine placing a charged ion into such a solution. At first the po-
tential due to the added ion extends its influence to the far reaches of the 
system, dying off slowly as \/r. However, mobile ions nearby rapidly react 
to the intruder, and the motions they make in response have the effect of al-
most completely canceling out its electric field, except within a characteristic 
distance called the screening length. Because this phenomenon occurs gen-
erally for any assembly of charged particles, it can be studied in the context 
of Thomas-Fermi theory, given by Eq. (9.77). 
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(a) Consider Eq. (9.77), omitting for simplicity the last term on the left-hand 
side resulting from exchange. Suppose that no is the solution of this equation 
when the potential U(r) vanishes. If now a small potential U(r) is added, find 
the equation governing deviations Sn(r) of the density from perfect uniformity 
to first order in U. 

(b) Consider adding one extra electron to the uniform electron gas, and therefore 
specialize to the case 

e2 

U\r) = — . Yes, it is dubious to regard such a potential as ( 9 . 1 0 6 ) 
T small, but the basic lesson is still correct. 

Solve the linearized equation for δη by use of Fourier transforms. The answer 
should be of the form 

e-r/i 
δη . (9.107) 

r 
Identify the screening length ξ, and express it in terms of the Bohr radius and 
the average volume per particle of the original uniform electron gas. 

(c) Estimate the screening length for aluminum. 

4. Thomas-Fermi theory: Use Thomas-Fermi theory to study an atom with 
nuclear charge Z and Z electrons, so that the potential is 

U{r) = -Ze2/r. (9.108) 

(a) Rewrite Eq. (9.77), omitting the final term and substituting the function V(r) 
for n(7) through 

[~2mV]3/2 

3π2Η3 

(b) Show that in the vicinity of the origin, V(r) —> —Ze2/r. 

(c) Define 

(9.109) 

V(r) = X, r = DS, a n d b = — [-7-] Z ' . a0 is the Bohr radius. 

(5 
Show that for spherically symmetric solutions and s > 0 one obtains 

*1/2§ = * 3 / 2 · ( 9 · 1 Η ) 

(d) Show that the boundary conditions on χ require χ(0) = 1 and 
χ(οο) = 0. 
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5. Thomas-Fermi numerics: 

(a) Solve the two-point boundary problem in Eq. (9.111) numerically, and find 
the function χ. 

x Figure 9.4. Solution of the 
Thomas-Fermi equation. 

2 4 6 
Scaled distance s = r/b 

10 

(b) Find in particular the slope of χ at the origin. 
(c) Show that for a neutral atom with N — Z electrons and a nucleus of charge 

Ze, one obtains 

"7;— \M—7 — τ;— \M ■ Use the fact that the chemical potential u vanishes. ( 9 . 1 1 2 ) 
oN oZ 

(d) Show therefore that 

tdZ I dr 
e2n(r) 

(9.113) 

(e) Express the total energy £ in terms of the slope χ'(0) of χ at the origin, and 
verify that the energy of the atom is — 1.5375Z7/3 Ry. 

6. Variational estimates: 

(a) Show that for any square integrable function, 

Τ[ψ]= ( dr \Vip(r)\2>Ks j ί dr n3\ , (9.114) 

where 

and 

^ = 3(π/2)4/3 

η(7) = \φ(7)\2. 

To carry out the demonstration, consider minimizing 

/ J r | V ^ ( r ) | 2 

Kx = 
{fdrmr)\*} 6 \ l / 3 ' 

(9.115) 

(9.116) 

(9.117) 
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-ν2ψ-αψ5=0. 

and show that ψ (assumed real) obeys a variational equation of the form 

(9.118) 

Find a formal expression for a. Verify by substitution that 

,3a2 

a a is an arbitrary length. (9.119) 

solves Eq. (9.118) and that Ks is given by Eq. (9.115). 
(b) Use the inequality, valid when l/p+l/q = 1, 

g{r)f(r)dx\ < \m\p UP 
i(f)\q 

!/</ 

to show that 
Τ[ψ] >KS ί drn5/3(7). 

(9.120) 

(9.121) 

(c) Verify the result quoted in Eq. (9.90) that as a result one can bound the 
ground-state energy of the hydrogen atom from below by — 12/5 Ry. 

7. Integrals by Monte Carlo: 

Write a routine to compute the volume of a unit sphere in n dimensions. That 
is, integrate the function 

/<*) = { J 
For the probability CP in Eq. (9.95), use 

0>(*) = 

if x2 < 1 
else. 

e x . 

(9.122) 

(9.123) 

Take the constant e governing the size of Monte Carlo steps to be of order 1. 

Use this routine to calculate the volume of a sphere within 1% in 1, 2, 3, and 
4 dimensions. Monitor convergence of the integral through the standard error, 
Eq. (9.94), which will however underestimate the error in the integral because 
successive steps are not completely uncorrelated. 

8. Cusp Conditions in Quantum Monte Carlo: Consider the local energy de-
fined for any wave function Ψ(?) and the Hamiltonian of Eq. (9.1) by 

£/o(?) 
1 

φ( 
-:ΚΦ(Γ) (9.124) 

(a) Show that if Φ(?) is the true ground state wave function, £/o has no singu-
larities, and in fact is constant. 
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(b) Now take a wave function of the form Eq. (9.97) with u given by Eq. (9.98). 
Assume that the Hartree-Fock wave function is nowhere singular, and that 
X(y) has no singularities. Focusing on a pair of particles / and j , write 

Φ(?) = β-»(^/(3?1 . . . ^ ) , (9.125) 

where / is defined to be absolutely everything in Φ except for the one term 
involving w(r,-y) that has been singled out. Argue that singularities in the local 
energy £/o can be eliminated by ensuring that there are no singularities in 

1 ( H2-V2 +
 el\e-«(ru)f (9.126) 

e -"('■//)/ 1 2m ' r 

= 2^ (u"(r'j) + ("'M)2 + 2«'(^-)rl7 · ψ - ^ j (9.127) 

ft2 2u'(ra) el 
+ 2 — e 2 ^ - ^ + —. 2m r r 

(c) If particles i and y have opposite spin, argue that / remains in general finite 
as r,j —> 0. Assuming that limr^o u'(r) and limr^o u"(r) are finite, show that 
the singularity in Eq. (9.126) can be eliminated by taking 

lim u(r) = . iio is the Bohr radius. (9.128) 

(d) If instead, however, particles / and j have the same spin, then / must be an 
odd function of r,- and 7j. As r,-y —>■ 0 

f^A-ru + . . . . (9.129) 

Show in this case that 

lim u'(r) = — . a0 is the Bohr radius. (9.130) 
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10. Realistic Calculations in Solids 

10.1 Introduction 

The attempt to construct approximations accurate enough so that properties of 
solids could be deduced from Schrödinger's equation was initiated seriously by 
Wigner and Seitz (1933), who computed properties of metallic sodium. They re-
garded the attempt to proceed much further along these lines with a degree of 
skepticism, and two decades after their original work they commented that 

If one had a great calculating machine, one might apply it to the problem 
of solving the Schrödinger equation for each metal and obtain thereby 
the interesting physical quantities, such as the cohesive energy, the lat-
tice constant, and similar parameters. It is not clear, however, that a great 
deal would be gained by this. Presumably the results would agree with 
the experimentally determined quantities and nothing vastly new would 
be learned from the calculation. It would be preferable instead to have a 
vivid picture of the behavior of the wave functions, a simple description 
of the essence of the factors which determine cohesion and an under-
standing of the origins of variation in properties from metal to metal. 

—Wigner and Seitz (1955), p. 97 

Now that the great calculating machines exist, not all agree that Wigner and 
Seitz's advice should be adopted. Slater spoke with slight disdain of those "trying 
to get valid results relating to energy bands from simplified models, rather than 
through the direct types of calculations which one can make with the methods 
now in use" [Slater (1975), p. 191]. However, even if the resolution to proceed 
with large calculations is taken, it is not at all easy to obtain numerical results in 
agreement with experiment. Many approximations must always be employed, and 
decades have been devoted to finding the schemes that are most successful and 
effective. This collection of approximations and numerical techniques is referred 
to as band structure calculation. It has achieved many successes and has reached 
the stage where many properties of a wide variety of solids can be computed almost 
automatically, with knowledge of nothing but atomic numbers. The methods can 
also experience qualitative failures, which only experience and comparison with 
experiment reveal. 
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10.2 Numerical Methods 
10.2.1 Pseudopotentials and Orthogonalized Planes Waves (OPW) 

Band structure calculations all operate within the single-electron framework, mean-
ing that they assume it possible to study the behavior of solids by choosing a poten-
tial and studying the behavior of a single electron in that potential. Almost always 
the potential will be taken to depend self-consistently upon solutions for electron 
states in the potential, but in the end one solves a problem with only one electron in 
it. The reason is simply a matter of practicality. The size of the calculation goes up 
as the power of the number of particles that are treated in it simultaneously. On a 
lattice of M sites with N particles, the difference between solving the true interact-
ing Schrödinger equation in all its glory and a reduction to one-particle problems is 
the difference between working with MN variables as opposed to M x N. The cal-
culations of the previous chapter have shown how to obtain one-particle potentials 
incorporating information about interactions of electrons with themselves. 

Yet even after reduction to a periodic one-electron problem, the task one faces 
in solving Schrödinger's equation is daunting. Take the case of gold. A variety of 
experimental probes, such as the low-temperature specific heat in Table 6.2, reveal 
that gold greatly resembles a nearly empty box containing one electron per atom. 
Yet gold's atomic number is 79. In some fashion the first 78 electrons per atom 
simply crowd about the nucleus, screening it from the outside. How then should 
they be treated? What potential do they leave behind? The answer is provided by 
pseudopotentials, due to Phillips and Kleinman (1959). 

In fact, pseudopotentials serve two different purposes simultaneously. On the 
one hand they provide crucial conceptual justification for the nearly free electron 
model of solids, showing explicitly how the problem of finding wave functions in 
the presence of ionic Coulomb potentials can be mapped onto equivalent problems 
where the potentials are much weaker. Simultaneously, they provide a calculational 
tool that substantially increases the range of problems in solids that can be brought 
within computational reach. 

The best illustration of the idea is provided by orthogonalized plane waves, 
(OPW) although they have not found much practical use. Suppose one has a pe-
riodic solid in which the electrons can safely be divided into two groups, the core 
states and the conduction states. The core states are localized around particular 
atomic sites. Denote core states by \ψε) and plane waves (exp[/£·?]) by |it). An 
orthogonalized plane wave indexed by k is defined to be 

_ _, v _ The subscript "ps" indicates that this is a "pseudo" 
|&pS) = \k) — 22 \Ψΰ) (lpc\k), k state. The following derivation works for any ex- ( 1 0 . 1 ) 

c tended states \k). 

where the sum is over all occupied core levels \tpc). Look at the effect on these 
states of the Coulomb potential for an atom of valence Z,U = Z/R. It is 

Û\kps) = ΰ\%)-Σ ΰ(ψε\%)\ψ€). (10.2) 
e 
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If \ipc) were a complete set of states, then Û\kps) would vanish. As it is, the hope is 
that all matrix elements of Û \kpii) will be small. Examine the Schrödinger equation 
in a basis of kpii states. It is 

ÇK-£)ft,s> = (—+*/-ε)|*ρ,) 

where 

μ 
V2m 

h2k2 

2m 

(-
^2m 

(—+ΰ-ή\\ϊ)-Σ(^\ΐ)\Α) 

|*) + (tf-£)|*)-£(£c-£)|VO<rf> 
e 

+ Uvs-E)\k) = ^kps-E)\k), 

E EC is the eigenvalue of \ipc). Note that if \ipc) 
( £ c — £ ) 11pc) (tpc I. w e r e a complete set of states, t/ps would flat-

ten nut tn thp r*r*nct!inf y ten out to the constant δ. 

(10.3) 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

The summary of Eqs. (10.3) through (10.7) is 
In particular, if one finds an eigenvector | * p s ) = J ^ C~k \k) 

(!JÎ — £ ) jfcps) = ÇJips — £,)\k). causing the right hand side to vanish, then |Φ) = y^Cj: | t p s)(10.8) 
is an eigenvector for the left hand side. 

Thus there is a complete correspondence between the original Schrödinger equa-
tion and a new one with a weak pseudopotential (7ps whose solutions may be close 
to plane waves, as in Section 8.2. There is some price to be paid for this simplifi-
cation. The pseudopotential Ùps is nonlocal; that is, to compute its action upon a 
general state ψ(7), one has to perform integrals. In addition, t/ps depends upon the 
unknown energy eigenvalue £, and the eigenvalue problem one needs to solve is 
more involved than for the usual quantum-mechanical problems. 

Empirical and First-Principles Pseudopotentials. Development of the pseudopo-
tential beyond this first suggestive calculation has proceeded along two routes. On 
the one hand, it could be argued that the most important lesson to take away is 
that the apparent existence of weak potentials is explained in principle, so one may 
as well experiment with simple weak potentials, chosen so as to match important 
features of experiment. One example is the empty-core potential, due to Ashcroft 
(1966), depicted in Figure 10.1. The three free parameters of this potential—its 

Figure 10.1. The Ashcroft 
empty core pseudopotential 
is zero up to a critical ra-
dius Rc, and it equals a 
screened Coulomb potential 
—UQ exp[—r/i/]/r thereafter. 

Distance r 
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« 

0.0 

0.0 
•(A) 

2.0 

Figure 10.2. Real and pseudo wave functions for the 5s, 5p, and Ad levels of silver. The 
5p level is not much occupied in the ground state of silver, but it can be included in the 
pseudopotential nevertheless. 

magnitude i/o, the cutoff Rc, and the exponential decay length d—can be adjusted 
to fit measurements taken from optical or magnetic experiments, as shown in Sec-
tion 23.4. Potentials of this sort are good enough to permit a quantitative compar-
ison with experiment for some of the simpler metals, such as the alkali metals or 
aluminum. Their use is reviewed by Heine (1970), and the empty core potential 
will be used for the cohesion of metals in Section 11.4. 

On the other hand, it is possible to construct first-principles pseudopotentials to 
encode information about atomic wave functions in a form particularly convenient 
for transportation into solids. The name given these pseudopotentials promises too 
much, because numerous approximations are needed to produce them, but the basic 
idea behind them is worth appreciating. It proceeds in three steps. 

1. Choose an atom, and write down the Kohn-Sham equations for it. Employ 
the approximation that the electron density n(r) = Σ 1^/(7)|2 be spherically 
symmetric about the nucleus, and impose this requirement in replacing n 
by its spherical average if necessary. Once the equations Eq. (9.104) have 
been forced to be spherically symmetric, all of their solutions are of the form 
J{ni(r)Yim, where Y[m is a spherical harmonic and 3i„/ is a radial wave function. 
The equation for the radial functions is 

2m rdr2> 
1(1 + 1) 

]Xn! + 
e2n{r') 

df 
e2Z δΕΧ£ 

1 
r δη 

■•ni Ä„/(r)=0. 

(10.9) 
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Solve these equations for all the electrons belonging to the atom. Denote the 
energies of these states by £„/. 

2. Consider all the outermost s, p, d, and / states lying in partially filled shells. 
These are the states that contribute to bonding between atoms in molecules 
and solids, and they will be singled out for special treatment. Drawings of 
these radial wave functions appropriate to silver appear in Figure 10.2. To 
form pseudo wave functions 3 ^ deriving from solutions of Eq. (10.9), simply 
take each radial function, pick a point beyond its rightmost node, and draw a 
smooth curve in to the origin. This smooth curve has few constraints to satisfy, 
and it is easy to construct. It should be without nodes, except at the origin 
where it should vanish as rl. It should join on to the original radial function 
with at least two derivatives continuous. And finally, the wave functions built 
from these new radial functions should remain correctly normalized. Any 
function with these properties produces an acceptable pseudo wave function, 
as illustrated in Figure 10.2. 

3. Finally, replace the original Coulomb potential U with a pseudopotential Ûps 

built so that solving the Kohn-Sham equations gives the functions Äps rather 
than "R. This task can be accomplished directly from Eq. (10.9). Just write out 
the equation for the radial wave functions as 

£ / / » 
1 d2r^ / ( /+ ! ) 

2 m r X 5 dr2 r2 J 

(Vi . HF.„ 1 
(10.10) / 

g y y ) ÔEXC 
\r — r\ onPs 

In other words, by brute force, take Ufs(r) to be whatever is necessary to have 
the desired Ulni as the solution. Potentials constructed in this way for silver 
appear in Figure 10.3. Because there is a different pseudopotential for each 
angular momentum state, the way the pseudopotential acts upon an arbitrary 
function ψ(?) is through first breaking φ down into its angular momentum 
components 

φ{7) = Υ^Υ1πι{θ,φ)φ1ιη{ν)- φιΜ{ν)= j'αθάφ siner^e, φ)ψ{7), (10.11) 
Im J 

and then multiplying ipim(r) by £//ps(r) in forming the Hamiltonian. The need 
for these integrals means that the pseudopotential is nonlocal. 

Analytical results can also be employed to improve the form of the pseu-
dopotential. As remarked in Section 9.2.2, the Hartree-Fock approximation does 
not properly take into account the many-electron phenomenon of screening, with 
the consequence of giving incorrect results for electrons near the Fermi surface. 
The electrons surrounding each nucleus should screen the Coulomb potential, but 
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100 
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Figure 10.3. Pseudopotentials for the 5s, 5p, and Ad states of silver. 

Hartree-Fock and its descendants have no guarantee of handling this phenomenon 
correctly. An unscreened Coulomb potential Ze2 jr behaves as AixZe2/q2 once 
Fourier transformed; the main effect of screening is to eliminate the singularity at 
q — 0, producing a form such as 

f/Ps = 4πΖ<?2 

q2 + K2 
K is a screening length. (10.12) 

Section 20.4.2 presents a general theory of dielectric functions that can be used to 
address this problem, and according to a model calculation presented as Problem 
20.7, an electron cloud will cover each bare nucleus so that 

U**(q = 0) = --EF. This constraint applies to the Fourier trans-
form of the / = 0 component of the pseudopo-
tential. Ω is the volume of a unit cell. 

(10.13) 

Relation (10.13) can be used as a constraint on pseudopotentials—for example, to 
estimate κ in Eq. (10.12). 

For heavy atoms, relativistic effects become important because electrons near 
the nuclei move at speeds that are a significant fraction of the speed of light. The 
electron wavefunctions near the nuclei must therefore be described by the Dirac 
equation. However, the pseudopotential method can also be applied here. To de-
termine the radial wavefunctions, one must generalize the Kohn-Sham equations 
(9.104)so that they correspond to the Dirac equation. Suppose this is done and 
wave functions and energies have been determined. Then the techniques described 
above can be employed again; in fact, one can construct a pseudopotential so that 
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a solution of the ordinary Schrödinger equation gives a wave function that resulted 
originally from a solution of the Dirac equation. In this way, a code that solves the 
Schrödinger equation everywhere can secretly account for relativistic effects. 

The pseudopotential procedure is not completely without risks. One risk is that 
it will not work quite as advertised, and the pseudopotential will have in addition 
to its ground state some low-lying states that enter into later calculations, but bear 
no resemblance to any state of the original potential. Such states are called ghosts, 
and as discussed by Gonze et al. (1991) they can lead to inaccurate computations. 

10.2.2 Linear Combination of Atomic Orbitals (LCAO) 

Given a collection of atoms arranged in some fashion on a lattice and their asso-
ciated pseudopotentials, the next task is to construct corresponding solutions of 
Schrödinger's equation. One must therefore choose a set of basis functions and 
devise a procedure that keeps the calculation within reasonable bounds. 

One of the first methods employed historically to obtain moderately realistic 
solutions of Schrödinger's equation is the Linear Combination of Atomic Orbitals 
introduced in Section 8.4.1. 

Application of the method begins with construction of the matrices described 
by Eqs. (8.32) and (8.42). The minimal number of overlap integrals that needs 
to be computed, notation to describe them, and detailed calculations for the most 
common lattices were first outlined by Slater and Koster (1956). These integrals, 
the Slater-Koster parameters can be viewed in two ways. On the one hand they 
could be the calculational goal of a numerical effort, which finds the atomic wave 
functions and calculates all the integrals. On the other hand, they can be treated as 
adjustable parameters that describe the structure of the bands, but whose values are 
to be determined by any means possible, including a fit to experiment. It was for 
this latter purpose that Slater and Koster originally developed the formalism. 

While methods of this sort were used extensively in early band structure cal-
culations, they have largely been displaced by more general numerical methods 
described in the following sections. However tight-binding calculations can lead 
to much more rapid calculations than the more general methods, and therefore may 
provide the only way to approach quantum-mechanical problems involving large 
numbers of atoms arranged in a non-crystalline manner. An example of such usage 
is provided by Bernstein and Hess (2003). 

10.2.3 Plane Waves 

There is a method for conducting a systematic attack upon Schrödinger's equation 
that is conceptually even simpler than summing up atomic orbitals. Write down 
Bloch's theorem in the form Eq. (7.33) and solve it directly. For many years, 
this strategy was regarded as impractical because computer memories were not 
large enough and the full benefits of pseudopotentials had not been realized. The 
situation has changed now that computer memories over 100 MB are no longer 
exceptional, but it is worth explaining why the problem used to exist. 
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How many terms does one need in (7.33) to get reasonable accuracy? Suppose 
that one were not employing a pseudopotential, so that the potential U(r) varied 
like \/r in each unit cell. Consider the case of silver, whose outermost electron 
is conventionally assigned to the 5s state. In the vicinity of the nucleus, such an 
electron wave function has four nodes within a distance on the order of an angstrom 
(see Figure 10.2), so to represent this function accurately in a Fourier basis would 
require Fourier components with wave vectors up to at least 2π x 4/( 1Â) ~ 24 Â - '. 
Because silver has a lattice constant of a = 4 Â, its reciprocal lattice vectors start 
with a magnitude of around Αττ/α ~ 3 Â~ '. Thus in the sum over reciprocal lattice 
vectors 

K = 1^+1202 + ^3 (10.14) 
one needs to allow /), I2, and IT, to vary from around —8 to around 8. This sim-
ple estimate says that one needs around 5000 plane waves to have any hope of 
accuracy, and it seems to require trying to diagonalize 5000 x 5000 nonsparse ma-
trices. This task is by no means impossible, but it is sufficiently time-consuming 
that plane waves seem at a disadvantage in useful calculations. 

Although this argument has been used to justify the neec " r more sophisticated 
basis sets, such as augmented plane waves, it is not entirely correct. There are 
two flaws. The first flaw lies in dealing with real atomic wave functions rather 
than pseudo wave functions. The pseudo wave functions lack the fine wiggles of 
their predecessors, and the number of Fourier components needed to describe them 
diminishes accordingly. For example, in silicon allowing l\ . . . 1-$ to vary from 
—4 to 4 (leading to 800 plane waves) is enough. The second flaw lies in the hasty 
conclusion that there is a need to diagonalize an 800 x 800 matrix. In fact, no one 
is at all interested in finding the energy levels of 800 bands. All one actually needs 
in order to calculate anything of physical interest is to find the energy levels below, 
and within a few electron volts above, the Fermi surface; that is, one needs to find 
the lowest-lying five to ten energy bands. 

There are methods of varying degrees of sophistication to extract low-lying 
eigenvalues and the corresponding eigenvectors from large matrices. One method 
involves little more than multiplying the matrix repeatedly into a randomly chosen 
initial vector. This method is rather crude, and it does not converge nearly as well 
as more sophisticated approaches if the only task at hand is diagonalizing a matrix. 
However, band structure calculations involve not only diagonalizing a matrix, but 
also determining the entries in the matrix self-consistently, either because they de-
pend upon charge density through density functional theory or even because ions 
are being allowed to move in a search for the structural ground state. In the context 
of such self-consistent problems, Car and Parrinello (1985) found that the crude 
method of matrix multiplication holds its own rather well, and because this method 
is so simple it will be described below. 

Suppose that one has a HermitianN xN matrix M for which the lowest eigen-
value λι is some large negative number and for which the highest eigenvalue λ/ν 
is zero. Because the matrix is Hermitian, its eigenvectors ê\ . . . ê^ can be chosen 
orthonormal. Pick a random vector a\ with N components, multiply M into a\, 
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then multiply the result by M again, and so on, repeatedly. The effect is to amplify 
at an exponentially growing rate the component of a\ that is parallel to the lowest 
eigenvector ê\. After multiplying a\ by M r times, the result is the vector 

N 

E \V:êi{êi ·α\). Write a\ in a basis given by ê„ and begin mul- ( 1 0 . 1 5 ) 
' «plying by M. 

i = l 

Because a\ has been chosen randomly, there is no reason for â-ê\ to vanish, and 
as r grows, the term proportional to this factor must grow to dominate the sum. 
The rapidity with which this happens depends upon the separation between λι and 
\2', if they are degenerate, then the first two terms in the sum grow together. In 
any event, after sufficient multiplication of M upon a\, the result is proportional 
to êi, and both the lowest eigenvector and eigenvalue are determined. What of the 
next-lowest eigenvalue? It may be found by using the knowledge of ê\ to eliminate 
anything proportional to ê\ from the sum (10.15). Repeat the multiplication pro-
cess, but beginning with cÎ2 = a\—ê\{ê\-a) rather than a\. If even a small bit of ë\ 
is left in the result due to numerical error, it will grow exponentially rapidly when 
02 is multiplied by M. After every one or two multiplications one needs to project 
out the component of ë\ again. However, now the part of the sum dominated by the 
next-lowest eigenvalue will grow exponentially out of all the rest, giving ëi. Given 
êi, «3 = 0.2 — êïiai -ë-i), provides a starting point for finding êj, and so on. 

The task of multiplying an 800 x 800 matrix a few times into a vector is a great 
improvement over the task of finding 800 eigenvalues, but is still burdensome. A 
great virtue of using plane waves as basis functions lies in the fact that no matrix 
of such a size needs to be stored at all, and its action upon wave vectors can be 
computed much more rapidly than might at first seem possible. 

Consider, for example, any Hamiltonian of the form 
pi In order for this method to be effective, U should be a 

ryr \-U (R\ Pseud°Potential, smaller than the true ionic potential and ( i n I f.\ 
1™ \ )■ without a singularity near the origin. ^ ' ' 

The goal now is to find the lowest eigenvalues and corresponding eigenvectors of 
Eq. (10.16), using the form of Schrödinger's equation displayed in Eq. (7.33) and 
taking the wave function φ to have the form given in Eq. (7.35). Of course, instead 
of using an infinite number of reciprocal lattice vectors, one builds ψ out of a finite 
number of them. If the low-lying eigenvalues are to be deduced by multiplying ψ 
by "K repeatedly, one must begin by ensuring that the large negative eigenvalues of 
Ji are larger in absolute value than the large positive eigenvalues. Suppose Kmax 

to be the magnitude of the largest reciprocal lattice vector appearing in Eq. (7.33). 
The kinetic energy of the corresponding plane wave would be /i2A'max/2m = £max; 
the kinetic energy dominates the large positive eigenvalues of "K, because the po-
tential energy of a plane wave with large Kmax should be comparatively small. So, 
taking the operator acting upon ψ to be 

K' -, 
This is a restatement of Eq. (7.33), with rp(q) written as V„j (K), where K is the reciprocal 
lattice vector so that a — K = k lies in the first Brillouin zone. 
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one can now begin obtaining eigenvalues. The sum required to evaluate the poten-
tial energy seems to be numerically expensive, but in fact costs less than at first 
appears. The action of the potential energy upon ψ is in the form of a convolution; 
through use of the fast Fourier transform (Appendix A), J ^ , U^^C^K') can 
be evaluated for Νχ values of K in only approximately Νκ In N% operations, rather 
than N% as first appears. 

Numerous variants of this basic method are possible. For example, instead of 
multiplying the wave function by "K, one can multiply repeatedly by 

l + Mdt/h. (10.18) 

Thus one obtains eigenfunctions recursively from 

■ψη+λ = (l+ÎCdt/h)il>n => ΨΧ+'-Ψ" = \<κ>ψη, (10.19) 
dt h 

which in the limit dt —> 0 is a version of Schrödinger's equation with the time t 
replaced by the imaginary quantity it. While electronic eigenfunctions are busy 
iterating their way toward correct values, one can choose at the same time to allow 
other features of the problem to vary. Most importantly, as progressively more 
accurate wave functions are obtained, the charge density following from them must 
be used to determine the terms dependent upon density in Eq. (9.104). In addition, 
if the true equilibrium location of all atoms is not known, then at each iterative step 
the forces on all atoms can be computed and the atoms can be allowed to move in 
the directions of the forces. In this way, equilibrium atomic positions and electronic 
wave functions can be computed simultaneously, as opposed to an approach in 
which certain atomic positions are assumed, wave functions are calculated to high 
accuracy, forces on atoms determined, the atoms moved, and the process begun 
again. Car and Parrinello (1985) showed that it is possible to attempt dynamical 
problems, in which ions move according to Newton's laws, driven by clouds of 
electrons whose configurations are being calculated self-consistently while the ions 
move. 

10.2.4 Linear Augmented Plane Waves (LAPW) 

All methods for solving the Schrödinger equation should in principle be the same. 
However, numerical calculations for problems with an infinite number of degrees 
of freedom are always approximate. Many methods aim to choose a set of basis 
functions that approximate the real solutions as closely as possible, so that the de-
composition of true wave functions in terms of the basis with a small number of 
terms has a hope of being accurate. Some of the most widely used are [linear] 
augmented plane waves ([L]APW), Korringa-Kohn-Rostoker (KKR), and [linear] 
muffin tin orbital ([L]MTO). These methods have many features in common with 
each other, as well as with the plane wave method of the previous section, and 
emphasize in varying degrees either the free-electron nature of electrons between 
atoms or else the atomic nature of electrons near the cores. The codes with greatest 
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claim to accuracy tend to be expensive in terms of computational power and mem-
ory usage, while others making more severe approximations run faster on smaller 
machines. 

This section will briefly discuss augmented plane waves, which are due to 
Slater (1937). The starting point is the observation after Eq. (7.47) that Bloch's 
theorem provides the possibility of finding wave functions for the entire crystal by 
solving Schrödinger's equation within a single unit cell, subject to the boundary 
conditions recorded in Eq. (7.49). 

In order to make the computation of boundary conditions simple, it is conven-
tional to mangle the periodic potential even beyond the point to which it has been 
taken so far. The periodic potential U is taken to be of the muffin-tin form, which 
means that within a unit cell the potential is zero except within a sphere in the 
middle, where it is taken to be spherically symmetric, as shown in Figure 10.4. 
Because the potential is zero in the region where the boundary conditions are to be 
applied, wave functions take a simple form that makes the boundary condition easy 
to handle. In the center, because the potential is chosen to have spherical symmetry, 
one has a convenient basis of wave functions at his disposal. Lattice symmetries 
now enter the problem only through the boundary conditions on the cell edge. 

Figure 10.4. The muffin-tin poten-
tial is nonzero within a spherical re-
gion surrounding each ion and is 
zero everywhere else. 

The augmented plane wave basis set is defined by the following: 

1. φ^ = elkr outside a muffin hole. 

2. -^-Η2ν2φει + υ(Γ)φει = Εφ^ within the hole. 

3. φε^ is continuous at the hole boundary. 

These conditions specify the basis functions uniquely, but are not very explicit. 
Within the muffin hole, the potential is some spherically symmetrical function 
U(r). All solutions can be written in the form 

# = ^ A W , (10.20) 

where 3?/g satisfies the equation 

~h2 9
:r2~JilE(r) + [U(r) + ^ + H ] K / e ( r ) = £K /£(r). (10.21) 

2mr2 dr dr 2mr2 



276 Chapter 10. Realistic Calculations in Solids 

For an arbitrary £ there are two independent solutions to this equation, one of 
which diverges at the origin, while the other diverges at infinity. One must discard 
the solution that diverges at the origin, but divergences at infinity are of no concern, 
because the solution need remain finite no further than the edge of the unit cell. 
This second solution is therefore perfectly acceptable, and one can write 

oo / 

Φεί = Σ Σ AlmYlm(r)%e(r), (10.22) 
/=0 m=-/ 

where for the moment all of the coefficients A.\m are arbitrary. They may be fixed by 
application of the condition that the wave function be continuous across the muffin 
hole boundary. Recall that 

oo / 
É ^ = 4 7 T ^ J2 ilJl(kr)YlmCk)Ylm(r)- See Landau and Lifshitz (1977), ( 1 0 . 2 3 ) 

1=0 m=-l P ' 

Then, taking R/, to be the radius of the muffin hole, one has 

♦" = ̂ i «»UW). 00.24) 

There is now a function φ for every £ and every k. The functions have a discontinu-
ity in slope at the muffin boundary, which there is not enough freedom to remove at 
this stage. Next consider the problem of matching the boundary conditions (7.49) 
at the edge of the primitive cell. Because the augmented plane waves are no more 
than plane waves there, one can accomplish this task simply by considering func-
tions built to obey Bloch's theorem in the form 

The K are reciprocal lattice vectors and b-k , g ( 10 .25) 
are coefficients to be determined. This ex-
pression is especially simple because of the 
decision to set the potential U to zero outside 
the muffin-tin. 

The parameter £ is still allowed to vary freely. How should one think about it? The 
augmented plane wave functions form a complete (not orthonormal) set for any £. 
But one should only expect them to converge rapidly to a desired eigenfunction 
by choosing £ to be the eigenvalue corresponding to that eigenfunction. Therefore, 
during the numerical search for the coefficients b^, one should vary the parameter £ 
buried within the augmented plane wave functions so as to correspond to the latest 
estimate of the eigenvalue and obtain the most rapid convergence of the series. 
Although one need not set £ equal to the eigenvalue of Schrödinger's equation, 
they often are the same, and they are denoted by the same symbol for this reason. 

The only remaining task is to determine the coefficients b^,^. The best way 
to do it is to use the variational principle of Eq. (B.l 1), which directs one to insert 
Eq. (10.25) into 

(</>|A-£|V>), (10.26) 

Ψϊ = Σ , Η+κΦεΜκ-
κ 
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and then require all variations with respect to each b-k , g to vanish. Let q and a' be 
any vectors differing from k by a reciprocal lattice vector K. The result is then that 

ο = Σ < ^ | Α - ε μ ^ ^ , (10.27) 

where 
(φ^ | Ä - ε | ΦΕ? ) = ( n~PL - ε ) Ω % ? + Uff The final answer is given by 

^ ' i ' 2/jj ^'v ^ " diagonahzing this matrix. ί 1 is 
the volume of the unit cell. 

and, with P; a Legendre polynomial 

UM = 4TTRI { 

,h2q-q' gJ\{\q-q'\Rh) 
2m 

00 n2 
\q-q 

(10.28) 

> . (10.29) 

These formulae are easily generalized to include more than one hole per unit 
cell. Relativistic effects are incorporated solving the Dirac rather than the Schrödinger 
equation. In practice, accuracy on the order of 10 - 3 Ry can be obtained with 20-
100 APW basis functions. 

10.3 Definition of Metals, Insulators, and Semiconductors 

The significance of energy band calculations emerged slowly during the first five 
years after the discovery of quantum mechanics. Bloch's original understanding of 
his equations was that all solids were metals, but their degree of conductivity was 
determined by the degree of wave function overlap between neighboring atoms, 
such as Q in Eq. (8.34). However, Wilson (1931) realized that the real situation 
was more interesting. In the view of one-electron theory, insulators are solids in 
which all occupied energy bands are completely filled, while metals are solids in 
which at least one occupied energy band is only partly filled. 

The formal proof of this statement must wait for Chapters 16 and 17. However, 
it is intuitively plausible. The sketches in Figure 10.5 show characteristic energy 
bands and sections of Brillouin zones for metals and insulators. In an insulator, 
all the states of low-lying bands are completely filled. Because the Pauli principle 
forbids multiple occupation of states, when an electric field is applied, the electrons 
are locked in place. Their only hope of moving is to travel to an upper band. The 
energy gap Eg acts, however, like a physical barrier, and the motion can only occur 
through quantum-mechanical tunneling, whose rate is roughly exp[—kpEg/(eE)}, 
where E is the strength of the applied electric field and kp is the Fermi wave vector; 
the correct expression will be derived in Eq. (16.64). By contrast, in a metal, at 
least one band is only partly filled. Therefore electrons at the Fermi surface are 
free to move into adjoining states. In the presence of an electric field, the electron 
distribution slides slightly in the direction of the field, in momentum space, giving 
the electron population a net momentum and leading to current flow. Wilson noted 
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Figure 10.5. Schematic indication of the difference between metal and insulator in the 
one-electron picture. In an insulator, all occupied bands are completely filled. Because 
each edge of the Bnllouin zone joins periodically and seamlessly onto another portion of 
the Brillouin zone, there is no boundary to the region of occupied states, and there is no 
Fermi surface. In a metal, at least one occupied band is only partly filled, and a Fermi 
surface exists. 

an analogy to atomic orbitals. A filled band is like a filled shell; it is stable and 
rather rigid, while an unfilled band like an unfilled shell is easily polarized. The 
electronic specific heat, for example, calculated in Eq. (6.77) is proportional to the 
density of states at the Fermi surface. If there is no Fermi surface, it is as if there 
are no electrons. 

The number of states in a Brillouin zone equals twice the number of primitive 
cells in the whole lattice, because the state indexed by wave vector k admits two 
electrons. Therefore, the Brillouin zone of a Bravais lattice can only be completely 
filled if it has an even number of electrons per site. In Wilson's words, one of the 
first consequences of this point of view is that "an elemental solid .. . with an odd 
valency had to be a metal, whereas elements with an even valency might produce 
either a metal or an insulator" [Wilson (1980), p. 45]. The periodic table bears this 
observation out completely. There appear at first to be exceptions—for example, 
in columns 7A and 5A—which are filled with insulators. In none of these cases 
has the element adopted a Bravais lattice. Instead, it finds a unit cell containing 
an even number of atoms and an even number of electrons. Equation (11.47) in 
Chapter 11 will show explicitly how a small distortion of a unit cell can provide a 
structural energy advantage by turning a metal into an insulator. 

Two additional classes of solids can also be defined using the concepts of filled 
bands. A semiconductor is an insulator where the energy gap E.g is small enough 
compared to kßT at room temperature that thermal fluctuations provide a substan-
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tial population of conducting electrons. This definition of a semiconductor as an 
insulator with a gap of 1-2 eV or less, is not precise, and Pauli's kind advice, "One 
shouldn't work on semiconductors, that is a filthy mess; who knows whether any 
semiconductors exist" [Pauli (1931)] might be followed if semiconductors were 
not responsible for such a large portion of the world economy. A semimetal is by 
contrast a metal with such a very small population of conduction electrons at zero 
temperature that its conducting properties are poor; a semimetal results when only 
a tiny pocket of electrons escapes the boundaries of the Brillouin zone, leading to 
conduction electron densities three or four orders of magnitude less than the normal 
1022 cm"3. 

The definition of metals in terms of their band structure is a powerful idea, far 
from obvious, and extremely productive. Nevertheless, it is neither completely sat-
isfying nor always correct. It has little predictive power regarding the distribution 
of metals in the periodic table. One might expect all the elements of the second 
and tenth columns to be insulators, since they have even numbers of electrons per 
unit cell, and atomic shells have just been filled, but all these elements are metallic. 
The insulators all appear in a triangle on the right-hand side of the periodic table. A 
principle other than band structure appears to be deciding whether an element will 
be insulating or metallic, and the element is then forced to choose a lattice so that 
its band structure be consistent with this choice. Section 18.3 describes some of the 
ideas that can be employed to predict whether a compound should be metallic or 
insulating. There is also a wide range of compounds in which band structure calcu-
lations insist that the result should be metallic, yet experimentally the substance is 
an insulator. These are solids for which electron correlation is very important and 
calculations based upon single-electron models fail in quantitative ways. Classic 
examples include NiO and CuO, and they are discussed in Section 23.6.3. 

10.4 Brief Survey of the Periodic Table 

The technology of band structure calculations opens the possibility of traversing 
the periodic table and beginning to calculate materials properties. Density func-
tional calculations are not always in a position to operate entirely without assis-
tance from experiment. The difference in energy between competing ground state 
structures is often so small that calculations cannot objectively choose between 
them, as indicated for example in Table 11.9. However, given the correct lattice 
structure, the calculations proceed to make many useful predictions. 

For many reasons the process of comparing theory and experiment is not com-
pletely straightforward. What the band structure calculations provide is a collec-
tion of energy bands Enk for a large number of wave vectors k and for a number of 
bands. The pictures fill pages with curving lines, but what do they mean? 

If the philosophy of density functional theory is followed literally, the one-
electron wave functions are simply artifacts that arise in the course of calculating 
electronic ground state energies of solids and should not be given additional sig-
nificance. This restrictive view is difficult to maintain, considering that hosts of 
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physical properties, ranging from electrical conduction to spontaneous magnetiza-
tion and optical absorption, can be calculated in terms of a single-electron picture. 
So it is always interesting to examine the bands the arise during density functional 
calculations and ask if transitions between them correspond to experimental obser-
vations. But one cannot be very upset or surprised if predictions obtained in this 
way lack quantitative accuracy. 

For example, optical experiments described in Section 23.6 measure energy 
bands directly, so it is natural to hope that calculated energy bands correspond di-
rectly to these measurable quantities. Seeking predictions about excited electronic 
states based on a naïve view of band structures is not completely meaningless, but 
characteristically involves errors on the order of 20-50%. For example, the ex-
perimental band gaps of insulators and semiconductors typically differ from band 
gaps calculated in density functional theory by this amount. Closer correspon-
dence with experiment is only achieved either through the deliberate incorporation 
of small amounts of experimental information into the density functional formal-
ism, or else through lengthy additional calculations that differ from one element to 
another and have not yet been formulated as generally applicable procedures. 

10.4.1 Nearly Free Electron Metals 

Here are samplings of the sorts of information obatined by calculating band struc-
tures of the elements. 

Several of the elements, particularly those near the top of Table 6.2, are very 
well described as nearly free electron solids. The description is best for the alkali 
metals forming the first column of the periodic table, but also works moderately 
well for the noble metals, copper, silver and gold, forming column 11 (or IB). The 
closed shells of the valence electrons are nearly inert, and the conduction electrons 
interact with them rather weakly. Essential to the self-consistency of this picture 
is the fact that the Fermi surface in these metals is rather far distant from the edge 
of the Brillouin zone, as shown in Figure 8.7. The only electrons available for 
transport properties move at energies where the lattice is completely ineffective at 
scattering them. 

The band structure of aluminum appears in Figure 10.6. The calculated bands 
are compared with free-electron parabolas, whose complicated appearance is purely 
due to their reduction to the first Brillouin zone. The electrons in aluminum are be-
having nearly as if they were noninteracting electrons moving through an empty 
box. 

By contrast, the bands of copper shown in Figure 10.7 contain features both 
of localized and nearly free electrons. The ten 3d electrons lie in a set of narrow 
bands about 2 eV below the Fermi surface and about 2 eV in width, while the 4s 
electron lies mainly in a band extending from about 10 eV below the Fermi surface 
to several electron volts above. The density of states looks like the sum of two 
pieces, the broad band containing the s electron, and the narrow band containing 
d electrons. The s and d bands hybridize together in the energy range where they 
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Figure 10.6. (A) Energy bands of aluminum; all energies measured relative to the Fermi 
energy. Solid lines are calculated with plane-wave pseudopotential code VASP of Kresse 
and Hafner (1994) and Kresse and Furthmuller (1996). The calculation assumes that 
aluminum adopts the fee structure, with a lattice constant of 4.05 Â, and uses several 
hundred plane waves. Notation for the symmetry points in k space for this figure is given in 
Figure 7.8. The dashed lines show free-electron parabolas, which are remarkably similar to 
the calculated bands, indicating that aluminum is described well by the nearly free electron 
model. (B) Energy density of states of aluminum. The solid line results from calculations 
from VASP, while the dashed line comes from the free electron model (Eq. (6.24)). Peaks 
in the density of states are van Hove singularities, as described in Section 7.2.5. 

intersect. The energy band calculations indicate the existence of occupied levels 
sitting 2 eV below vacant levels just above the Fermi surface (gray box in Fig-
ure 10.7 (A)). One can expect that the lowest-energy photons copper will absorb 
should have energy around 2 eV, and experiment bears this out, as shown in Figure 
23.8. Making this prediction based upon the one-electron band structure is some-
what risky, for band structure calculations are designed to predict ground-state 
properties and unoccupied bands that arise in the computations do not necessarily 
lead to good predictions about excited states. 

The elements of the second and twelfth columns of the periodic table could 
in principle be insulators, because from an atomic perspective, all electrons lie in 
closed shells, just having filled an s level. However, both band calculations and 
experiment agree that these elements form metals, in rough accord with the nearly 
free electron point of view. Instead of contracting to hug the Brillouin zone, the 
Fermi surface crosses in and out of it, leading in all cases to a metal. The elements 
of cubic symmetry (Ca, Sr, Ba) have two electrons per unit cell and are described 
by the second columns of Figures. 8.6 and 8.7. The elements with the hep structure 
(Be, Mg, Zn, Cd) have four electrons per unit cell, and they roughly correspond 
to the diagrams in Figure 8.8. For the lighter of these elements, where spin-orbit 
coupling is small, the middle column is appropriate, while for the heavier elements 
the rightmost column is the one that applies. 

281 
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Figure 10.7. (A) Energy bands of copper, as calculated with the plane-wave pseudopo-
tential code VASP of Kresse and Hafner (1994) and Kresse and Furthmiiller (1996). All 
energies are measured relative to the Fermi energy The calculation assumes that copper 
adopts the fee structure, with a lattice constant of 3.61 Â. Not only the outer s electron but 
also 10 c? electrons must be treated by the calculation. The 3d electrons are at a character-
istic distance of less than 1 Â from the nucleus, and approximately 1000 plane waves are 
needed to capture simultaneously the extended s electron and tightly bound d electrons. 
Light absorption is dominated by the transition indicated by arrows in the gray box; the 
prediction that absorption sets in at around 2 eV is in reasonable agreement with data in 
Figure 23.8. (B) Energy ensity of states of copper. Peaks in the density of states are van 
Hove singularities, as described in Section 7.2.5. 

10.4.2 Noble Gases 

Some elements are naturally viewed from the perspective of the tight-binding 
model (Section 8.4). The noble gases (column 18 of the periodic table) are ex-
cellent candidates, since all electrons lie in closed shells that grip them tightly and 
prevent them from taking part in transport processes. With the exception of he-
lium, all the noble gases form solid crystals at sufficiently low temperature, and the 
band structures of these gases nicely illustrate the way that bringing atoms together 
broadens discrete atomic states into bands. 

Consider the band structure of krypton, shown in Figure 10.8. The ioniza-
tion potential of an isolated krypton atom is 14.1 eV, and its first excited state is 
around 10.5 eV. In solid krypton, the atoms form an fee lattice with lattice con-
stant a = 5.72 Â. Experimentally, the lowest electronic excitation of solid krypton 
is around 10 eV above the ground state, similar to the value in the isolated atom. 
The calculation in Figure 10.8 finds instead an energy gap of 6.7 eV, 70% of the 
experimental value. Such inaccuracy in this quantity is typical of band structure 
calculations. The calculation does correctly find that the atomic levels have been 
broadened into energy bands with a width around 2 eV. Atomic levels broaden into 
bands because in a crystal electrons can hop between atomic sites with a range of 
kinetic energies. Because the separation between conduction and valence bands is 
so large, a representation of the valence band in terms of tightly localized Wannier 
functions should be excellent. Thus the solid has two correct and complementary 
descriptions: as an assemblage of nearly independent atoms, or in terms of very 
narrow completely filled bands. 
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Figure 10.8. (A) Energy bands of krypton, calculated with the plane-wave pseudopotential 
code VASP of Kresse and Hafner (1994) and Kresse and Furthmiiller (1996). All energies 
are measured relative to the Fermi energy. The calculation uses around 1000 plane waves, 
and it assumes an fee structure with lattice parameter a = 5.72 Â. The notation for the path 
traversed in reciprocal space for this figure is given in Figure 7.8. The ionization energy 
of an isolated krypton atom is £jonjze, the experimental band gap £™p is 10.5 eV, and the 
calculated band gap is around 6 eV. (B) Density of states of krypton. The electrons are 
restricted to three narrow bands, holding six electrons, lying just below the Fermi surface. 
An additional band at —19 eV, not depicted, holds an additional two electrons. Peaks in 
the density of states are van Hove singularities, as described in Section 7.2.5 

10.4.3 Semiconductors 

The fourteenth column of the periodic table separates insulators from conductors, 
and it is largely populated with semiconductors. Carbon is a semimetal in the form 
of graphite and is a very wide band semiconductor in the form of diamond; gray 
tin is semiconducting while white tin is metallic. 

The band structure of graphene appears in Figure 10.9 (see also Problem 8.5). 
Graphene consists in a single atomic layer of carbon atoms in a honeycomb struc-
ture. The most notable feature of the band structure is the occurrence of a two-fold 
degeneracy right at the Fermi surface at symmetry point K. The uppermost degen-
erate band is unoccupied in the ground state, while the lower one is fully occupied. 
The density of states at the Fermi surface is extremely small, making graphene, like 
graphite, a semimetal. When graphene folds around an axis to create a nanotube, 
the periodic boundary conditions imposed on the wave function make it possible 
for the tube either to remain a semimetal, or to become a narrow or wide-gap semi-
conductor. The relation of electrical properties to the geometry of the nanotube is 
the subject of Problem 3. 

The single most important band structure of the elements appears in Figure 
10.10: the band structure of silicon. Understanding fine details of electronic excita-
tion and transport and silicon constitutes the foundation of the electronics industry, 
and will occupy much of Chapter 19. The calculations represented in Figure 10.10 
contain valuable information, but also reveal a characteristic weakness of density 
functional calculations. As with krypton, it is tempting to regard the gap between 
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M T K Energy density of states D{E) 

Figure 10.9. (A) Energy bands of graphene, calculated with the plane-wave pseudopo-
tential code VASP of Kresse and Hafner (1994) and Kresse and Furthmiiller (1996). All 
energies are measured relative to the Fermi energy. Notation for the symmetry points in 
k space in this figure is given by Figure 7.10. Note that at symmetry point K a filled and 
empty band are degenerate and meet at the Fermi surface. (B) Energy density of states 
of graphene. At the Fermi level, the density of states falls to zero, reflecting the fact that 
graphene is a semi-metal. Peaks in the density of states are van Hove singularities, as 
described in Section 7.2.5 

the highest occupied and lowest unoccupied state as the energy that will be charac-
teristic of excitations. The existence of such an energy gap is correct, but the value 
visible in Figure 10.10 is too small by about a factor of two when compared with 
experiments, such as optical absorption to be discussed in Section 21. Theoretical 
curves displayed in Section 23.6.2 cure this problem in two ways—some by de-
liberately adjusting parameters in the pseudopotentials to improve correspondence 
with experiment, and others by combining additional information about electron 
interactions in with ordinary density functional theory. 

10.4.4 Transition Metals 

The transition metals lying in columns 3-8 of the periodic table are not well de-
scribed by the nearly free electron model. The 3d, Ad and 5d shells fill when 
passing left to right among these elements, but always strongly mixed with the As, 
5s, and 6s states, as shown by the calculated band structure of vanadium, in Figure 
10.11. The wave functions of silver shown in Figure 10.2 illustrate the fact that 
the d orbitals are restricted to a radius of about 2 Â about the atom—in contrast 
to the s and p orbitals, which extend out many times as far. Therefore, the most 
appropriate simple starting point for considering the d electrons is a tight-binding 
model. However, all simple calculations of this type are risky, and only partly be-
cause of the need to mix s and p states in with d. Several of the transition metals 
have magnetic structures in their ground states, a sure sign that the electrons are 
developing correlations of a sort not readily comprehensible in the one-electron 
framework. 
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X W L Energy density of states D(£) 

Figure 10.10. (A) Energy bands of silicon, calculated with the plane-wave pseudopotential 
code VASP of Kresse and Hafner (1994) and Kresse and Furthmiiller (1996). All energies 
are measured relative to the Fermi energy. The calculation assumes that silicon adopts 
the diamond structure, with a lattice spacing of 5.43 Â, and uses several thousand plane 
waves. The calculation correctly determines that silicon is a semiconductor, and that the 
lowest lying spot in the conduction band lies between Γ and X. However the size of the 
energy gap £Ä is computed to be around 0.5 eV, which is half the value obtained by more 
sophisticated calculations and experimental measurements shown in Figure 23.16. (B) 
Energy density of states of silicon. Note that the density of states falls to zero in the gap. 
Peaks in the density of states are van Hove singularities, as described in Section 7.2.5 

Energy density of states D(£) 

Figure 10.11. (A) Energy bands of vanadium, as calculated with the plane-wave pseu-
dopotential code VASP of Kresse and Hafner (1994) and Kresse and Furthmiiller (1996). 
All energies are measured relative to the Fermi energy. The calculation uses the fact that 
vanadium adopts the bcc structure, and it requires about 1000 plane waves. Notation for 
the symmetry points in k space in this figure is given by Figure 7.9. The location of the 
Fermi level in the midst of the complicated d bands is characteristic of the transition met-
als. (B) Energy density of states of vanadium, showing the large density of states due to d 
electrons near the Fermi surface. Peaks in the density of states are van Hove singularities, 
as described in Section 7.2.5 
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10.4.5 Rare Earths 
The difficulties of applying band theory to the transition metals become even more 
acute in the case of the lanthanides. In this series of elements, the 4 / orbitals are in-
complete. These orbitals are even more tightly peaked about individual atoms than 
d orbitals, but nevertheless the solids remain metallic. While the close association 
of electrons to their respective atoms might seem to make a simple tight-binding 
model accurate, the actual situation is that the one-electron picture breaks down. 
For example, it is generally unfavorable for two electrons to occupy the same spa-
tial state with opposite spin, a fact that a one-electron point of view will not be 
able to comprehend. The origin of these difficulties is Coulomb repulsion between 
the / electrons. Roughly speaking, Coulomb repulsion for wave functions of ra-
dius R will contribute terms to the energy going as e2 exp [—/?/£]//?, where ξ is 
the screening length. Because screening lengths are typically on the order of 0.5 
Â, screening cannot much reduce the interactions of the / electrons, and they are 
driven to imaginative solutions involving local magnetic moments that band theory 
does not capture. 

Problems 

1 Details of the augmented plane wave: When there is more than one type of 
atom per unit cell, one surrounds each atom with a sphere of radius Rn, places 
the center of each sphere at rn, and proceeds to deduce that for augmented 
plane waves, 

(Φεΐ\ΰ-ε\Φεψ) 1m £ ) n-W + E ^ ' ^ î W ' (10-3°) 

with 

i W = 4irRl < 

'tfq·? _Λ M\q-?\Rn) 

00 h2 

1=0 

2m 

2m' 

\q-q 
+ £ f-(2/ + l)P,(q■ q'mqRMiq'Rn)^'^ 

> . 

&ηΐε(Κη) 
(10.31) 

Derive Eqs. (10.30) and (10.31). 

2. Pseudopotential for aluminum: Consider the empty core pseudopotential, 
shown in Figure 10.1, and normalized for a unit cell of volume Ω as 

V(r) = U0e-^^9(r-Rc). (10.32) 

Here d is a screening length, and Rc is a parameter describing a length within 
which the cancellations leading to the pseudopotential are taken to be perfect. 
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The goal is to determine i/o, Rc, and d. The experimental data that make 
it possible come from the de Haas-van Alphen effect (Section 16.5.2) and 
optical data, as in Problem 2 of Chapter 23. However, all one needs to know 
is that it has been possible to measure the Fourier transform Uq defined in 
Eq. (7.26), at two reciprocal lattice vectors, and the results for aluminum are 

t / ( i n ) =0.245 eV (10.33) 

(̂200) = ° · 7 6 2 e V · (10.34) 
The reciprocal lattice vectors are being described by their Miller indices and 
are measured in units of 2-π/α. 
In addition, the Fermi energy, measured relative to the lowest-energy k state, 
is 

£jr = 11.7eV, (10.35) 

which can be used in Eq. (10.13). 

(a) Take the Fourier transform of Eq. (10.32). 
(b) Determine i/o, d, and Rc by finding a reasonable fit of Eq. (10.32) to the 

measured values Eq. (10.33), (10.34), and (10.13). The agreement cannot be 
perfect, because one is trying to fit three parameters with two variables. Use 
any nonlinear fitting routine, or use a process of trial and error as convenient. 
The final values should be close to those listed after Eq. (10.38). 

3. Nanotube conductivity: An (m, n) nanotube was defined in Problem 1.3 to 
be a graphene sheet rolled up so that the atom &Xc = ma\ +««2 finds itself back 
at the origin, where a\ and Ü2 are primitive vectors of the graphene sheet. 

(a) Argue that for an (m, n) nanotube, allowed Bloch vectors k must satisfy 

k-C = 2nl. Where / is an integer. ( 1 0 . 3 6 ) 

(b) Consulting Figures 10.9 and 7.10, note that the nanotube should be expected 
to be metallic if symmetry point K is an allowed value of k, and a semicon-
ductor or insulator otherwise. Show for positive m, n, that the condition for K 
to be an allowed value of k is 

m = n Or m — n = 3j. Where j is an integer. ( 1 0 . 3 7 ) 

The nanotubes with n = m are in fact all metallic, while those with m — n = 3j 
are very narrow-band semi-conductors at very low temperatures, and effec-
tively metallic at room temperature. The remaining nanotubes are semicon-
ductors. See Louie (2001) or Charlier et al. (2007). 

4. Plane wave band structure, part I: The following five problems outline the 
construction of a primitive plane wave band structure code. The programming 
task can be carried out in any language, but the computing environment should 
be one that 
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• can carry out complex arithmetic, including multiplication and exponentia-
tion of complex numbers, and 

• can take the (discrete) Fourier transform of a three-dimensional array of 
complex numbers. 

The first task is to write a subroutine that takes two arguments. The first is 
c(i, j), an N x M-dimensional array of complex numbers. The second is an 
integer, i\. The columns of c are orthonormal up to i\ — \. The task of the 
subroutine is to replace the i'ith column of c with a column that is orthogonal 
to the preceding i\ — l columns and normalized to unity. Test the program on 
the following numbers: 

c(i,l) c(i,2) c(i,3) c(i,4) 
(0.258198887,0.516397774) (-0.392356962,-0.249681681) (0.303851753,0.138416067) 0 
(0.774596632,0.258198887) (0.321019441,-0.071337625) (-0.221133977,0.082717843) 2 

(0..0.) (0.107006453,0.749045134) (0.097649745,-0.087221026) 1 
(0.,0.) (0.321019351,0.) (0.889513135,0.156192154) 0 

The first three columns are orthonormal. Find c(i, 4). 

5. Band structure, part II: Consider the Fourier transform of the pseudopo-
tential in Figure 10.1 

u*-Uoe dK[*& + i] · ( i a 3 8 ) 

Take d = 0.350, Rc = 0.943, and i/o = —31.30 (the units are angstroms and 
electron volts). These numbers are appropriate for aluminum and are the sub-
ject of Problem 2. The task is to compute 

U(r) = Σ S^Ug, (10.39) 

taking K to be the reciprocal lattice vectors of an fee lattice of spacing a = 4.05 
(Â). 

(a) Find Ug=0-
(b) Use Eq. (2.4) to construct the primitive vectors of the reciprocal lattice. 

(c) Consult Appendix A.6 for guidance on the use of the fast Fourier transform. 
Obtain a routine capable of performing the transform forN xN xN arrays of 
numbers; the problems will use TV = 4, 5, 8, and 12. If such a routine cannot 
be located, the problems can be performed for TV = 4, 8 only. 

(d) For a given value of N, for what values of r will a fast Fourier transform 
routine compute U(r), and how will they be indexed? 

(e) Use the routine to evaluate Eq. (10.39), taking N — 5, and printing the 125 
values of U(r) and r in the Wigner-Seitz cell. Here are some of the values. 
The first three numbers are x, y, and z coordinates of r in angstroms, and the 
final number is the value of the potential U(r) in Rydbergs. 
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4 0 5 
4 0 5 
4 0 5 
4 0 5 

0 . 
0 . 4 0 5 
0 . 8 1 0 
1 . 2 1 5 
1 . 6 2 0 
0 . 
0 . 4 0 5 
0 . 8 1 0 
1 . 2 1 5 

0 . 
0.405 
0.810 
1 .215 
1 . 620 
0.405 
0.810 
1.215 
1. 620 

0.201763183,0 
-0.201839209,0 
-0.757843018,0 
-0.757843018,0 
-0.201839209,0 
-0.201839194,0 
-0.658886611,0 
-0.718343496,0 
-0.734894872,0 

If only TV = 4 is possible, then U does not come out to be real; the first values, 
in Rydbergs, are 

50625 
50625 
50625 

0. 
0.50625 
1.01250 
1.51875 
0. 
0.50625 
1.01250 

0. 
0.50625 
1.01250 
1.51875 
0.50625 
1.01250 
1.51875 

0.166458577, 0 
-0.265354961, 0 
-0.911596537, 0 
-0.265354961,-0 
-0.265354931, 0 
-0.591810703,-0 
-0.781587422, 0 

) 
240282357) 

) 
240282357) 
240282387) 
186816186) 
103971817) 

6. Plane wave band structure, part III: Consider Schrödinger's equation in the 
form of Eq. (7.33). 
The task is to find the lowest-lying eigenvalue δ and eigenfunction ψ solving 
this equation with the potential given by Eq. (10.38). Look for a solution with 
Bloch index k = 0; essentially, this means that one sets q = 0 in Eq. (7.33). 
Restrict all calculations to the 5 x 5 x 5 set of K considered in the previous 
portion of the problem. 

(a) Define a 5 x 5 x 5 complex array ψ(Κ). Let £max be £^ , where Kmax is the 
largest value of K under consideration. Write a routine to compute 

^(£) = (£|-£max)^) + Ç ^ ( ^ - ^ ) · 
Κ' 

(10.40) 

The hard part of the computation is the convolution ]Γ^, Ug,ip(K — K'). To 
perform the convolution, use the fact that 

Σ U^(K-K') = ^ [ Γ ' ^ χ ϊ - ' ^ ί ) ] ] ; (10.41) 

that is, take the inverse Fourier transforms of U and i/>, form a new array by 
multiplying together each element of U and ψ, take the Fourier transform of 
the result, and divide by TV3. This procedure is vastly faster than performing 
the sums described by the convolution directly. 

(b) To find the ground state of Eq. (7.33), 
i. Choose some random initial normalized ψ(Κ), such as ψ(0) = 1, with all 

other components zero. 
ii. Find -φ' according to Eq. (10.40). 

iii. Normalize ψ'. 
iv. Put -ψ' back into the right-hand side of Eq. (10.40), and find ψ". 
v. Normalize ψ". 
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vi. Continue in this fashion until the process converges. One should be left 
with the lowest-energy eigenstate of Schrödinger's equation. 

vii. What is the eigenvalue £ of this state from Eq. (7.33)? 

7. Plane wave band structure, part IV: Consider again the potential given in 
Eq. (10.38). The new task is to compute the lowest-lying six eigenvalues £ ^ 
of 

(ε0
ξ-ε)ψ(ξ)+Σ U^iq-'K') (10.42) 

K< 

for k = [2π/α](Λ .4 .4), and a = 4.05Â. Combine the routine for comput-
ing action of the Hamiltonian on wave functions with the orthogonalization 
routine Problem 4. Use an 8 x 8 x 8 grid for K. 

For the first four eigenvalues, on 8 x 8 x 8 and 12 x 12 x 12 grids one has the 
following in Rydbergs: 

8 x 8 x 8 
-0.27 

0.13 
1.17 
1.17 

12x 12x 12 
-0.27 

0.13 
1.17 
1.17 

8. Plane wave band structure, part V: 

(a) By adding an outer loop to the program produced in the previous problem, 
calculate the band structure of aluminum. Use a 4 x 4 x 4 grid. Carry out the 
calculation along the trajectory L to Γ, Γ to X, X to U, U to Γ. Use about ten 
k points for each leg of the trajectory. Plot the first six bands. Do not expect 
the results to be perfect; the energy levels do not always appear in the correct 
order, and sometimes the convergence is slow. With a cutoff of around 10,000 
on iterations for each energy level, one obtains the following figure: 
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The task is to produce a graph of roughly similar quality, with energies in-
dicated on the y axis in electron volts. Compare with the energy bands of 
aluminum shown in Figure 10.6. 

(b) Suppose that energies in Figure 10.6 were reported relative to the Fermi 
level. Outline in words the calculations needed to determine the Fermi level. 
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11. Cohesion of Solids 

11.1 Introduction 

The cohesive energy of a solid is the energy needed in order to rip a sample apart 
into a gas of widely separated atoms. By itself, this energy does not have much 
significance. It is not easy to measure experimentally, and it bears no relation to 
the practical strengths of solids; practical strength is governed by resistance to flow 
and fracture, physically quite distinct from cohesive energy. 

The question that the cohesive energy makes it possible to address is how crys-
tals choose their equilibrium structure. Electronic structure calculations begin by 
assuming that atomic positions are known, but in studying cohesive energy, one 
asks which structure leads to the lowest energy and why. In the course of this 
study, crystals divide roughly into five classes: molecular, hydrogen bonded, ionic, 
covalent, and metallic. These classes blend into each other, but still represent con-
ceptual ideal types. The molecular crystals are composed from atoms whose shells 
are filled, which hold tightly onto their electrons, and which bind together only be-
cause of small induced dipole moments. Hydrogen bonded solids involve hydrogen 
atoms as part of the bonding process; this might seem too specialized to warrant 
a separate category except that it includes much of biology. The ionic crystals are 
composed of pairs of atoms, in which one member of the pair donates an electron 
to the other, and vast numbers of such pairs are held together by dipole forces. 
Figure 11.1(A) shows the valence charge density of NaCl; the visible charge sits 
in a sphere around the chlorine, and charge density drops to very small values 
between the atoms. The covalent crystals feature even more electrons wandering 
away from their host atoms, and it is convenient to think of bonds between atoms, 
because charge density is high along lines connecting near neighbors, as shown in 
Figure 11.1 (B). In metals, the conduction electrons are distributed quite uniformly 
throughout the solid, and the net effect of the interaction between electrons and 
nuclei is a hydrostatic pressure keeping the solid together. A plot of the conduction 
electron density in a metal would be flat and almost featureless. As a final illustra-
tion of the connection between charge density and cohesion, Figure 11.2 presents 
experimentally measured charge density for cuprous oxide. This metal oxide does 
not easily fit classification. The charge density around the copper has the shape of 
d orbitals, and leads to a phenomenon resembling covalent bonding between metal 
ions. 
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Figure 11.1. (A) Valence charge density of NaCl along a (100) plane, computed by the 
plane wave pseudopotential code of Stumpf and Scheffier (1994). The seven valence elec-
trons of Cl and one of Na are the only electrons depicted; all electrons sit on the chlorine, in 
a nearly perfectly spherical configuration, so the sodium is invisible. The valence electrons 
avoid the core of the atom, which is why their density drops to zero there. (B) Valence 
charge density of Ge along a (100) plane. The fourfold coordination of the diamond struc-
ture is evident, as well as the large charge density lying along the lines between atoms, 
characteristic of covalent bonding. 

Figure 11.2. Experimentally measured charge density of cuprous oxide CU2O. The plot 
shows the difference between the charge distribution in CU2O and the charge distribution 
of free ions. The charge distribution around the copper atoms looks like d orbitals; the 
presence of oxygen induces covalent bonding between metal ions. [Source: Zuo et al. 
(1999), p. 50.] 



Introduction 297 

Figure 11.3. Picture of the sodium chloride structure, indicating the sizes of the sodium 
(small) and chlorine (large) ions. The chlorine ion is large because it has robbed an electron 
from the sodium. 

11.1.1 Radii of Atoms 

In searching for ideas by which to explain how atoms assemble themselves, the 
simplest is to assign each atom a radius, as if it were a hard sphere. An illustration 
of NaCl, indicating the sizes of the two ions, appears in Figure 11.3. Such an 
assignment would be without much consequence were it allowed to change every 
time the atom formed a compound with a new neighbor, but in fact the apparent 
radii of atoms remain roughly independent of their surroundings. This statement 
must, unfortunately, be qualified a bit, because the apparent radii do depend upon 
the class of crystal in which the atom is located. 

Table 11.1 contains a summary of phenomenological rules that can be used 
to estimate lattice constants if crystal structure is known; the origin of these rules 
is discussed at length by Pearson (1972). Use of these rules should give lattice 
constants within about 10% of experimental values, and they can serve as a quick 
check on the results of either experiment, or theoretical calculation. 

Example: Cristobalite. According to Wyckoff (1963-1971), quartz in the ß-
cristobalite form is cubic (a = 7.12 Â) and has a basis with eight silicon atoms and 
sixteen oxygens, which in units of a/8 are at 

Si: (000) (440) (404) (044) (222) (266) (626) (662) 
O: (111) (551) (515) (155) (177) (537) (573) (133) 

(717) (357) (313) (753) (771) (331) (375) (735) 

The nearest-neighbor distance for this structure is 1.54 Â. The silicon has four 
neighboring oxygens, so Z = z = 4, while each oxygen has two neighboring sil-
icons, and Z = 6, z = 2. According to Table 11.1, the covalent radius of silicon 
is 1.17 Â, and that of oxygen is 0.74 -0 .14 = 0.60 Â, which sum to 1.77 Â. The 
discrepancy is more than 10%, so there are grounds for concern. Liu et al. (1993) 
show that Wyckoff's structure is incorrect. 
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Table 11.1. Effective radii of the elements 

El. Z 
Ac 3+ 
Am 3+ 
Ar 0 
Ag 1 + 
Al 3+ 
As 3 -
Au 1 + 
Ba 2+ 
Be 2+ 
Bi 3 -
B 3+ 
Br 1 -
C 4+ 

4 -
Ca 2+ 
Cd 2+ 
Ce 3+ 
Co 2 -
Cl 1 -
Cr 3+ 
Cs 1 + 
Cu 1+ 
Dy 3+ 
Er 3+ 
Eu 2+ 
F 1 -
Fe 2 -
Ga 3+ 
Ge 4+ 
Ge 4 -
Gd 3+ 

M 
1.88 
1.81 

1.45 
1.43 
1.39 
1.44 
2.24 
1.13 
1.70 
0.98 

0.92 

1.97 
1.57 
1.83 
1.25 

1.36 
2.73 
1.28 
1.77 
1.76 
2.04 

1.27 
1.41 
1.37 

1.80 

I 

1.86 
1.26 
0.50 
2.22 
1.37 
1.35 
0.35 

0.20 
1.95 
0.15 
2.60 
0.99 
0.97 
1.01 

1.81 

1.67 
0.96 

1.36 

0.62 
0.53 
2.72 

fli 

1.53 
1.25 
1.21 
1.52 
1.98 
0.89 
1.52 
0.80 
1.14 
0.77 

1.74 
1.49 
1.65 

0.99 

2.35 
1.35 
1.59 
1.57 
1.85 
0.72 

1.27 
1.22 

1.61 

El. 
H 
He 
Hf 
Hg 
Ho 
I 
In 
Ir 
K 
Kr 
La 
Li 
Lu 
Mg 
Mn 
Mo 
N 
Na 
Nb 
Nd 
Ne 
Ni 
Np 
O 
Os 
P 
Pa 
Pb 
Pd 
Po 
Pr 

Z 
1 -
0 
4+ 
2+ 
3+ 
1 -
3+ 
2 -
1+ 
0 
3+ 
1+ 

2+ 
4+ 
2 -
3 -
1+ 
3 -
3+ 
0 
2 -
2 -
2 -
2 -
3 -
3 -
4+ 
2 -
2 -
3+ 

M 
0.78 

1.58 
1.57 
1.77 

1.66 
1.36 
2.38 

1.88 
1.56 

1.60 
1.30 
1.40 
0.88 
1.91 
1.47 
1.83 

1.25 
1.56 
0.89 
1.35 
1.28 
1.63 
1.75 
1.38 
1.76 
1.83 

I 
2.08 

1.10 

2.16 
0.81 

1.33 
2.00 
1.15 
0.68 

0.65 

1.71 
0.97 

1.58 

1.40 

2.12 

0.84 

Ri 

1.49 
1.58 
1.33 
1.44 

2.03 

1.69 
1.23 
1.56 
1.36 

0.74 
1.57 

1.64 

0.74 

1.10 

1.43 

1.53 
1.65 

El. 
Pt 
Pu 
Rb 
Re 
Rh 
Ru 
S 
Sb 
Sc 
Se 
Si 
Si 
Sm 
Sn 
Sn 
Sr 
Ta 
Tb 
Te 
Th 
Ti 
TI 
Tm 
U 
V 
W 
Xe 
Y 
Yb 
Zn 
Zr 

Z 
2 -
3 -
1 + 
2 -
2 -
2 -
2 -
3 -
3+ 
2 -
4+ 
4 -
3+ 
4+ 
4 -
2+ 
3 -
3+ 
2 -
4+ 
4+ 
3+ 
3+ 
2 -
3 -
2 -
0 
3+ 
2+ 
2+ 
4+ 

M 
1.39 
1.58 
2.55 
1.38 
1.35 
1.34 
1.27 
1.59 
1.64 
1.40 
1.32 

1.80 
1.62 

2.15 
1.47 
1.78 
1.60 
1.80 
1.46 
1.72 
1.75 
1.56 
1.35 
1.41 

1.80 
1.94 
1.39 
1.60 

I Ä, 

1.48 2.16 

1.84 1.04 
2.45 1.41 
0.81 1.44 
1.98 1.17 
0.41 1.17 
2.71 

1.66 
0.71 1.40 
2.94 
1.13 1.91 

1.59 
2.21 1.37 

0.68 
0.95 1.46 

1.56 

2.17 
0.93 1.62 

1.70 
0.74 1.31 
0.80 

El. = Element; Z = Valency; M - Metallic radius; I = Ionic radius; R[ = Covalent radius. 
The metallic radius is intended for use in close-packed structures with coordination number 
12. Ionic and covalent radii may need correction by additional factors. The ionic radius is 
intended for ions with coordination number near 6, and should be multiplied by the factor 
[z/6]l/("~l\ where z is the number of nearest neighbors, and n is the Born exponent of Table 
11.2. The covalent radius gives best results for atoms with coordination number 4, and for 
an atom with Z valence electrons and z nearest neighbors is given by R = R\ —0.13 In[Z/z]: 
for Z < 0, use 8 - \Z\. Source: Tosi (1964) and Pearson (1972), pp. 147-153. 
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Table 11.2. Born exponent n 
Ion Type He Ne Ar Kr Xe 
(inert core) Cu+ Ag+ Au+ 

Born exponentn 5 7 9 10 12 

Used in correction factor [z/6]1/'"-1' for ionic 
radii. Source: Pearson (1972). 

11.2 Noble Gases 

The noble gases are characterized by a very weak attraction between the atoms. 
The potential energy of a crystal conventionally takes the form of a two-body po-
tential 

£ = Ì E ^ < ; ) (li.i) 
'j 

with 
σ \ ΐ 2 ' Ç)-0 (11.2) 

Here r^ is the distance between two atoms. The potential in Eq. (11.2) is called the 
Lennard-Jones 6-12 potential and arises partly from basic calculations and partly 
from phenomenological considerations. The term proportional to r - 6 accurately 
represents the interaction at large distances between two molecules without a per-
manent dipole moment, the van der Waals interaction. It arises in the following 
way. 

The interaction between two dipoles is 

Φ(τ) = \?\ ■p2-?,(pì-r){p2-r)]/r\ (H-3) 

where r is the distance between the atoms, and r is a unit vector. Now it will be 
protested that atoms without dipole moments do not have dipole moments. This 
is true. However, quantum or thermal fluctuations continually induce tiny dipole 
moments in each atom. The resulting electric field then polarizes the other atom, 
producing a small dipole moment in it, of order r~3. The resulting interaction 
is then of order r~6. The induced dipole moment is always of such a sign as to 
lower the energy of the system; therefore, the interaction is always attractive. To 
obtain such a result formally, see Problem 3. One places the quantum operator 
for Coulomb interactions as a perturbation into the Hamiltonian for two widely 
separated atoms and then finds a nonzero result in the second order of perturbation 
theory. The final result is of the form 

Φ—^ψ, (11.4) 

where a, is the polarizability of atom i. It is only valid when the atoms are well-
separated. When they come close together, at distances comparable to the atomic 
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radii, the force between them becomes repulsive. For this reason, and with no 
firmer foundation, one adds the term proportional to r12 in Eq. (11.2). 

In order to provide a firm check on the theory, one can measure the constants 
e and σ in the gas phase and then use the results to make predictions about the 
solid phase. The gas phase measurements use the following relation from the virial 
expansion: 

b2 = - id? [1 —e~^r\ SeeLandau andLifshitz(1980), pp. 231-232, ( 1 1 . 5 ) 
2 J who use somewhat different notation. 

The coefficient b2 enters the virial expansion for the pressure P in the form 

PV/kBT = l-b2/V . . . (11.6) 

so measurements of the equation of state at low densities can be used to find b2, 
and hence fit σ and e (Table 11.3). 

Table 11.3. Parameters σ and e for the noble gases 
Noble Gas 
e(eV) 
σ(Α) 

Source: 
p. 201. 

He Ne 
8.6· 10"4 0.0031 
2.56 2.74 

Bernardes 

Ar 
0.0104 
3.40 

Kr 
0.0104 
3.65 

(1958) and Hirschfelder et al 

Xe 
0.0200 
3.98 

. (1954), 

The total energy of a crystal where atoms interact in this way is then 

£/Ν = 1*Σ ®'2-ψ Taking the crystal to contain N atoms, and (\ 1.7) 
adopting periodic boundary conditions so that 

ϋφθ all atoms have identical neighborhoods. 

Letting d be a nearest neighbor distance, one can rewrite the energy as 

ε/* = 2 ^Σφ 1 2 φ 1 2 -φ 6 φ 6 di·«) 
R 

Ξ 2 6 [ Α 1 2 φ ' 2 - Α 6 φ ν ί ώ Α / Ξ Σ ( | Y . (11.9) 

Written in this way, one sees that the lattice sums can be carried out once and 
for all for any particular crystal structure, so that the energy depends only upon 
the nearest-neighbor separation. The sums converge rapidly because the powers 
involved are so high. Except for helium, all the noble gases solidify into an fee 
structure, and the appropriate lattice sums in this case are shown in Table 11.4. 

One can now work out the nearest-neighbor spacing in equilibrium, 

4> = * ( ^ ) 1 / 6 , ( i i . io) 
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Table 11.4. 
Crystal 
A6 
An 
Al/2An 

Lattice sums, 
fee 
14.4539 
12.1319 
8.6102 

A(, and Λ n for various crystal 
bec 
12.2537 
9.1142 
8.2373 

structures 
hep 
14.4549 
12.1323 
8.6111 

The sums are defined in Eq. (11.9). The final row is proportional to the energy of the 
crystal. While fee and hep have noticeably lower energy than bec, the energies of the 
two former structures are too close for these arguments to determine which will appear 
experimentally; the rare gas solids choose fee. 

Table 11.5. Properties of noble gases compared with predictions of Lennard-
Jones potentials 

Noble Gas Ne AT Kr Xe 
Experimental do (Ä) 
do from Eq. (11.10) (Â) 
Experimental £/N (eV/atom) 
E/N from Eq. (11.11) 
Experimental B (dyne/cm2) 
B from Eq. (11.13) 

Results show agreement at roughly the 10% level. Source: Ashcroft and Mermin 
(1976), p. 401. 

3.13 
2.99 
-0.02 
-0.027 
1.1 -1010 

1.81· 1010 

3.75 
3.71 
-0.08 
-0.089 
2.7 · 1010 

3.18· 1010 

3.99 
3.98 
-0.11 
-0.120 
3.5 · 10'° 
3.46· 1010 

4.33 
4.34 
-0.17 
-0.172 
3.6 · 1010 

3.81 ■ 1010 

the cohesive energy 

P I hi — - c 
'2A1 2 ' 

A2 

E/N = -e—4-, (11.11) 

and the bulk modulus B which is given by 

7ο2ε B = Vlzri. (11.12) 

For an fee lattice, the volume per particle V/N is related to the nearest-neighbor 
separation d by V/N = d3/\/2· Evaluating Eq. (11.12) gives 

Comparisons of this simple theory with experiment are listed in Table 11.5. 

11.3 Ionic Crystals 

The simplest ionic crystals are the alkali halides, built by combining an element 
from the first column of the periodic table with an element from the seventh col-
umn. The distinctive feature of these crystals is that the alkali metal (Li, Na, K, 
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Rb, or Cs) gives up an electron relatively easily so as to obtain a closed outer shell, 
while similarly the halogen (F, Cl, Br, or I) has a strong affinity for acquiring an 
extra electron to fill its outer shell. In fact, the benefits of closing the electronic 
shell outweigh Coulomb repulsion, and isolated halogen atoms stably bind extra 
electrons. Their positive electron affinities are listed in Table 11.6, along with the 
first ionization potential of the alkalis. The affinity of the halogen is typically less 
than the ionization potential of the alkali, but bringing the positively and negatively 
charged ions close together gives enough Coulomb energy to make the resulting 
structure stable. The Coulomb energy is easily estimated by treating the two ions 
as possessing a single negative or positive charge and placing them at a distance of 
about 3 Â apart; this gives a Coulomb energy of around —4 eV, which is enough 
to overcome the difference between electron affinity and ionization potential. The 
reason that the I-VII compounds are particularly simple, however, is that the struc-
ture stabilizes in such a way that the overlap of electronic charge from neighboring 
ions is negligible, as shown in Figure 11.1(A). 

Four particularly common lattice structures—the sodium chloride structure, the 
cesium chloride structure, the zincblende structure, and the wurtzite structure— 
were sketched in Section 2.3. 

11.3.1 Ewald Sums 

Actually carrying out the sum over positive and negative ions to calculate the en-
ergy of the ionic solids is technically tricky. If in the first unit cell the positive ion 
(cation) is at the origin, and the negative one (anion) is at d, the potential energy 
associated with a particular cation is 

ΪΣ[ΓΗ]-Ϊ2Ϊ»»-*-Ί (1U4) 

and the energy of the crystal as a whole will be N/2 times this amount. The dif-
ficulty is that the sum (11.14) converges very slowly, and in fact it can be done so 
as to have any value whatsoever. Physically, different limiting values of the sum 
correspond to crystals with differing amounts of surface charge, and the Coulomb 
force is so long range that the surface charges are able to make the crystal energy as 

Table 11.6. Electron affinities and ionization potential for the alkalis 
and the hai ides 
Atom Electron affinity (eV) Atom First ionization potential (eV) 

~H Ö75 
F 3.40 
Cl 3.61 
Br 3.36 
I 3.06 

Li 
Na 
K 
Rb 
Cs 

5.32 
5.14 
4.34 
4.18 
3.90 

Source: Hotop and Lineberger (1975) and Emsley (1998). 



Ionic Crystals 303 

large as one wants. The desired result corresponds to a crystal with no net charge 
on any surface; thinking of it as a capacitor, one wants it to be discharged. The 
technique of Ewald summation accomplishes this goal and provides an extremely 
rapid numerical technique for performing the sums as well. The basic idea is that 
one should treat all the charges far away as a uniform charge distribution, do an 
integral over all the faraway charges, and not bother with the sums past a certain 
distance. The trick is to carry this idea out efficiently. Here is how: Write 

^) = Σ 1 

\d-R\ 
2 dp 

r°° 2 dp 
Jo 

o 

dk 

Σ -p2\d-R\' 

Ρ3χ/π3 

oo 2 dp dk 

2 dp 
7Γ 

ρ3φτ 
3 

V " e-k2/p2+2il(d-R) 

R^O 

(11.15) 

(11.16) 

-k2/p2+2ild ( n n ) 

7Γ 

Σ 4π JKd 

Σ ,-K2/4p2+iK-d _-d2p2 

d 

See(A.30). ( 1 1 . 1 8 ) 

. Ω is the volume of the unit cell surrounding R. ( 1 1 . 1 9 ) 

fyft K Ω 

These mathematical steps seem a bit awkward, because one diverging sum is being 
reexpressed as another. But one can use the calculation to do much better. First, 
notice that in the new formulation, Eq. (11.19), all the divergence of S(d) is con-
centrated at K = 0. However, in order to compute the total energy of the crystal, 
Eq. (11.14), one has to subtract S(d) from 5(0). The divergent term is exactly 
the same in both cases and cancels exactly, eliminating the problem of the surface 
charges. Second, notice that the sum (11.15) converges rapidly when p is large, 
while (11.18) converges rapidly when p is small. So write 

8 ^ R^O 

Jo V7T 

2 dp V e~P2^-^2 

(π) ^ 1 K2/4p2+iKd „-d2p2 

P ^ RÏOU 

, V 4 π
 r-K2/4,2+iKd f8 2 dP 

(11.20) 

-p2d2 

(11.21) 

One chooses the separation parameter g to be anything on the order of a reciprocal 
lattice vector. Then each of the terms in (11.21) converges exponentially fast. The 
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Table 11.7. Madelung constants a for the most common ionic crystal structures 

Structure Madelung constant a 
Cesium chloride 1.76268 
Sodium chloride 1.74757 
Wurtzite 1.638704 
Zincblende 1.63806 
In each case, the total energy of the solid is — Nlon p^use2a/d, where Nicm pajrs is the 
number of ion pairs, and d is the nearest-neighbor separation. 

first sum is a sum of Gaussian integrals, and there are good numerical routines 
for evaluating them. In fact, inspection of Eq. (11.15) shows that dS(0) — dS(d) 
is dimensionless and depends only upon the structure of the lattice vectors R on 
which one sums, not upon the scale of the lattice. The quantity 

_ Be aware that while S(d) — S(0) is indepen-
dS(d) —dS(0) I l i a dent of the separation parameter g, the two ( ] 1.22) 

terms individually are not. 

is called the Madelung constant, in terms of which the electrostatic energy per ion 
pair is 

c 2 14 4 p V ^he c°hesive energy for the alkali halides is 
_ „, _ „ , conventionally taken to be the energy needed ( i i 9 3 ^ 

j\j. . Λ Id / A] ' to separate the ions. Energy needed to pro- ^ ' ' 
ion pairs [ / J ^uce ggp^-^gj neutral atoms would involve 

adding back the ionization energy and elec-
tron affinity. 

and values for the five most common alkali halides are given in Table 11.7. The ta-
ble indicates why the cesium chloride and sodium chloride structures are common, 
but concluding that all alkali halides should adopt the cesium chloride structure 
would be to take this simple theory too seriously. 

An energy of the form Eq. (11.23) would of course cause the solid to collapse, 
and as in the case of the molecular crystals, it is necessary to add some purely 
phenomenological term—for example, C/dn—that prevents collapse, giving an 
energy 

ε e2 c 
N— = -a-d+d^- ( , L 2 4 ) 
ivion pairs u u 

One can fix C by matching the minimum of the potential in Eq. (11.24) 

12C 
Jo = e2a 

1/11 
(11.25) 

to the experimentally observed value. 
There is no good reason to choose the exponent 12 apart from the analogy 

with potentials of noble gases. In order to obtain best fits to experimental data, 
Pearson (1972) recommends using instead of the integer 12 a different exponent n 
that depends upon the outermost closed shell of the ion, with values given in Table 
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Table 11.8. Cohesive energies of ionic compounds with the 
sodium chloride structure, comparing Eq. (11.26) and experiment 

Compound Experimental Experimental Eq. (11.26) 
dp (A) S / A U pairs (eV) g/Mon pairs (eV) 

LiF 
LiCl 
LiBr 
Lil 
NaCl 
NaF 
NaBr 
Nal 
KF 
KC1 
KBr 
KI 
RbF 
RbCl 
RbBr 
Rbl 
AgCl 
AgBr 

2.01 
2.57 
2.75 
3.01 
2.82 
2.32 
2.99 
3.24 
2.67 
3.15 
3.30 
3.53 
2.83 
3.29 
3.44 
3.67 
2.77 
2.89 

10.83 
8.85 
8.51 
7.92 
8.18 
9.62 
7.81 
7.32 
8.55 
7.42 
7.16 
6.74 
8.18 
7.17 
6.90 
6.52 
9.53 
9.40 

11.45 
8.98 
8.39 
7.66 
8.18 
9.96 
7.72 
7.13 
8.63 
7.33 
6.99 
6.53 
8.16 
7.01 
6.70 
6.28 
8.32 
7.99 

Source: Nagasaka and Kojima (1987). 

11.2, but the exercise of allowing the exponent to vary so as to fit data is not very 
illuminating. When evaluated at do, Eq. (11.24) takes the form 

11 e2 

a—. (11.26) ^Mon pairs ^ " 

The results of this expression are compared with experiment in Table 11.8. 

11.4 Metals 

Cohesion in metals is more difficult to account for by means of simple arguments 
than cohesion in ionic crystals. The best hope is in the alkali metals, where there 
is a simple mental picture of well-localized atomic cores contained in a nearly uni-
form mist consisting of the outermost s electron. This model has already been dis-
cussed within the context of Hartree-Fock and density functional theory in Chapter 
9; the main results are contained in Eqs. (9.70), (9.72), and (9.75), and they result 
in three contributions to the cohesive energy: 
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Kinetic Energy The largest term is the kinetic energy of the electrons, found in 
Eq. (9.70) to be 

ε ΐ Ξ Ξ = 3^4 = 3 ^ 9vr2/3_l_ 
N 5 2m 52mK 4 > ή Κ ' ' 

This term is purely repulsive and by itself predicts that the density of metals would 
drop to zero. It must be admitted that an inconsistency is being perpetrated here. 
The electrostatic attraction of the electrons to the ions will be carried out properly 
using the fact that the ions are distributed in a lattice, while now the kinetic energy 
is being computed under the assumption that the electron gas lives in a uniform 
volume populated by a smeared-out background positive charge. 

Exchange Next one must include the exchange energy, which was computed for 
electrons in a uniform positive background in Eq. (9.72) and found to be 

— = - — ekF = -—-eL I — - . (11.28) 
N 4-7Γ 4-7Γ \ 4 / rs 

Electrostatic Interactions Finally, the electron mist interacts with the ion cores 
and itself according to the classical potential 

£el = - / drn{r) V , € ^ + %- Y" -=;——t J ^ \r-R\ 2 f-t. R-R'\ 
R '■ "> R^R> ' ' (11.29) 

4 f dhdfi*"™'1™ 
2 7 | n - r 2 | 

The sums and integrals in Eq. (11.29) can be treated by precisely the same 
techniques that were used for the ionic crystals, if the electron density n is taken to 
be a constant n = N/V. The result (Problem 4) is that 

N 2 rs 

where 
rj = [i_Z]l/3 ( 1 L 3 1 ) 

is the length scale characterizing the distance between electrons tabulated in Table 
6.1, and a is a Madelung constant that takes the values shown in Table 11.9. A 
glance at this table shows that the electrostatic binding energy of metals is almost 
totally independent of the crystal structure. 

The conventional way to discuss these results is by putting all of them in terms 
of the electron distance rs/ao, where ÜQ = 0.529 Â is the Bohr radius, and measur-
ing energies in units of electron volts per atom. Summing Eqs. (11.30), (11.27), 
and (11.28) in this way gives 

E_ 
N 

24.35 30.1 12.5 
■ + ■ {rs/ao) {rs/a0)2 {rs/a0) 

eV/atom. (11.32) 
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Table 11.9. Values of the Madelung constant a for 
the uniform electron gas in various lattices 
bcc fee hep sc Diamond 
1.79186 1.79175 1.79168 1.76012 1.67085 

The calculation is discussed in Problem 4. Notice that 
the first three lattices are almost indistinguishable. 

Reference to Table 11.9 shows that there is no way to decide at this stage be-
tween the fee, hep, and bcc lattices, although there is a minute preference for bcc; 
the energy does depend upon density alone. However, the estimate in Eq. (11.32) 
is not at all satisfactory. Its minimum occurs at 

— = 1.6, (11.33) 
Clo 

which is quite far from the values 2 to 6 actually observed for the alkali metals in 
Table 6.1. 

The full apparatus of quantum field theory has been brought to bear on this 
problem, as discussed in Section 9.4.3. Although full treatment of interacting elec-
trons and ions for realistic electron densities is a formidable theoretical problem, it 
seems in the end possible to deal with it in an extremely simple way, as discussed 
by Cohen and Heine (1970), Heine and Weaire (1970), Cottrell (1988), or Sutton 
(1993). 

11.4.1 Use of Pseudopotentials 

The problem lies not in the inconsistencies regarding the computation of the kinetic 
and exchange energies, but in the treatment of interactions between conduction 
electrons and ionic cores. Ionic cores are surrounded by tightly bound electrons. 
The conduction electrons must avoid them because of the Pauli exclusion principle, 
which requires the conduction electron wave functions to be orthogonal to those 
hugging the core. Coulomb repulsion also keeps the two sets of electrons away 
from each other. 

The pseudopotential was introduced previously as a way to organize experi-
mental and computational information about conduction electrons in a compact 
and physical form. A large number of measurements of different types can be ex-
plained to good accuracy by the empty-core pseudopotential, which has the shape 
depicted in Figure 10.1. The essential point is that with just a few fitting param-
eters obtained either from experiment or calculations, it is possible to get a good 
estimate of phenomena ranging from phonon spectra and optical absorption, to su-
perconducting transition temperatures. So it makes sense to try to apply the idea to 
cohesion. To reduce the number of fitting parameters, take ions to have potentials 
of the form 

U(r) = I 9 C The screening length is made infinite, and i/o (11 3 4 ) 
v ' I -Zez/r for r > Rc. is set to Ze2 /Rc, where Z is the ionic charge. 
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Table 11.10. Pseudopotential radii compared with mea-
sured values 
Element 
Li 
Na 
K 
Rb 
Cs 

Re (A) 
0.92 
0.96 
1.20 
1.38 
1.55 

rs/ao, 
4.09 
4.23 
5.04 
5.65 
6.23 

Eq. (11.38) Λ,/ÖO, measured 
3.27 
3.99 
4.95 
5.30 
5.75 

Radii Rc are obtained for example from optical measurements 
described in Problem 2 and rs/ao is obtained from Eq. (11.38). 
Source: Cottrell (1988), p. 68. 

The main change in cohesive energy produced by use of Eq. (11.34) is that in the 
Coulomb attraction of the electron cloud to the ions, one must add back the energy 

%=(*α£± ^ Λ ζ (Π.35) 
N Jo V r V 

2 ^ 2 ^ = 41-^3£eV/atom (11.36) 
47rr3 r\ 

ε 
N 

24.35 30.1 12.5 a0R2
r 

+ , , ,-, - / , s + 4 1 0,/αο) (rs/a0)2 (rs/a0) ή 
eV/atom. (11.37) 

Solving Eq. ( 11.37) to minimize energy as a function of rs gives 

rs/ao= y/11.9[tfc/Â]2 + .667 + 0.817. (11.38) 

Equation (11.38) is compared with experiment in Table 11.10. One can also com-
pare bulk modulus B. For Na, B = 1.4 ■ 1010 J m3 versus the experimental value of 
B = 0.64 · 10l() J m3, so at least the orders of magnitude are correct. It is not possible 
to compare Eq. ( 11.37) directly with the actual cohesive energy of a metal, because 
as rs —> oo the system goes to a collection of separated ions with a vanishingly thin 
electron gas between them; in other words, the atoms have been ionized. In reality, 
if the ions are pulled far enough from one another, the conduction electrons land 
back on the ions, so the zero of energy one obtains for rs —> oo should be greater by 
the ionization energy than the actual "zero" energy state of well separated atoms. 

11.5 Band Structure Energy 

All of the calculated radii in Table 11.10 are about 10% too large. To improve 
on this result requires that one go about the process of calculating electron kinetic 
and exchange energy in the presence of the ions more accurately. The whole ma-
chinery of band structure calculations, which has been avoided until now, naturally 
begins to fire up. The basic reason for the inaccuracy and its sign can, however, be 
obtained without any calculation. The pseudopotential is weak, so the appropriate 
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calculation to have in mind is the weak perturbation theory of Section 8.2. There 
it was shown that the effect of a weak potential was to open up gaps in the free 
electron £(k) curves at all k that lie at the edge of the Brillouin zone. Let K be 
the reciprocal lattice vector that connects k to its counterpart on the other side of 
the zone. At the inside edge of the zone, the energy levels go down by Ug, on the 
outside edge of the zone they go up by Ug, where U is the (weak) pseudopotential, 
and the net effect is that the energy of the electron gas goes down by an amount 
proportional to \U^\2. This contribution to the energy of a system is called the band 
structure energy, and it is the dominant way in which details of the lattice structure 
make themselves known to the cohesive energy. Without detailed calculation, one 
can see that the first effect of the band structure energy should be to expand or 
shrink the lattice in whatever way makes Ug increase slightly. For all of the metals 
in Table 11.10, the pseudopotential is positive and of positive slope at the smallest 
reciprocal lattice vectors, so U^ increases if K increases, and this leads to a ten-
dency for the size of the lattice to shrink. For some other elements—for example 
Ga and In—estimates such as Eq. (11.38) do in fact give too small an answer, and 
this result can be traced to the fact that now \Up\2 increases if K decreases instead. 

11.5.1 Peierls Distortion 

The principle that lattices rearrange themselves to suit the desires of the conduc-
tion electrons moving through them is most easily illustrated by a one-dimensional 
calculation due to Peierls (1955), pp. 108-112. 

Suppose one has a one-dimensional lattice, which when perfectly periodic, 
has minimum energy for some lattice constant a and for which the elastic energy 
penalty that must be paid to move atom n a distance Δ„ away from its lattice site is 

^ α Κ Δ . y has dimensions of energy per volume and ( 1 1 . 3 9 ) 
2 " can be understood as Young's modulus for the 

one-dimensional chain. 

Suppose that the displacement of atoms takes the form illustrated in Figure 11.4 

A n = Δ(7 COS Gnü. G is a wave vector describing atomic displacements. ( 1 1 . 4 0 ) 

2TT/G 

Figure 11.4. Setting for the calculation of the Peierls distortion. An initially periodic 
lattice acquires a periodic modulation, which acts as a separate, additive potential for the 
electrons. 

Now, populate this lattice with (noninteracting) conduction electrons. The lat-
tice of period a most affects the energies of electrons whenever the Bloch vector k 
of an electron is close to ±π/α, or other points on the zone boundaries. The elec-
trons also will be affected by the modulation Eq. (11.40), which has period 2n/G, 
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and which should add to the Hamiltonian for the electrons a term of the form 
, . , s _ Thus delìning »o, since the interaction energy . 

U COS Gx = {AGUo/a) COS Gx. should be proportional to Aa. ( 1 1 -41) 

To calculate the constant U, one needs a theory for the interaction between elec-
trons and lattice distortions. Such a theory will be needed in later chapters, particu-
larly for the study of superconductivity, but for the moment it is enough to view the 
lattice distortion as a periodic potential of period 2π/G, and Fourier amplitude U. 
Assuming that G is far from 2π/α, one can calculate the effect of Eq. (11.41 ) upon 
the electrons. According to Eq. (8.22), electrons with indices k in the neighborhood 
of G/2 have energies 

The goal is now to see if there is some value of G that is particularly effective in 
allowing an assembly of conduction electrons to lower its energy; one can guess 
the correct answer without detailed calculation. If G > 2kf, then an energy gap 
opens above the Fermi surface, without much changing the energies of any of the 
electrons below. If G < 2kp, an energy gap opens below the Fermi surface. Elec-
trons below the gap have their energies lowered as indicated by Eq. (11.42), but 
those above it have their energies raised by nearly an equal amount, and the two ef-
fects cancel out. The best arrangement is G = 2k f. With this choice, the gap opens 
up right at the Fermi surface, and all nearby electrons have their energy lowered 
by order \U\. In particular, the total energy of many electrons obeying Eq. ( 11.42) 
minus the energy £° they would have if the modulation ( 11.41 ) were not present at 
all is 

L / l v {i(£tc-e2)-V(£2-G-e2)2/4+|t/|2} (11.43) 
£" is given by Eq. (6.8). L is the total length of the system, and 1 /π 
is the density of states. 

kF ^/«L«*-^]2-*2) 
kF 

7Γ [ Am 

- y ' ( ^ ( [ * - 2 * F ] 2 - Ä 2 ) ) 2 + | i / 2 | l (Π.44) 

= ^kF{2El - V/|i/|2/4+ (2£°J2 - ^ - sinh-1 (4£°V|i/|)}. (11.45) 
kf 

Although the conduction electrons lower their energy by distorting the lattice, 
this distortion costs elastic energy, and it is not immediately clear on balance that 
it will occur. The cost in elastic energy is 

]_, Ί A factor of £ comes from the average of the 
— AGY. cosine in Eq. (11.41). Another factor of \ ( 1 1 . 4 6 ) 

was already present in Eq. ( 11.39). 
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Add together Eqs. ( 11.45) and ( 11.46), and substitute AQUQ/U for U as in Eq. (11.4-1) 
Then Taylor expand to leading order in Ac, which indeed turns out to be very 
small, set the result equal to zero and solve for Ac=2kF to find 

8a£° f -vr£0 a2Y/kF ) 

|«o| [ |«o| J 

For small MO, the amount of distortion Δ ^ - is exponentially small. In two- and 
three-dimensional crystals, the analog of the argument just given predicts Δ = 0, 
because the energy cost of elastic distortion outweighs the gains from accommo-
dating the electrons. The basic principle, however, that metals choose lattice struc-
tures to bring the Fermi surface as near a Brillouin zone edge as possible is rather 
general. Furthermore, three-dimensional solids can exhibit a closely related insta-
bility called a charge density wave, reviewed by Grüner (1988) and Thorne (1996). 

Example: Brass. Consider the changes in structure that occur as one adds zinc to 
copper to form brass. Pure copper is fee, and its conduction electrons consist of a 
nearly full d-band that is hybridized with one 4s electron. Zinc sits just to the right 
in the periodic table, with one more s electron. As a simple mental model, treat 
copper as monovalent, and treat each added zinc atom as the source of one addi-
tional conduction electron. In accord with the discussion of the Peierls distortion, 
zinc-copper solutions stand to gain energy by bringing the Fermi surface close to 
the Brillouin zone boundary whenever possible. Assuming that the Fermi surface 
is always essentially spherical, the system accomplishes this task by switching to 
new lattice structures. As shown in Problem 2, for an fee crystal, the Fermi surface 
first contacts the Brillouin zone boundary for a density of 1.36 electrons per lattice 
site. With 36% atomic percent of zinc in copper, the solid switches from an fee 
structure to the bec structure. For a bec solid, the Fermi surface first contacts the 
Brillouin zone for a density of around 1.5 electrons per site. And in fact, at an 
atomic density of 46% zinc, the solid has another change of lattice constant to a 
rather complicated unit cell involving 52 atoms. 

11.5.2 Structural Phase Transitions 

It is a rule rather than an exception that solids change crystal structure as a function 
of temperature. The consequences of structural change are particularly interesting 
in cases where the change from one crystal structure to another involves a sudden 
change in size or shape of the unit cell. A huge single crystal could change its 
overall macroscopic shape, but the crystallites of a polycrystal cannot do so and 
remain attached to one another. In a martensitic transformation, reviewed by Roit-
burd (1978), unit cells group themselves in orientations of varying symmetry so as 
to make the best of the situation, as shown in Figure 11.5. 
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(A) (ß) . . . . . . . . . . . . . . . . 

Figure 11.5. When a unit cell makes the transition shown in (A), a crystallite can retain 
its overall dimensions by ordering as shown in (B); this accommodation by twinning is an 
example of a martensitic transformation. 

11.6 Hydrogen-Bonded Solids 

Compounds involving hydrogen are of such variety and importance that they rightly 
constitute a class of their own. Hydrogen bonds are directional and flexible and can 
break and reform at energies characteristic of room temperature. Hydrogen-bonded 
solids, including such primitive examples as H2O, often have huge numbers of 
nearly equivalent ground states. Studying the structures of these solids leads into 
organic chemistry and biology. Viewing biology as a cohesive energy problem 
is not likely to be profitable, because an organism in its ground state has died. 
Nevertheless, hydrogen-bonded structures pose fascinating problems in materials 
science. For introductions, see Desiraju (1989) and Chemistry of Materials (1994), 
vol. 6. 

11.7 Cohesive Energy from Band Calculations 

Band structure calculations are designed to determine ground state structures, so 
it is worth asking how well they do. Figure 11.6 shows the result of using plane 
wave pseudopotential codes to look for the ground-state crystal structure of alu-
minum. The calculation is carried out by imposing various crystal structures and 
various lattice constants, and then carrying out a self-consistent energy calculation 
for each structure. The results are satisfactory. The predicted lattice constant is 
4.02 Â, compared to the experimental value of 4.04 Â. In addition, both bcc and 
hep lattices have higher energy than fee, in agreement with experiment. This degree 
of agreement is indicative of the success of density functional theory in predicting 
ground-state crystal structures. 

Scaling Form for Cohesive Energy. Rose et al. (1984) have conducted a sys-
tematic survey of the cohesive energies of elemental metals, using band structure 
codes, and found a surprising regularity in the results. When properly scaled, co-
hesive energy as a function of lattice constant is a universal function. To describe 
this function, first define rw, the radius of the Wigner-Seitz sphere, by 

rw is similar to the parameter rs, but it can 
47Γ -> V be defined without recourse to the rather ar-

Tyj = — . bitrary parameter Z describing the number of ( 1 1 . 4 8 ) 
3 N conduction electrons per atom. 
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Figure 11.6. (A) Comparison of cohesive energy of fee, bee, and hep structures for alu-
minum as a function of the Wigner-Seitz radius rw- The experimental value of rw = 1.583 
is indicated by the dotted line. The fee lattice has the lowest energy, but lies only a minute 
amount below hep. The bec lattice has considerably higher energy. (B) Cohesive energy 
of fee aluminum computed as a function of lattice constant a (squares), compared with 
Eq. ( 11.50) (solid line). Computations were performed with VASP of Kresse and Hafner 
(1994) and Kresse and Furthmiiller (1996). The computations measure all energies rela-
tive to a rather arbitrary zero, so the fit to Eq. (11.50) is needed to determine the cohesive 
energy, by extrapolating to widely separate atoms and calling the result the zero of energy. 

For each element, define a scaled length 

V( 
' Πνο 

(11.49) 

where rwo is the radius of the Wigner-Seitz sphere of the metal in equilibrium, rw 
is its radius for expanded or contracted crystals, and 77 is a dimensionless number 
that characterizes the anharmonicity of each element. Upon choosing η appropri-
ately and letting So be the equilibrium cohesive energy of each element, a wide 
variety of different elements have a cohesive energy described quantitatively by 
the fitting function 

E{rw) = E0e-a* ( - 1 - a * - 0 . 0 5 ^ ) . (11.50) 

Table 11.11 records values of rwo and 77 for a number of metals. These data 
can be used to determine pressure and bulk modulus over a wide range of lattice 
parameters, and they are in good accord with experimental measurements of metals 
under large pressures. 

11.8 Classical Potentials 

The molecular dynamics and Monte Carlo calculations described in Section 5.4 
rely upon a functional giving the energy of a solid as a function of all the nuclear 
positions. This functional exists; it is just the ground-state energy 

ε = (Φ|5ί(Α! . . . / ?*) |Φ> (11.51) 
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Table 11.11. Wigner-Seitz radius rwo, scaling parameter η, and cohesive energy £o 
for selected elements 

El. 

Ag 
Al 
Au 
Ba 
Be 
Ca 
Cd 
Ce 
Co 
Cr 
Cs 
Cu 
Dy 
Er 
Eu 

rwo 
(Â) 
1.60 
1.58 
1.59 
2.46 
1.25 
2.18 
1.73 
2.02 
1.39 
1.42 
2.98 
1.41 
1.96 
1.94 
2.27 

El.= Element 

V 

5.94 
4.71 
6.75 
4.41 
4.01 
4.52 
8.08 
3.11 
5.31 
5.59 
4.17 
5.30 
4.85 
4.94 
4.75 

£o 
(eV) 
2.96 
3.34 
3.78 
1.86 
3.33 
1.83 
1.16 
4.77 
4.39 
4.10 
0.83 
3.50 
3.10 
3.30 
1.80 

El. 

Fe 
Gd 
Ge 
Hf 
In 
Ir 
K 
Li 
Mg 
Mo 
Na 
Nb 
Ni 
Pb 
Pd 

rwo 
(Â) 
1.41 
1.99 
1.76 
1.74 
1.84 
1.50 
2.57 
1.72 
1.77 
1.55 
2.08 
1.63 
1.38 
1.93 
1.52 

. Source: Rose et al. (1984). 

■n 

5.16 
4.27 
5.05 
4.66 
5.11 
6.52 
3.94 
3.10 
5.60 
5.85 
3.70 
4.84 
5.11 
6.37 
6.41 

So 
(eV) 
4.29 
4.14 
3.87 
6.35 
2.60 
6.93 
0.94 
1.65 
1.53 
6.81 
1.13 
7.47 
4.44 
2.04 
3.94 

El. 

Pt 
Rb 
Re 
Ru 
Si 
Ta 
Th 
Ti 
TI 
V 
W 
Y 
Yb 
Zn 
Zr 

rwo 
(Â) 
1.53 
2.75 
1.52 
1.48 
1.68 
1.62 
1.99 
1.62 
1.90 
1.49 
1.56 
1.99 
1.99 
1.54 
1.77 

V 

6.47 
4.18 
6.15 
6.04 
4.88 
4.92 
4.12 
4.76 
5.74 
4.81 
5.69 
4.23 
3.94 
7.16 
4.48 

£o 
(eV) 
5.85 
0.86 
8.10 
6.62 
4.64 
8.09 
5.93 
4.86 
1.87 
5.30 
8.66 
4.39 
1.60 
1.35 
6.32 

of N nuclei, and their accompanying electrons, viewed as a function of ionic posi-
tions. Of course, every time a nucleus moves, it is necessary to solve the electron 
problem over again from scratch. The force on atom / is then 

Ft = - ^ i . (11.52) 
dRi 

When deviations of atoms from equilibrium are small, the subject can be developed 
systematically and will occupy Chapter 13. For the purposes of molecular dynam-
ics, small deviations are not sufficient, but it is impossible to evaluate Eq. (11.51) 
exactly. One possibility is to guess that the energy takes the form of Eq. (11.1), 
and to choose a function for φ that reproduces some desired feature of experiment 
or calculation, such as ground-state crystal structure or melting temperature. Po-
tentials of the two-body form are often clearly inadequate. For example, there 
does not exist any potential </>(r) for which the diamond structure is the ground 
state, which rules out study of silicon and germanium in addition to carbon. The 
diamond structure can, however, be made the stable ground state of a classical 
potential if one adds to the energy functional some terms that depend upon angles 

between bonds. The angle Θ in Figure 11.7 is given by cos- 1 [(R\ — R2) ■ (R3 - R2)]', 
terms that are functions of angles depend simultaneously upon locations of three 
atoms and thus are called three-body potentials. Another possibility is suggested 
by the energy functionals of Section 11.4, which depend upon the overall density 
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of electrons; if terms of this sort are added to an energy functional, they depend 
upon the total volume occupied by the atoms, which cannot be expressed in terms 
either of pair potentials or three-body potentials. 

Figure 11.7. Any term depending upon the 
angle between two bonds must depend simul-
taneously upon the coordinates of three atoms 
and therefore introduces triplet or three-body 
terms into the energy. 

By the time that potentials of this type have been employed in enormous com-
puter programs, it is easy to forget that the potentials themselves are not especially 
well grounded, and represent a mix of functional forms suggested by calculation, 
constraints provided by experiment, and calculational convenience. Classical po-
tentials often do not give reliable results for physical quantities they were not tuned 
to get right. For example, a widely used potential for studying silicon was proposed 
by Stillinger and Weber (1985), involving two- and three-body terms. Its parame-
ters are chosen to give the melting temperature of silicon correctly, but the potential 
gets the density change at melting wrong by a factor of two and does not correctly 
predict vibrational spectra or surface reconstructions. A particularly large number 
of potentials has been proposed for silicon; it is difficult to know how to choose 
between them. These and other matters related to the construction of classical 
potentials are discussed by Carlsson (1990). 

Problems 

1. Sums for noble gases: Compute the sums Ag and A12 to five decimal places 
for an fee lattice, and verify the results in Table 11.4. 

2. Zinc in copper: Copper is a monovalent fee nearly-free electron metal. Zinc 
is an hep divalent metal. In small quantities, zinc mixes substitutionally with 
copper, its main effect being to increase the electron concentration. 

(a) Find the relationship between electron density n and the Fermi wave vector 
kp within the nearly free electron approximation. 

(b) Still working in the nearly free electron approximation, assume that the zinc-
copper mixture will undergo a phase transition to bec as soon as the Fermi 
sphere first touches some point on the edge of the Brillouin zone. Show that 
the transition occurs at 36% zinc. Remember that in an fee conventional unit 
cell of lattice constant a there are four ions. 

(c) As the concentration of zinc further increases, another phase transition next 
occurs when the Fermi sphere intersects the Brillouin zone of the bec lattice. 
What is this second concentration of zinc? 
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3. Quantum view of van der Waals force: 

(a) Consider two widely separated hydrogen atoms. Let "K\ and OÏ2 be the 
Hamiltonians for the separate, unperturbed atoms, and let R be the distance 
vector between them. Consider now the perturbation 

3~C; 1 1 
R \R\-R\ 

1 
W\ 

1 
\R\ —R2Ì 

(11.53) 

where R\ and R2 are the operators for the positions of the electrons at atoms 
1 and 2 (there is no harm done in regarding the electrons as distinguishable, 
because they are widely separated). 
Show that at first order in perturbation theory, the effect of the perturbation is 
exponentially small, because the ground state of the hydrogen atom is spheri-
cally symmetric, and the charge distributions of the two atoms hardly overlap. 

(b) Argue that at second order in perturbation theory, all contributions to the 
relevant integrals are negligible unless the electrons are very close to their 
respective atoms: 

|/?i| < Λ and \R2-R\ « A . (11.54) 

In this case, it is valid to expand Eq. (11.53) to leading (second) order in 
the two small quantities appearing in Eq. (11.54). Show that as a result the 
perturbation takes the form 

3(Ri-R)([R2-R]-R) Ri-[R2-R) 
R5 R* (11.55) 

(c) Show that the leading term in the interaction of the two hydrogen atoms is 
negative and varies as R 6. 

4. Ewald summation for metals: 

(a) Show that when the electron density n is constant,Eq. (11.29) can be rewrit-
ten as 

N- 5(0) 1 dr S(r) + (11.56) 

where 5 is defined by Eq. (11.14). 

(b) Show finally that if 5(0) is given by Eq. (11.21) then Eq. (11.56) can be 
rewritten as 

N- 5(0) 
ng2 

(11.57) 

5. Ewald summation in one dimension: Suppose that one has a collection of 
yV charged spheres containing charge of magnitude q\ . . . q^. Overall the 
spheres are electrically neutral; YJi-\ qi = 0. Make many copies of these 



References 317 

spheres, and evenly space them along a line so that the sequence of charges qi 
repeats periodically. 

The energy per unit cell of such a collection of charges is 

1 y ^ y-v qiQj+l Π 1 5XÌ 
.-> / j / j I -i · Sum over all positive and negative j φ 0. \ιι.~>ο) 
L ]φ0 1=1 \J\ 

The goal of this problem is to use the technique of Ewald summation to rewrite 
Eq. (11.58) in a form suitable for rapid numerical evaluation. It is useful to 
define 

Qk = 2 ^ e m 11- Both / and k are integers. ( 1 1 . 5 9 ) 

The final answer should have the form 

N-Ì I |2 N 

k \ " ô / v " k=i j^o ; = i 
ΣΕ' © ) ί - ^ Σ ^ Σ Σ ^ . <>',o, 

with 
£ I ( J C ) = /°° — e~yx. (11.61) 

Find the functions Fk and G/^·. 

6. Friedet model of J bands: 

(a) Consider the tight-binding model, Eq. (8.67), and specialize to the case of 
one dimension, with nearest-neighbor interactions. Write down the dispersion 
relation for energy as a function of wave number, and from it find the density 
of energy states £>(£). 

(b) Friedel's model for electrons in a J band replaces the true three-dimensional 
density of states D(E) with a function of the form 

D ( £ ) ~ 2 ^ Ö ( £ + W ) Ö ( W " £ ) ' ( 1 L 6 2 ) 

Estimate the relation between W and the coefficient of the hopping coefficient 
t in Eq. (8.67) appropriate to an fee metal, assumed to have only nearest-
neighbor interactions, in three dimensions; set 2W equal to the bandwidth of 
the tight-binding model. 

(c) Making use of Eq. (11.62), obtain a simple expression for the cohesive en-
ergy of the d band solids as a function of the number Z of electrons per atom 
in the band. 
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12. Elasticity 

12.1 Introduction 

The theory of elasticity describes the energy needed to deform a solid body, pro-
vided that the wavelength of the deformations is large in comparison with any 
microstructure. The equations are largely derived through considerations of sym-
metry, depending in the end upon a small number of parameters that can be deter-
mined either from experiment or from atomic-level calculation. 

12.2 Nonlinear Elasticity 

Nonlinear elasticity describes reversible deformation of solid objects without as-
suming that the deformation is small. In order to describe deformation, one has to 
decide that in a certain state a piece of material is not deformed. This corresponds 
to the material sitting quietly without any external forces acting upon it, and in this 
situation it is in the reference state. Describe locations of material points in this 
reference state with the variable r. Now grab the solid, twist it, pull it, bend it. 
Each material point originally located at ? is now at a new location s(r). 

Before deformation After deformation 
γ ?(?) = r + ü(r). 

The theory of elasticity assumes that the new energy of the object depends 
only on the change in distance of material points that were originally close to one 
another. For example, one can think about point r and its nearby neighbor r + dr. 
The original squared distance between these two points is dr ■ dr = dr2. + dr2+dr2. 
After deformation, the new distance is 

\s(r + dr)-s(r)\2^\—drx+—dry + —drz\2 (12.2) 
orx ory orz 

Σ 9? ds 
gaßdradrß where gaß = -— · — . «and grange over x, (12.3) 

0 Ora Ora y, andz. 
aß μ 

The tensor gaß is the metric tensor. The change in square distance caused by 
deformation can be found from the Lagrangian strain tensor Εαβ , 

A | ? ( ? + i / r ) — ? ( r ) | — \dr\ \ The factor of 1/2 is conventional. (12.4) 

: Σ \ ^aß ~ δα?\ dr»drß Ξ Σ Εαβ dradrß (12.5) 
αβ αβ 
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When all distances between nearby points are unchanged, for example by moving 
a body rigidly from one place to another or rotating it, the Lagrangian strain ten-
sor vanishes. Otherwise it keeps track how much material at each point has been 
stretched in each direction. 

12.2.1 Rubber Elasticity 

Most solids are stiff, and deform irreversibly when stretched more than a fraction of 
a percent, justifying some further simplifications of elastic theory that will occupy 
succeeding sections. An exception to this general observation is rubber, which can 
stretch to five or eight times its original length and then snap back to its original 
form. Thus when using strain tensors to describe rubber, they appear in their full 
nonlinear glory. 

Vulcanized rubber is constituted from a densely intertwined network of poly-
mers that link together at occasional intervals, as shown in Figure 12.1. As de-
scribed in Section 5.5.8, polymer strands act like springs, and because the poly-
mers making up rubber are typically 350,000 units long and travel a few hundred 
units between linking points, they can be extended a long way without undergoing 
permanent damage. 

One other experimental observation about rubber is crucial. All the low-energy 
deformations keep the density of rubber fixed. Rubber can be sheared easily, and 
it can be stretched, but if stretched in one direction it contracts in other directions 
so as to keep the volume per molecule fixed. In this respect, rubber resembles an 
incompressible fluid, such as water. This fact can be accounted for by modifying 
the free energy of a polymer mixture given by Eq. (5.73), to read 

p Ji2 

? = 3-0 + kBT\j2 "4+Vßn2 + VC«3 + . . . 1. (12.6) 
Write the free energy in terms of the density n and volume V. The sum over j is taken 
over all the Np polymers in the rubber. In Eq. (5.73) there is a term involving 1/DÎ 
that is omitted here since the monomer density in rubber is so high that the argument 
producing it is invalid. 

The fact that rubber preserves density will follow if Bn and Cn2 in Eq. (12.6) have 
magnitude much larger than 1, and B is negative, so that the polymer mixture col-
lapses to a high density given by Eq. (5.77). Any deformations of the rubber that 
involve changing the density n increase the energy much more than changes that 
do not. 

The basic experimental facts, then, are that the energy of rubber varies as the 
square of how far it has been stretched. However, the energy is subject to the 
constraint that the density of the rubber remain constant. In addition, since rubber 
is isotropie, its energy should be invariant to changes of coordinate axes. Turning 
now to the Lagrangian strain tensor Εαβ one asks how to construct a theory of 
this sort. Suppose that the rubber is stretched uniformly by factors Xx, XY, and 
λζ along the x, y, and z axes respectively. This stretch can be consistent with the 
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Figure 12.1. Rubber consists of a tangle of polymers, joined occasionally at nodes, but 
otherwise free to slide about. However, there are forces between all the homopolymers 
which strongly prefer a certain overall fixed density. The typical distance between nodes 
where polymers bind together is CRi. 

conservation of density provided 

λ , λ , λ ζ = 1 . (12.7) 

Since dsx/dx = λ* describes stretches along x, with similar expressions for y and 
z, the metric tensor in Eq. (12.3) and strain tensor in Eq. (12.5) become 

8aß = X2Jaß (12.8) 
^Εαβ = \(\2

α-\)δαβ (12.9) 

The trace of any tensor such as Εαβ is invariant under rotations of coordinate axes. 
This suggests taking the energy proportional to 

ΊτΕ = ^{Χ2
χ + Χ] + Χ2

ζ-3) (12.10) 

and imposing incompressibility through Eq. (12.7) to obtain the free energy per 
volume for rubber due to Mooney (1940), 

? 9 1 \ 
\ Δ - j - \ Δ -| 3 1 G is a constant with dimensions of energy per ( \ 2 11) 

X y XjXj I volume. 

G is called the elastic modulus of rubber. 

Example: Stretching a Circular Sheet. Consider stretching a circular rubber 
sheet, of initial radius RQ in the x—y plane and thickness t along z. When the radius 
increases to R = RoXx = RoXy, the thickness must decrease to ÎRQ/R2 to preserve 
volume. So Eq. (12.11) becomes 

3" = -nRU £)2+(t)4 
The free energy per volume describes the en-
ergy attributed to a volume element in the ref-
erence frame. So when summing up to get 
the free energy of the whole object, just mul-
tiply by the original volume, not the stretched 
volume. 

(12.12) 
A comparison of Eq. (12.12) with experiment appears in Figure 12.2. Notice that G 
for this sample is on the order of 5 · 105 J m - 3 = 0.5 MPa. This is around 104 times 
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smaller than elastic moduli for for materials such as glass or metal described in Ta-
ble 12.2. The reason rubber is so floppy can be understood in part by returning to 
Eq. (5.73), which describes the free energy of polymers from a microscopic point 
of view. The overall energy scale is set by kßT times the number of polymer seg-
ments per volume. The number of polymer segments per volume is the density of 
molecular units per volume (around 1022/cm3) divided by the number of molecular 
units per polymer chain between linking points (around 100). Assembling these 
values gives a typical elastic modulus of 0.4 MPa. 
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Figure 12.2. Force per length applied to circular rubber sheet, originally 1 cm thick, as it is 
stretched uniformly beyond original size. Squares are data from Treloar (1975), p. 89, and 
line is a plot offeree per length (\/R)(d3r/dR), using Eq. (12.12), scaled to match data. 
Deviation of theory from experiment at large values of R is due to the fact that polymer 
chains stiffen faster than quadratically when stretched too much. 

12.2.2 Larger Extensions of Rubber 

Figure 12.2 indicates that for large enough extensions, the Mooney theory no 
longer applies, and rubber stiffens at a higher rate. In searching for a higher-order 
term to add, symmetry provides a guide. The term should be invariant under rota-
tions of coordinate axes; that is, the energy of rubber should not depend upon an 
arbitrary decision that some direction is x. To form rotationally invariant quantities 
from the Lagrangean strain tensor, observe that 

J(e) = det E-el Here / is a 3 x 3 unit tensor and e is a constant. (12.13) 

is invariant under coordinate rotations because determinants have this property. 
The invariance obtains for all values of e, so it must hold for the quantity that 
multiplies each power of e as well. This observation leads to three strain invariants 

Α=ΣΕ° (12.14) 
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h = z2 {EaßEaß - EaaEßß } (12.15) 
aß 

/3 = det|£|. (12.16) 

The first invariant J\ is just the trace of E, which formed the basis of the 
Mooney free energy. The third invariant gives the volume of the rubber, which 
is constant, and so cannot enter into an expression for the energy. That leaves Jj. 
The Mooney-Rivlin theory of rubber posits that 

1 G 
— = —J, -\-BJo· Subject to the constraint that the volume J3 ( 1 2 . 1 7 ) 
V 2 remains constant. 

A large number of observations can be explained reasonably well by this addition 
to the energy. A statistical theory that derives an energy of approximately this form 
from statistical fluctuations of an incompressible solid has been obtained by Xing 
et al. (2007). 

12.3 Linear Elasticity 

In the nineteenth century, the theory of linear elasticity was viewed as one of the 
crowning achievements of physics. For a multitude of purposes, ranging from 
study of waves motion to the design of buildings and structures, it remains the 
most useful description of mechanical motion of solids. 

To obtain the theory, return to Eq. (12.1) and recall that the displacement of ma-
terial points is given by u(r) = ?(r) — r. The theory of linear elasticity is legitimate 
when the displacement Ü is small enough that it need be retained in the Lagrangian 
strain tensor E of Eq. (12.5) only to linear order. To see how this works, write out 
the metric tensor of Eq. (12.3) in terms of ü: it becomes 

duß dua ^ ÖM7ÖM7 gö/3 = <W + —^ + - — + > ^ - L ^ - L · (12.18) 
dra drß ^ dra drß 

The last term in Eq. (12.18) is what linear elasticity discards. After dispensing 
with this nonlinear term, the Lagrangian strain tensor is simply called the strain 
tensor, is conventionally denoted by lower case e, and equals 

_ dua duß 
eaß = i h l·-« ■ (12.19) 

drß dra 
To obtain the theory of linear elasticity, simply assume that the energy of a solid 

is given by a quadratic functional of the strain tensor. The most general functional 
of this form is 

?=Σ dr \eaßCaßl5el5. (12.20) 
αβηδ 

The reason that the free energy is a quadratic functional of the strain tensor is that 
one wants the undistorted solid with eaß = 0 to correspond to a state of minimum 
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energy. If any terms linear in eaß were added to the theory, this would not be the 
case. 

Because the strain tensor is symmetric under interchange of its indices, without 
loss of generality one can take the tensor C to be invariant under the interchanges 

a*->ß, 7 <-> δ and also aß ^ ηδ. (12.21) 

If C does not have these symmetries, then replace it with ^[Cag-ys +CßayS +6 more 
terms], which does have them. See Problem 1. 

Therefore, C has at most 21 components. Equation (12.20) can also be rewrit-
ten as 

5" = \ / (ff -enR (7„ii Generalization of "work equals force times (\2 2 2 ) 
^ i 2 ap ap, d i s t a n c e . > 
aß J 

with the stress tensor σ given by 

σαβ = 7 ^ Cgß-fS ?Ίδ- (12.23) 
7(5 

12.3.1 Solids of Cubic Symmetry 

Although 21 independent components of the tensor C are allowed in the most gen-
eral case, solids with more than triclinic symmetry have simpler tensors. For exam-
ple, a solid with cubic symmetry can have only three independent elastic constants. 
Because cubic symmetry implies that the solid must be symmetrical under reflec-
tion about the x-y, x-z, and y-z planes, no constant CQ 7̂<5 is allowed in which some 
index assumes a value an odd number of times. For example, Cxyyy must be zero 
because it is the coefficient of e^e^, and exy flips sign when x —> —x, but the energy 
of the crystal must be invariant under this change. Furthermore, a cubic crystal has 
threefold axes that lead it to be symmetric under x —» y —> z —> x. Therefore, any 
coefficient Capys is equal to all those that can be obtained from it by cyclic permu-
tation of its indices. Three independent parameters survive these considerations; 
they may be taken to be Cxxxx, Cxxyy, and C^.^. The free energy becomes 

j I ^xxxx [e
xx + e

yy + e
zz\ 

j = I ctr — < -\-l.l^xxyy [£xx€yy + cyyezz -+- ez 

+4Cx>,xy [e^y + eyz + e^l 
(12.24) 

The reason that the last two terms have factors of 2 and 4, respectively, reflects 
the numbers of times they appear when one sums freely over αβη and <5. For 
example, é1 shows up as the coefficient of CXVA>., Cxyyx, Cyxyx, and Cyxxy. 

A conventional notation for elastic constants cuts in half the number of sum-
mations that must explicitly be mentioned by defining 

Ζχχ €yy &ZZ ^yz ^zx ^xy 
ϊ ϊ Ϊ [ I I (12.25) 

e\ β2 e-i <?4 e5 e 6 
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Table 12.1. Elastic constants for cubic crystals 

Element Cu 
(GPa) 

C44 
(GPa) 

C12 
(GPa) 

Element Cu 
(GPa) 

C44 
(GPa) 

C12 
(GPa) 

Al 
Ar(80K) 

Ag 
Au 
Cs (78 K) 
Ca 
Cr 
Cu 
C (diamond) 
Fe 
Ge (undoped) 
Ge («-doped, 10 19Sb) 
Ge(/>doped,1020Ga) 
H e 3 (0.4 K, 24 
H e 4 (1.6 K, 12 
Ir 
K 
Kr (115K) 
Pb 

cmVmole) 
cm3 /mole) 

108 
2.77 
123 
190 
2.47 
16 
346 
169 
1040 
230 
129 
128.8 
118.0 
0.0235 
0.0311 
600 
3.71 
2.85 
48.8 

28.3 
0.98 
45.3 
42.3 
2.06 
12 
100 
75.3 
550 
117 
67.1 
65.5 
65.3 
0.01085 
0.0217 
270 
1.88 
1.35 
14.8 

62 
1.37 
92 
161 
1.48 
8 
66 
122 
170 
135 
48 
47.7 
39.0 
0.0197 
0.0281 
260 
3.15 
1.60 
41.4 

Li (195K) 
Mo 
Na 
N e (6 K) 
Ni 
Nb 
O (54.4 K) 
Pd 
Pt 
Rb 
Si (undoped) 
Si («-doped, 10l9As) 
Sr 
Ta 
Th 
W 
V 
Xe(156K) 

13.4 
459 
7.59 
1.62 
247 
245 
2.60 
224 
347 
2.96 
165 
162.2 
14.7 
262 
76 
517 
230 
2.98 

9.6 
111 
4.30 
0.93 
122 
28.4 
0.275 
71.6 
76.5 
1.60 
79.2 
78.7 
5.74 
82.6 
46 
157 
43.2 
1.48 

11.3 
168 
6.33 
0.85 
153 
132 
2.06 
173 
251 
2.44 
64 
65.4 
9.9 
156 
49 
203 
120 
1.90 

Notice that the Cauchy relation C\2 = C44 is badly violated for almost all entries. Source: 
Landolt and Bernstein (New Series), vol. 11. 

*~-xxxx ^xxyy *~-xxzz ^yzxx *~zxxx ^xyxx ^ C · 

C\\ C]2 C13 C4J C51 Cßi etc. 
(12.26) 

so that the free energy may be rewritten 

3": dr 
6 

Σ 
aß=\ 

eaCaßeß. (12.27) 

The three constants C\\,C\2, and C44 for cubic crystals appear in Table 12.1. 
It was shown by Cauchy and Saint Venant that if all the atoms composing a 

solid interact pairwise through central forces—that is, forces that are directed from 
the center of one ion to another as in Eq. (11.1 )—then there is an additional symme-
try requiring C44 = Cn—the Cauchy relation. Because many computer simulations 
of solids assume forces of this form, it is important to observe that for all real cubic 
solids the relation is badly violated, as shown in Table 12.1. This fact caused con-
siderable controversy in the nineteenth century, because the elastic anisotropy of 
solids revealed the underlying lattice on a macroscopic scale, but seemed inconsis-
tent with the only imaginable force laws. The paradox was first resolved by Born 
(1914), who introduced the possibility of angular forces between atoms, such as 
discussed in Section 11.8. 
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Bulk modulus. The bulk modulus of any solid is defined as B = Vd23r/dV2. Uni-
form dilation of a solid is obtained by setting exx = evy = ezz = SV/3V, while the 
other components of the strain tensor vanish. From Eq. (12.24), for a cubic crystal, 
the free energy has the form 

•5 = IV [Cu +2Ci2] [6V/V]2, (12.28) 

and therefore the bulk modulus is given by 

B = \[CU+2Q2}. (12.29) 

12.3.2 Isotropie Solids 

Many solids are effectively isotropie. In some cases, as in glass, it is difficult 
to find any length scale much above the atomic for which there is any preferred 
orientation. In other cases, such as commercial cast metals or ceramics, a solid 
may be composed of so many crystalline grains of varying orientation that for 
scales much above the grain size, no trace of crystalline anisotropy remains in the 
elastic response. In this case, the number of elastic constants reduces to two. 

To show that one constant disappears relative to the cubic case, it is sufficient 
to recognize that isotropie solids possess all the symmetries of their cubic coun-
terparts, but with many additional symmetries that may simplify the free energy 
beyond Eq. (12.24). One could impose, for example, the condition that the free 
energy remain invariant under infinitesimal variations about the z axis. An alterna-
tive is to demand the free energy to remain invariant under 45° rotations about the 
z axis. In this case, the strain tensor eaß(r) transforms into e'ag{r'), where 

eaß(7) = Y/R*aie'1s(r')RSß (12.30a) 
7(5 

with 
/ I -1 0 \ 

rf = Rr aadR=-= I \ 1 0 . (12.30b) 
V2 \ 0 0 y/l) 

Substitute Eq. (12.30) into Eq. (12.24), subtract the free energy of the rotated 
state from that of the unrotated state, and demand that the result vanish (Problem 
3). After carrying out the matrix multiplications and some algebra, the result is 

0 = {2CXyXy + CXXyy ~ ΟΧΧΧΧ)(β}7 ~ 2βXy ~ β ΧΧ) (β yy + 2βXy ~ <?XX) (12.31) 
^ ^-xxxx — ^xxyy τ Ά^-xyxy ■ \ l L.5L) 

Substituting Eq. (12.32) into Eq. (12.24) allows the free energy to be written 

3 = \ I dr A{ Σ eaa) +2μ^ eiß■ whereλ = Cmï andμ = C r v r v · 

(12.33) 
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9" is now rotationally invariant, so there is no point in trying to apply additional ro-
tations to simplify it further. The numbers λ and μ are called the Lamé constants; 
although convenient for analytical work, they are not the conventional constants 
with which to report experimental properties of isotropie elastic media, so the pre-
sentation of typical values is deferred. 
Equations of Motion and Equilibrium. Knowing the free energy associated with 
any possible deformation of the solid and observing that while it is in motion there 
will also be a kinetic energy 

T= dr±p\U(r)\2, P is the mass density. (12.34) 

one can find the equation of motion for ü, by computing 

püa(r) = - - — p - = Σ -^-σαβ(~τ), (12.35) 
àua{r) y drß 

using Eq. (12.23) for the stress tensor, 

Cgß = y „ Cgß-yS ^Ίδ· (12.36) 

Because the acceleration of small sections of mass is given by the divergence 
of the stress tensor, the stress tensor is physically interpreted as giving the forces 
that each section of the body exerts upon its neighbor. To see why, integrate (12.35) 
over any small volume V bounded by closed surface Σ, to get 

/ 
Jv 

dr piiQ = / ί / Σ y~] Πβθβα Employ the divergence theorem, with ηβ a ( 1 2 . 3 7 ) 
J ' component of the unit normal to surface Σ. 

Taking the small volume to be a tiny cube oriented along the coordinate axes, 
Eq. ( 12.37) shows that the total force on the material inside the cube is provided 
by the appropriate components of the stress tensor σ multiplied by the areas of the 
cube faces. 

Specifically, if one imagines taking a knife and using it to sever bonds in a 
small two-dimensional region, say perpendicular to the x axis, then oxx gives the 
force per unit area required to pull the faces of the region together along x, and σ^, 
and σχζ give the forces per unit area required to stretch the faces in the directions 
perpendicular to x so that each atom is directly across from the atom that was its 
neighbor in equilibrium. The directions of the stresses on each face of a small 
cube within a solid are depicted in Figure 12.3. The first symmetry of Eq. (12.21) 
implies that σαβ = σβα. A glance at Figure 12.3 shows that this requirement is 
equivalent to demanding that all torques vanish on small volume elements of the 
solid. 

In the special case of an isotropie solid, one obtains 

σαβ = \δαβ Y] βΊΊ + 2μβαβ (12.38) 
7 

\ r ι 
α-αβ = , , α0~ Ν Y " σΊΊ + —σαβ. Just invert the matrix of Eq.( 12.38). ( 1 2 . 3 9 ) 

p 2μ(3λ + 2μ) ^ Ί1 2μ αρ 
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i * 

/ 

Figure 12.3. Imagine singling out a small cube from within a solid. Every face is po-
tentially under stress in three directions, and the sign conventions for the directions of the 
stresses are shown here. The total force on each face is given by the stress in each direction 
times the area of the face. 

and the equation of motion Eq. (12.35) becomes 

dH 
P^ki = (λ + μ) V( V ■ ii) + /Λ72Μ. (12.40) 

Uniform Stresses. If a body is under uniform stress S in the z direction, as shown 
in Figure 12.4, then from Eq. (12.39) one has immediately that 

% = Ye7 

with 
μ(3λ + 2μ)_ 

λ + μ ' 

(12.41) 

(12.42) 

Y is called the modulus of elasticity or Young's modulus. Simultaneously, the body 
contracts in directions perpendicular to the applied stress by an amount 

-λ 
6 XX 6yy 

2μ(3λ + 2μ) S, (12.43) 

and the negative of this perpendicular contraction exx divided by the extension ezz 

is Poisson 's ratio 

Another conventional constant is defined when only oyz = S is nonzero. Again 
using Eq. (12.39), one finds that 

S = 2Geyz = G—— y dz 
(12.45) 

and defines G = μ to be the shear modulus. Typical values of Y and v appear in 
Table 12.2. 
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Figure 12.4. Geometries for the definitions of (A) Young's modulus Y and (B) the shear 
modulus G. 

Table 12.2. Elastic moduli for isotropie materials 

Material Young's Modulus Y (GPa) Poisson Ratio v 
Lead (cast) 5 
Tin (cast) 27 
Glass 55 
Aluminum (cast) 68 
Copper (cast) 76 
Zinc (cast) 76 
Copper (soft, wrought) 100 
Iron (cast) 110 
Copper (hard drawn) 120 
Iron (wrought) 200 
Carbon steel 200 
Tungsten 400 

0.5 
0.3 
0.16 
0.3 
0.4 
0.3 
0.4 
0.3 
0.4 
0.3 
0.3 
0.3 

The value of the elastic modulus depends very strongly upon the processing 
of the material, which means that a hierarchy of structural details starting 
at the atomic level and proceeding up to the scale of grains all are impor-
tant. Data are indicative of orders of magnitude. Source: Brady and Clauser 
(1991) and Grigoriev and Meilkhov (1997). 

Traveling Waves. An important feature of the equation of motion (12.40) is that 
it supports traveling waves of two types, longitudinal and transverse. To study the 
longitudinal waves, define 

A(r, t) = V · u(r, t) and w(r, t) = V x u(r, t). 

First take the divergence of Eq. (12.40) to obtain 

d2A 
dt2 (λ + 2μ)ν2Δ, 

(12.46) 

(12.47) 
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and then take the curl to obtain 

f) lì) 
Q — n\7^yj Because the curl of a gradient vanishes. (ΥΣ 4 8 ) 

Supposing Ü to be of the form Üoe'k'ir~luJt shows that Eq. ( 12.47) describes longitu-
dinal waves, where k and UQ are parallel, moving with speed 

α = ^ ψ , (12-49) 

while Eq. (12.48) describes transverse waves, where k and ÜQ are perpendicular, 
moving with speed 

(12.50) 

12.4 Other Constitutive Laws 

12.4.1 Liquid Crystals 

Understanding the mechanical forces needed to deform liquid crystals is important 
for technical applications, because, for example, in liquid crystal displays, electri-
cal fields twist the molecules of the liquid crystal and thereby alter their optical 
properties. The question naturally arises as to how hard one needs to twist this liq-
uid in order to make it turn. The question will be answered by asking how elasticity 
is modified while accommodating the symmetries of liquid crystals. 

The calculation will be carried out for a nematic liquid crystal and will be 
restricted to the case where deformations of the material occur over length scales 
much larger than the molecules of which it is composed. At every point, the liquid 
crystal is described by a unit vector n(r), whose direction indicates the local axis 
of the nematic. 

The energy needed to deform a nematic is therefore an integral over space of 
some function involving gradients of the unit vector h. Because the gradients are 
supposed to be small, the theory will stop with the simplest collection of terms 
that gives a nonzero result. There are two basic symmetries allowing one to reduce 
the number of terms that must be considered. First, the head and tail of molecules 
making up a nematic are indistinguishable, so no physical quantity should be able 
to distinguish between h and —h or to tell if the system has been reflected about any 
plane. Second, the free energy of the nematic must be independent of the reference 
frame in which it is described. In particular, if one picks up a jar containing a 
nematic and rotates it slightly, the calculation of the free energy cannot change just 
because the point of view has altered. 

Matters would be particularly simple if terms linear in gradients of h composed 
the free energy. Unfortunately, one easily shows that all of them vanish. The only 

Q 
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terms available that are invariant when the sample as a whole is rotated are 

(n-V)n (12.51a) 
V-n (12.51b) 

n - V x n . (12.51c) 

The first of these, Eq. (12.51a) can be rewritten as V(h-h)/2, which vanishes 
because h is a unit vector. The second cannot have a nonzero coefficient because 
it does not respect the symmetry h —> —h. The third changes sign under reflection 
about the x, y, or z planes, and it must be discarded on this account. Therefore, one 
is driven to terms that are quadratic in gradients of h. 

There is a discouraging number of terms to consider. A general term involving 
two gradients is of the form 

P^P, (12.52) 
and as each index can adopt three values, there is a total of 81 different contribu-
tions at the outset. So the free energy is 

dr iF ( r ) = | / dr ~S~] CQß7<5 —— — — . 3(7) is the free energy per volume. 
J αβΊδ Orß 9r& 

(12.53) 

One can always interchange αη <-> βδ, because Eq. (12.53) does not change when 
this switch is performed, but this still leaves 45 independent values of Caßys. To 
further reduce this number by application of symmetry, pick a particular point in 
space, r, and choose the z axis to coincide with the direction of the director n(r). 
Most of the calculation will be carried out with this specific choice of coordinate 
system, until the very end, when the results will be interpreted in a fashion that is 
independent of it. 

A first simplification results immediately from the fact that « is a unit vector. 
All gradients of nz vanish because 

° = 7Γ"1 = Έ - ( η · « ) H2 ·5 4) dra dr, 
d 

,— nz - ..i j , — . . 
Ora Ora have to be calculated 

Although « points along z right at r, it will 
0 d not generally point precisely along z a small 

: 2nz——nz = 2 — — n z distance away, and therefore gradients of nz ( 1 2 . 5 5 ) 

There are 21 independent coefficients Caß1s remaining. 
The remaining simplifications are deduced with greater difficulty. Whatever 

terms enter the free energy must be invariant if one rotates the whole system 
slightly around the z axis. Problem 5 shows that following rotation about the z 
axis through a small angle Θ, one obtains 

8ηΊ 0ηΊ ^ θηΊ dnß 

drs drs ^ drß
 μ ιμ drs 
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where 

(° ~l °\ 
R= 1 0 0 . (12.57) 

\ 0 0 0 / 
Placing Eq. (12.56) into the free energy (12.53) and demanding that all terms pro-
portional to Θ vanish gives 

ο=Σ \dnadn~i 8ηα3ηΊ 

L dy drs 
^αχ-γδ 

αηδ 

•s—^ p dnx δηΊ 

dx drs 
C, ayjS 

βΊδ drß drs c ■yßr/δ ' 
3ny δηΊ 

d~r~ß~dr~sCxß^\ 

The coefficient of every term, such as 

dnx dnv 

dz dy ' 

(12.58) 

(12.59) 

has to vanish independently. For example, demanding that the coefficient of (12.59) 
vanish gives 

The tedious task of constructing all 21 such equations and using them to eliminate 
as many coefficients as possible is best turned over to any computer algebra system, 
which within a few minutes will show that only five independent coefficients now 
survive. These are the coefficients of 

(12.61a) 

(12.61b) 

(12.61c) 

(12.61d) 

(12.61e) 

~dnx 

_ dx 
~dnx 

[dz\ 
dny 

_ dx 

dnv 

dy i 
2 
+ 
dn 

~~d~l 

2 

' dUy 

[dz\ 
X 

2 

dny 

dx 
dny dnx 

dnx 

dy 
driy dnx 

dy dx 
dnv dnx 

dx dy dy dx 

The final task is to identify each of these quantities in terms of operators that 
no longer depend upon the particular choice of z as the local axis of the nematic. 
The quantities appearing in Eq. (12.61) may be rewritten as 

( V · « ) 2 

\n x (V x n ) | 2 

( « • ( V X A Ì ) ) 2 

ή· (V x n)V-h 

V · («· V)n — /ì(V ·η) 
This quantity is difficult to deduce from 
Eq. (12.6le), although easy to verify 
once one has made the right guess. 

(12.62a) 

(12.62b) 

(12.62c) 

(12.62d) 

(12.62e) 
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The coefficient of (12.62d) must vanish because this term is odd in h. The final 
term, (12.62e) need not be included in the free energy, because as a divergence it 
contributes to the surface energy but not to the bulk energy. The free energy density 
has finally only three terms, 

3 - = y ( V - n ) 2 + y ( M V x « ) ) 2 + f ( r c x ( V x « ) ) 2 . { η ω ) 

splay twist bend 

Problem 10 provides an example of how this free energy can be employed to find 
the mechanical response of liquid crystals. Many other calculations are found in 
de Gennes and Prost (1993) Chandrasekhar (1992), and Chaikin and Lubensky 
(1995). 

12.4.2 Granular Materials 

Granular materials, such as sand, are peculiar hybrids of solids and liquids. Placed 
in a pile, they retain their shape like a solid. Poured from glass, they flow like 
liquids. Their mechanical properties are challenging to describe. An introduction 
to some of the issues involved is presented by Bergman and Stroud (1992) and 
Jaeger et al. (1996a,b). 

One of the classic ways to examine mechanical properties of a granular solid 
is in a triaxial text. A tube of sand sustains compressive stress σ\ from the top, 
and compressive stress 02 from the sides, with \σ\\ > |cr2|. Using the idea of static 
friction, one can calculate when grains will begin to slide and the tube of sand fall 
apart. 

The idea of the calculation is to imagine slicing through the tube of sand with 
imaginary planes pointing in every possible direction. For every plane, calculate 
the normal force yV and the shear force r. If for any plane r > μ5Ν\ where μ5 is 
the coefficient of static friction, then sand should begin to slip along that plane. So 
the stability of a granular column comes down to finding normal and shear forces 
in all possible directions. 

Specialize to two dimensions. The stress tensor has the simple form 

What is the stress when viewed along some arbitrary direction ΘΊ In a frame rotated 
through angle Θ, the stress tensor becomes 

cos Θ sin Θ \ / σ\ 0 W cos Θ — sin 1 
— sin Θ cos Θ ) V 0 σ2 J \ sin Θ cos Θ 

cos2 θ σ\ + sin2 θ 02 (σ\ — 02) sin Θ cos Θ 
(σι — σ2) sin Θ cos Θ cos2 Θ 02 + sin2 θ σ\ ' 
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Ασ, subcriticai 
N 

Figure 12.5. Diagram describing the Mohr-Coulomb circle. 

The components of the first row give normal N and shear stress r across the plane 
at angle Θ. They can be rewritten 

yV = — (<J + Δ σ COS 2 0 ) Introduce the minus sign because the convention with 
stresses is that they are positive in tension, while in this 
problem it is natural to take the normal force positive in 
compression. 

T = - Δ σ s in 2Θ 

where the average stress σ and differential stress Δσ are 

σ 
σι + σι σ\— σ2 
— τ — ; Δσ = — - — . 

(12.66) 

(12.67) 

Thus a plot of r versus TV describes a circle centered on the point (|σ|, 0), 
as shown in Figure 12.5. The figure also shows a line of slope τ/Ν = μ, which 
describes the threshhold beyond which the granular tube will be unstable. When 
stresses are just at the point where instability is about to occur, the circle parametrized 
by Eq. (12.67) is just tangent to the line. This critical condition occurs when 

Δσ 

σ 
μ. (12.68) 

Problems 

1. Symmetries of C: 
Complete the comment attached to Eq. (12.21). Write the additional 6 terms 
needed to symmetrize C, and explain why it is legitimate to replace C by this 
symmetrized quantity. 

2. Rotations in linear elasticity: Because the nonlinear term has been discarded 
from Eq. (12.19), linear elasticity does not treat rotations very well. Suppose 
that a solid would begin to crumble inside when subjected to a uniform exter-
nal pressure of (λ + μ)/5. Subject this solid to rigid rotations, compute the 
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(spurious) pressure predicted by linear elasticity, and find the rotation angle at 
which the solid would begin to come apart. 

3. Isotropie solids: 

(a) Derive Eqs. (12.31), (12.32), and (12.33). 
(b) Derive Eq. (12.38). 

4. Equation of motion: Derive Eq. (12.35). 

5. Rotation of nenia tics: Derive Eqs. (12.56) and (12.57). 

6. Elastic constants: 

(a) Express the bulk modulus B of an isotropie material in terms of the Lamé 
constants. 

(b) Find Young's modulus Y, as defined in Figure 12.4, along [100] for a crystal 
of cubic symmetry. 

7. Waves in cubic crystals: 

(a) Find the equation of motion Eq. (12.35) in a form appropriate for a cubic 
crystal. One way to proceed is to begin with Eq. (12.24), evaluate δ^/δϋχ, 
and then generalize the result to the other two components of Ü. 

(b) Assuming that u(r, t) =w e\p[ik -r — ϊωή, find the matrix equation for w. 
(c) Assume that k = ko[l 0 0]. Find the two sound speeds in this direction, and 

evaluate them for undoped silicon. 
(d) Now assume that k = ko[l 1 1]. Again find the two sound speeds, and 

evaluate them for undoped silicon. 

8. Surface waves: Consider a two-dimensional isotropie elastic solid stretching 
from — oo to oo in the x direction, but from — oo to 0 in the y direction. Surface 
waves, also called Rayleigh waves, can run along the free surface, vanishing 
exponentially as they reach down into the bulk. 

To find the dispersion relation for these surface waves, begin with the obser-
vation that any displacement field u can be decomposed into longitudinal and 
transverse parts, 

_ _,i _,t The decomposition can be defined by taking the Fourier 
U — U + U . transform of «; the longitudinal part of u is the part par- ( 12 .69 ) 

allei to k, and the transverse part is whatever is left over. 

In two dimensions, ul and u' derive from potentials φι and φ' such that 

S' = V ^ a n d « ' = ( - ^ , ^ Y (12.70) 
V ov ox I 



338 Chapter 12. Elasticity 

(a) Assume that φι = A e\p[ikx + g/y - ϊωή and φ' = B exp[ikx + g,y — ίωή. 
Determine gi and gt. Use the transverse and longitudinal wave speeds Q and 
c, to carry information about the elastic constants. 

(b) The boundary conditions on the free surface at y = 0 are that σνν = σ^ = 
0. Find two homogeneous equations involving A and B by imposing these 
boundary conditions. 

(c) Find the dispersion relation ω = CRIC, and determine the Rayleigh wave speed 
CR in terms of the longitudinal and transverse wave speeds c/ and ct. Verify 
that when c, = \/3c,, cR = 0.9194c,. 

9. Rubber: Consider a solid cylinder of rubber, of original length L and radius r. 
What restoring force does it exert as L is stretched beyond its original length? 

10. Friedrichs transition: 

Figure 12.6. A nematic crystal is held between two plates. In (A) the liquid crystal is in 
equilibrium with no external field, while in (B) it is in equilibrium in the presence of a field 
along t 

Consider a nematic liquid crystal caught between two plates, as shown in 
Figure 12.6. The director h points along y at x = 0 and x = L. Between the 
plates is applied a uniform magnetic field of strength H, along z. When it 
reaches a critical value Hc, the magnetic field causes the director n to begin 
twisting in the y-z plane, as shown in Figure 12.6(B). 

(a) Assume that the magnetic field enters the free energy of the liquid crystals 
as 

1 -XH J dr(H-fi)2. (12.71) 

Show that the complete free energy takes the form 

1 J d?KAn^-n,^-\XH J df(H-iìY. (12.72) J = 2 

(b) Write h = (0, cos Ö, sin Θ). Find the Euler-Lagrange equation corresponding 
to Eq. (12.72). 

(c) Multiplying the Euler-Lagrange equation by δθ/dx, integrate it and solve 
for d9/dx. 
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(d) Assume that for the critical magnetic field Hc, the angle Θ is always very 
close to zero. Making use of this approximation, solve explicitly for Θ (up to 
an overall constant multiplier), and calculate the critical field Hc. 

11. Mohr-Coulomb Failure Criterion Suppose one has a vacuum-packed bag 
of coffee. Calculate the heaviest person that can stand on it without it giving 
way. Neglect the strength of the packaging and treat the coffee is a granular 
medium under atmospheric pressure. Assume that the top of the coffee bag 
has an area of 200 cm2 and that the coefficient of friction of coffee beans is 
0.2. 
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13. Phonons 

13.1 Introduction 

Continuum elasticity is the only theory one needs to find stresses in skyscrap-
ers. However, this description of the motion of solids fails in a qualitative manner 
as soon as one considers deformations whose wavelength is comparable to inter-
atomic distances. When deformations are small, they must also be fast: taking 
the speed of sound to be 104 m/s, one has vibrations of 10~10 m at frequencies 
of 1014 Hz. No ordinary motor can generate vibrations this fast. However, they 
provide the microscopic underpinning of phenomena ranging from specific heat to 
electrical resistance. 

The quantitative theory of microscopic deformations is by far most advanced in 
crystalline lattices. The study of phonons is the study of how to catalog and name 
the vibrating modes, how to calculate their frequencies, and of how they interact 
with mechanical, electromagnetic, and other forces. Phonons are traveling waves 
in crystals, and many of the techniques used to study electron waves in Chapter 7 
carry over immediately to phonons as well. 

The first work on lattice dynamics, by Born and van Karman preceded the 
experimental proof by Laue, Friedrich, and Knipping that solids were crystalline 
lattices. Born says: 

The first paper by Karman and myself was published before Laue's dis-
covery. We regarded the existence of lattices as evident not only because 
we knew the group theory of lattices as given by Schoenflies and Fedorov 
which explained the geometrical features of crystals, but also because a 
short time before Erwin Madelung in Göttingen had derived the first dy-
namical inference from lattice theory, a relation between the infra-red 
vibration frequency of a crystal and its elastic properties.... Von Laue's 
paper on X-ray diffraction which gave direct evidence of the lattice struc-
ture appeared between our first and second paper. Now it is remarkable 
that in our second paper there is also no reference to von Laue. I can 
explain this only by assuming that the concept of the lattice seemed to 
us so well established that we regarded von Laue's work as a welcome 
confirmation but not as a new and exciting discovery which it really was. 

—Born (1965), p. 2 
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Figure 13.1. A one-dimensional chain of ions connected by springs is the setting for the 
simplest discussion of phonons. 

13.2 Vibrations of a Classical Lattice 

13.2.1 Classical Vibrations in One Dimension 

Phonons are easiest to understand in one dimension. Consider a one dimensional 
chain of ions of mass M sitting at equilibrium distance a connected by springs 
of constant X, as shown in Figure 13.1. The calculations simplify as much as 
possible when one adopts periodic boundary conditions, since no ions then need to 
be treated differently from any others. There are N ions, and the total length of the 
chain is L = Na. 

Denote by ul the deviation of ion / G [0. . . N— 1] from its equilibrium location, 
with periodic boundary conditions implying that 

uN = u°. (13.1) 

Then 
Mül = X(ul+x -ul)+X(u1^ -ul). (13.2) 

This system of equations is solved by plane waves. Let 
It is purely a matter of convention which constants one 

.,/ __ ikla—iuit takes to multiply / in the exponent. One could choose Π 3 3Ϊ 
instead Inikl/N or ikl. Different choices would amount ^ ' ' 
to a redefinition of k. 

The periodic boundary condition (13.1) requires 

kNa = 2Kn^k = 2wn/{Na),n<E [0 . . .N-l]. (13.4) 

Substituting Eq. (13.3) into Eq. (13.2) gives 

-Muj2eeikla-iu" X{eika-\)+X{e-ika-\) eeikia-iu;t ( 1 3 5 ) 

X 
-Miü2 = X{2co<i{ika)-2)^uj = 2\l — \ sin(*a/2)|; (13.6) 
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Figure 13.2. The dispersion relation for a one-dimensional lattice with nearest-neighbor 
interactions calculated in Eq. (13.6). 

this dispersion relation is plotted in Figure 13.2. 
There are two characteristic features of this simple solution that occur quite 

generally: 

1. For small values of k, ω is proportional to the absolute value of k. This 
is no accident; it is nothing but the recovery of linear elasticity for waves 
much longer than the interatomic spacing. The slope of the dispersion curve, 
duj/dk = αχ/Χ/Μ = c near the origin is the sound speed. The branch of so-
lutions whose frequency vanishes as k vanishes results in general from the 
symmetry requiring the energy of the crystal to remain unchanged when all 
ions are displaced by an identical amount, as shown in Eq. (13.19). Very 
long wavelength displacements of the ions are indistinguishable from uniform 
translation on short length scales, and therefore they have low energy and fre-
quency. Excitations of this type are often referred to as Goldstone modes, 
after Goldstone (1963); see Section 26.3.3. 

2. The solution repeats periodically as a function of k , with period 2π/α. This 
occurs because the phonon problem concerns waves moving in a medium that 
is periodic with period a, and occurs for exactly the same reason that energies 
of electrons are periodic functions of wave vector k. Just as for electrons, 
the region [—π/α, π/α] is called the Brillouin zone. This symmetry will be 
discussed in greater generality as Eq. (13.21). 

One-Dimensional Chain with Basis. Now consider a one-dimensional chain, 
with lattice parameter a, in which atoms of two different masses, M\ and Mi, al-
ternate. Assuming again that each atom interacts only with its nearest neighbors 
(Figure 13.3), one has 
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Figure 13.3. Ions of alternating masses M\ and M2 interacting with nearest neighbors. 

M\Ü\ : 

M2ül2 ■ 

X(u2-2u[ +U l-\< 
2 . 

3C(, .'+· ■ 2ul
2 + u\ 

(13.7a) 
(13.7b) 

-ulMxe\ékÎa = %{e2-2ex+e2e~lka)eMa Assuming a solution (13.8a) 
of the form 

ika uJzM2e2e,kla = %{exelka - 2e2 + e,)e Jkla (13.8b) 

LÜ 

\ 

M\+M2±\/M} + 2M\M2 COS ka + M\ 

M\M2 

Set the determinant of the 
system (13.8) to zero, and 
solve the resulting 
polynomial for ω. 

(13.9) 
The two solutions of Eq. (13.9) are two branches of the phonon dispersion 

relation and are depicted in Figure 13.5. One of the branches vanishes linearly 
near k = 0 and is the acoustic branch, as it corresponds to ordinary sound. The 
second branch is restricted to higher frequencies and is the optical branch, since in 
solids these phonons are characteristically excited by light. For small k, the two 
branches take the form 

% 
2 ( M i + M 2 ) 

2X(Mi+M2) 
M\M2 

ka, e\ = 1; £ 2 = 1 +ika/2, (13.10a) 

ei =M2; e2 = -M\(\ + ika/2). (13.10b) 

Equation (13.10) shows as illustrated in Figure 13.4, that for the acoustic mode, 
atoms within the unit cell move essentially in unison, while for the optical mode, 
atoms within the unit cell vibrate out of phase. 
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Figure 13.4. Configurations of atoms in optical and acoustic modes. In the acoustic mode, 
atoms within a unit cell move in concert, while in the optical mode they vibrate against one 
another in opposite directions. 

2.0 

1.5 

^ ,.0 
■Ai 

0.5 

0.0 
-7I-/2 7Γ/2 

ka 

Figure 13.5. Vibrational frequencies of a chain with two alternating masses, as a function 
of the wave number k of oscillation, calculated in Eq. (13.9). The solution is depicted by 
measuring ω in units of y/%/M\ and setting Mi = 3Aii. 
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13.2.2 Classical Vibrations in Three Dimensions 

Crystalline lattices are not one-dimensional chains of ions connected to nearest 
neighbors by springs, nor even three-dimensional lattices of masses connected by 
springs. Nevertheless, viewing them this way is essentially correct when one re-
stricts attention to small deviations of ions from their equilibrium locations. When 
ions move only a small amount from equilibrium, the restoring forces on them are 
linear, and the techniques developed for the one-dimensional chain continue to 
apply-

Here is why linear restoring forces arise so generally. Suppose one knows the 
location in the ground state of a collection of ions, 1 . . . N, and let ul . . . uN 

describe the vector displacement of these ions from their equilibrium locations 
Rx . . . RN. When ions move, the energy of the crystal goes up; take the energy 
functional to be 

E{u\u2 . ..uN).. (13.11) 

Instead of making guesses about the form of the energy functional, as in Section 
11.8, assume all the variables Ü are small, and develop Eq. (13.11) in a Taylor 
expansion in powers of the variables u. 

The energy becomes 

ßC 1 
£ = Ec + ^ TrTu'n + _ Τ ^ Μί>Φ«/?ΜΑ + · · · · a and /3 are Cartesian indices running over 

^—' ßu 2 ^"~' basis vectors of three-dimensional space. 
α Ot aß 
1 11' 

(13.12) 
The first term in Eq. (13.12) is the cohesive energy, calculated with such effort in 
Chapter 11, but which for present purposes is a dull constant and will callously 
be neglected. Because the lowest energy state is a minimum as a function of ion 
locations, the linear term in the expansion in ul must vanish, and the first nonzero 
contribution must be quadratic. That is, 

aß 
W 

The 3 x 3 matrix Φ" comes immediately from Taylor expansion of the energy and 
is 

Φ' d2e Φ α /3 — . ,/ Φ" is always a symmetric matrix. (13.14) 
öu'adu'ß 

Periodic Boundary Conditions. The formal study of electron motion employed 
the simplification of periodic boundary conditions. The same assumption also sim-
plifies calculations concerning lattice vibrations. Proceeding along the direction of 
any of the three primitive vectors for the Bravais lattice, every physical quantity, 
including the displacements u of the ions, is assumed to repeat after some number 
of cells is cells is passed. All points in the equilibrium crystal are equivalent; the 
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Figure 13.6. Along the axis of a cubic crys-
tal, there is a longitudinal mode in the direc-
tion of wave propagation, k, and two trans-
verse modes perpendicular to it. 

crystal has no surfaces or boundaries. A first consequence of this simplifying as-
sumption is that φ[[β depends only upon Rl — Rl because if one displaces just two 
ions ul and u{ leaving all others in equilibrium locations, the resulting energy can 
depend only upon their relative locations. 

Equation of Motion. The dynamical equation for phonons follows from Eq. (13.13). 
The force on ion / is —d£/dul, which leads to 

MU = — y Φ U . Subscripts are being suppressed; each Φ" is ( 1 3 . 1 5 ) 
,, a 3 x 3 matrix. 

Much of the theory of phonons can be developed without reference to the par-
ticular form or value that the matrices Φ" take, so the question of how to calculate 
them will be left until later. In fact, it would be hard to proceed in any other way, 
because in order to conceive experimental probes of Φ11 one has to know what 
their consequences will be. One should not be misled by the simplifications in the 
starting examples; Φ11 will usually be nonzero when Rl and Rl are far from nearest 
neighbors, particularly in insulators, where the ions carry charges interacting with 
each other by Coulomb forces. 

13.2.3 Normal Modes 

Equation ( 13.15) is solved by plane waves, but as they travel in a three-dimensional 
crystal, one must keep track of information about their polarization. So take Ü to 
have the form 

Sr = ?g — "*". e is a unit vector that will describe the polar- ( 1 3 . 1 6 ) 
ization of the vibration. 

Substituting Eq. (13.16) into Eq. (13.15) gives 

Μ^2? = ] Γ Φ , / ν * - ( " ' ) ε (13.17a) 
/' 

_ _, N T./Si Si'\ ni Φ(ϊ) does not depend upon / 
= Φ ( £ ) β , With Φ(&) = 22 e Φ · b e c a u s e a11 Physical quantities 1 3 . 1 7 b ) 

,/ depend only upon W — R1 . 

If it were not for the three-dimensional nature of the problem, Eq. (13.17) 
would constitute an explicit solution; as things are, the solution is near at hand. 
What remains is a matrix equation for the polarization vector e. The matrix Φ(&) 
is real and symmetric, and therefore has three orthogonal eigenvectors for every k. 
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Let e^, v = 1 . . . 3 be the three unit vectors that diagonalize Φ(ϋ), and let Φ„ be 
the corresponding eigenvalues. It follows immediately that 

kv M 

Roughly speaking, the three polarization vectors ê  comprise one longitudinal 
mode for which e points along k, and two transverse modes for which e is perpen-
dicular to k (see Figure 13.6). This statement is not absolutely correct. It would 
only be true if one had an isotropie crystal, invariant under all rotations, but no such 
crystal exists. The closest that one can come is in a cubic crystal. When k points 
along a crystalline axis, then by symmetry one polarization vector points along k, 
and the two remaining polarization vectors correspond to degenerate energies, and 
point along perpendicular axes. 

There are some important symmetries that Φ" must always obey. The energy 
of the crystal cannot change if all ions are simultaneously displaced by a single 
vector. Therefore, 

J2$ll'=0. (13.19) 
/' 

^ Φ ( Ι = 0)=Ο (13.20) 

Because of the assumption of periodic boundary conditions, the allowed values 
of k are given exactly as in Eq. (6.7). Furthermore, notice that 

Φ(% + Κ) = Φ(&) , Look at Eq. (13.17), and notice that addition ( 1 3 . 2 1 ) 
of any reciprocal lattice vector turns instantly 
into a multiple of 2πί. 

where K is any reciprocal lattice vector. Therefore, one may always take k to lie in 
the first Brillouin zone. Lattice vibrations, just like electrons, are waves that travel 
in the perfectly periodic potential described by ion locations Rl. Exactly the same 
k states can be used to classify the two sets of vibrations. 

One difference between the electron problem and the phonon problem has to 
do with the numbers of modes. There is no upper limit to the number of distinct 
one-particle electronic states that can inhabit a lattice, and there is no limit to the 
number of energy bands the states can fill. In contrast, a single Brillouin zone com-
pletely exhausts all the phonon states of a Bravais lattice. The reason for the dif-
ference is that electron wave functions are defined everywhere in space, and values 
of the wave function in between lattice sites are physically important. The phonon 
states are completely described by their values at the lattice sites R, and any two 
functions that are the same on these lattice sites are physically indistinguishable no 
matter how they may wiggle in between. 

13.2.4 Lattice with a Basis 

Constructing a lattice with a basis in Section 13.2.1 led to a phonon spectrum 
with more than one branch, including low-frequency acoustic modes and opti-
cal phonons with high frequencies at small wave vector. The same phenomenon 
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persists in three dimensions. Adding new atoms to a unit cell adds new degrees of 
freedom to the lattice, and one must consider a correspondingly greater number of 
normal modes to describe them. For example, in three dimensions with four atoms 
per unit cell, one has 3 x 4 normal modes for every value of k. 

The formal way to calculate these modes is to write 

Μ^/" = - Σ φ ω ν " / ν > (13·22> 
l'n' 

where the superscripts n and n' label the different atoms comprising the basis in 
each unit cell. Proceeding on the path that led from Eq. (13.15) to Eq. (13.17), one 
obtains 

ul" = e"eiW"-iu;', (13.23) 
=> Μ„ω2? = Σ Φηη'(k)?'. (13.24) 

n' 

In the form Eq. (13.24), the practical mathematical problem that one has to solve 
is difficult to make out. One way to describe the problem better is to define a new 
index p that ranges over all degrees of freedom in the unit cell. With four atoms per 
unit cell, p would range from 1 to 12. The first three values would correspond to 
the x, y, and z coordinates of the first atom, the next three values would correspond 
to the coordinates of the next atom, and so on. Using this notation, 

3N 
MpU2tp = y ^ Φρρι(%)<Ερ'. F o r example, Φ | 5 describes the force in the ( 1 3 . 2 5 ) 

z—' x direction on atom 1 when atom 2 moves in 
P the y direction. 

Example: Diamond Lattice. Consider atoms sitting on a diamond lattice (Figure 
2.6), interacting through central forces with their four nearest neighbors. The task 
is to find the phonon dispersion relations. This calculation gives acceptable results 
despite the fact that the diamond structure is never the ground state of particles 
interacting with central forces, because only small deviations from equilibrium are 
permitted. 

To begin, it is necessary to record the potentials that result from central forces. 
Suppose one has a collection of atoms sitting on a Bravais lattice R1 with basis v", 
take R1" = Rl+vn, and have particles interact with a potential of the form 

U = - V ^ 4>nn'{\Üln +R1" — U1'"' -R1'"']). The subscript™'on fallows different breeds 
2 ~^, of atoms to interact with different force laws. 

lui n 
(13.26) 

Expanding to quadratic order in the small deviations u and using the fact that terms 
linear in u must vanish, one finds that 

U ~ \ Σ ["''"-"''" ']*"' ' ' " ' [ « ' " -3 / V ] , (13.27) 
Inl'n' 
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where the components of the 3x3 matrix f1"1 n are 

S " = T. Φηη·§ϊ\%-ΐ>ΐη-ϊ>ι>η' The subscripts on frange over x, ( 1 3 . 2 8 ) 
urara ">r—t\ n ;y, and z components. 

^ ? [ ^ W - ^ ^ ( r ) ] + % ^ ( r ) } L a . 3„„,. (13.29) 

The condition that the crystal be in equilibrium when all if s vanish is 

/ ~^nn'{r)V=Rl"-Rl'n' = ^ ' ™ S c o n d i t i o n d o e s n o t demand that φ' van- ( 1 3 . 3 0 ) 
~—f r r ish. Primes on φ mean derivatives. 

Differentiating Eq. (13.27) to find the force on the atom at In gives 

φ /„ /ν = £ f " " " « " ^ ^ , - « W < W ) · ('3-31) 
Deriving this relation is a slightly unpleasant two-line exercise in taking deriva-
tives of sums with large numbers of indices. It is best to write the full sum 
Σ,„ , ,. out explicitly and use relations like -2*- «'" = δτ,δα„δάα il im a fi v J Quln a II 

In the present case, where there is only one potential function φ, and only the 
four nearest neighbors at distance d are being considered, Eq. (13.29) really only 
involves two numbers, which are 

/ 1 - / 2 = (/>"(</)-V(d) (13.32) 
a 

a n d Η = \φ\ά) (13.33) 
a 

^f'aß" = " ^ 2 ~ [ / l —h]+Saßf2 ^_ a„_ 5 / / „ / ■ If «'" and «' '" 'are nearest ( 1 3 . 3 4 ) 
l~ r—R"—R " neighbors, and zero otherwise. 

So f depends only a little on details of the potential, and it mainly acquires its struc-
ture from the geometry of the lattice. Once the matrix f^L" has been computed, 
Φ can be found from Eq. (13.31). Taking R00 to be the origin, one needs to find Φ 
only for / = 0, for n ranging over the basis (which in this case has two members, 
the origin and | [111]) and for Ι'η' ranging over the nearest neighbors of each of 
these two sites, a total of eight choices for nln'l''. Next one computes 

Φ""'(k) = ^ φ0"1'"'eikiR "~R " ) There are not too many terms in the sum, be- ( 1 3 . 3 5 ) 
,/ cause only nearest neighbors have nonzero Φ0"' " 

and has four 3 x 3 matrices for the four combinations of n and n'. Finally, one forms 
the 6 x 6 matrix Φ according to Eq. (13.25), and from its eigenvalues deduces the 
vibrational frequencies of the phonons. The construction of the various matrices 
can be performed relatively painlessly with the use of symbolic algebra, and the 
final 6 x 6 matrix quickly diagonalized with any suitable numerical routine. Results 
of this procedure, roughly appropriate for silicon, appear in Figure 13.7. 
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Wave number k 

Figure 13.7. Calculation ofphonon frequencies from Eq. (13.35). Using/i/M= (2π)2·78 
THz2 and fijM = (2π)2 ·4 THz2, the results give a reasonable approximation to the phonon 
structure of silicon, measured in THz. Results of more accurate computations together with 
experimental data appear in Figure 13.18. Notation for Brillouin zone locations is given in 
Figure 7.8. 

13.3 Vibrations of a Quantum-Mechanical Lattice 

The discussion of lattice vibrations has proceeded until now as if the world obeyed 
classical mechanics. The reason for this negligence is that classical and quantum 
mechanics find themselves in nearly complete agreement for harmonic oscillators. 
The vibrational frequencies of a quantum-mechanical lattice are the same as its 
classical counterpart. However, whereas in the classical case a mode may have 
arbitrary amplitude, in the quantum mechanical case the modes are allowed only to 
have discrete amplitudes. The energy of mode k, polarization v, is permitted only 
to take values 

/ ^ > + i); (13.36) 

where n > 0 is an integer. When n = 1, one says that a single phonon of wavenum-
ber k has been excited. Because an arbitrary number of phonons n may occupy a 
given k state, one can interpret the excitations of a lattice as particles obeying Bose 
statistics. 

Despite the relatively minor formal differences between the results of the clas-
sical and quantum-mechanical analyses, there are several areas in which the phys-
ical influence of quantum mechanics is crucial. For example, at low temperatures, 
the amplitude of lattice vibrations falls below the threshold of possibilities de-
scribed by Eq. (13.36), and specific heat differs substantially from classical ex-
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pectations. For this and other reasons, a brief review of the quantum mechanical 
theory now becomes necessary. 

For a single harmonic oscillator described by the Hamiltonian 

p2 i 
•K= + -MUJ2R2 (13.37) 

2M 2 
one defines raising and lowering operators 

+ Μω ~ / 1 
Q\ = * / R — i\l P This is the "raising" or "creation" operator, ( 1 3 . 3 8 a ) 

V 2/z y 2hMüJ which when it acts upon the ground state of 
the oscillator populates it with one excited state. 

Μω - / 1 
â= \ R-\-i\ P. And this is the "lowering" or "destruction" ( 1 3 . 3 8 b ) 

V 2h y 2%Muj operator that drags the oscillator down the lad-
der of excited states each time it acts. 

The Hamiltonian expressed in terms of these operators simplifies to 

"K = Ηω ( ff a + | 1 = hxo ( fi + £ 1 The number operator n = a'â measures the ( 1 3 . 3 9 ) 
\ / V / degree of excitation of the oscillator, or equiv-

alently the number of phonons occupying it. 

and the original particle position operator is 

^ v ^ ( " + " f ) · (13·40) 
Second Quantization of Phonons. To treat motion of the atoms of a solid to 
quadratic order, write the Hamiltonian 

p'2 . ,., 
<K=\] h | \_] " ^ Û ■ . . . The operators ûl describe the deviation of an ( 1 3 . 4 1 ) 

I *■*" ff/ ion from its equilibrium location R1, assumed 
for the moment to belong to a monatomic Bra-
vais lattice. 

In order to find all eigenvalues of Eq. (13.41), define the analog of Eq. (13.38), 

N 1 v ^ _;ï.s/^ r IMLÛI,, „, . / 1 
ß7 kv Σ *-**% ■ W ^ û ' + i J—i—Pl] (13.42a) 

/-^/ kv \\ Oft \\ OtiMi,^ VÜf^~ ~kv LV 2» "" ''^2tiMu^u 

N 1 " 4 =4=Σ 
kv . Γ\1 ί-~ι 

„ _ _ , eikä'er kv Λ / Λ / ^ kv VNÎ 2h V 2hMusr j y ^ - " y " " " ^ f c i / 
(13.42b) 

A brief calculation (Problem 5) inverts these relations and expresses ûl in terms 
of the creation and annihilation operators as 

ul = ^=Y far eiU'+ul e-iMl) with Ût = J ^ — er âr (13.43a) 
kv ' *" 

and 
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|>. Jï-R' , 5t „-i*-J?l „, ;Λ â. _ ;ΑηΜωΙν î* = ±=T\heik*+P\e-&* 
VN ^ ί ku k" ^ * ^ = - ' ν - 2 ^ ^ · (13-43b) 

*!/ 
From the commutation relation [Ρ', Λ'] = —ifô, one finds for the creation and 

annihilation operators the commutation relation 

\älvJlv\ = \. (13.44) 

In moving between Eqs. (13.42) and (13.43), the frequencies UJ^V and the unit 
vectors e-̂  may in principle be chosen arbitrarily, just so long as the three unit 
vectors ê  at every value of k are orthonormal. However, the only choice one 
would sensibly make for these quantities is the one that diagonalizes the Hamil-
tonian (13.41), which means choosing e-r. to be the eigenvectors of the dynamical 
matrix Φ and choosing ω^ to be related to the eigenvalues by Eq. (13.18). Also 
notice from Eq. (13.17) that Φ(ϋ) = Φ(—k), because one is related to the other just 
by changing order of summation, and therefore 

<*„ = "-*»■ (13.45) 

Making use of Eq. (13.45) gives 

Σ Ρ1 τ-^ hcor I [âr al + âl âr 1 I 

£ _ = y - _ ^ J L ku kv kv kui I ( 1 3 4 6 a ) 
2M ^ 4 Ì -[âr âr er ·€ r + 4 âl S · e* -. ] f U ^ ° d ' 

/ ku y y ku kv ku -ku ku ku ku -ku1 ) 

Σ , ,,, „ ,—. Hutr I [âr âl +âl âr 1 I 
ίΰιΦ"ΰ'=Υ—^< \ k» ku ku ku\ i . ( 1 3 . 4 6 b ) 

.„ 2 4 ^ 4 | + [âr âr er · ? r + âl ô ! £ ■ e* - f 
//' *„ ( <■ kv ku ku -ku ku ku ku -ku' ) 

In order to arrive at Eqs. (13.46), one employs the facts that eï · e- ,̂ = δνν' and that 
e^ · ~e_~kv, vanishes unless v = v'. Although one has the freedom in defining e^v 

to request that ë| — e_-ku such a choice is very confusing for longitudinal modes, 
where ë3 = —e 7 is more natural, so no relation between ei and e 7 will be 

ku -ku ku -kv 
assumed. 

Summing Eqs. (13.46a) and (13.46b) gives for the Hamiltonian of (13.41) that 
A = E ^ M , + 4 Â J = E H , ( « L ^ + 5)· UseE^13-44>· (13.47) 

ku ku 
For a lattice with a basis, Eq. (13.47) still holds true, but the summation ac-

quires an additional index corresponding to the branch of the phonon mode, which 
ranges over the number of atoms in each unit cell. If the number of indices becomes 
too cumbersome, one can adopt the abbreviated notation 

5ΐ = 2_^ ^W/(«(-+ 2)· The number operator «, =â/â;. (13.48) 

where the sum over reciprocal vectors k, polarizations i/, and modes is subsumed 
into the single index i. 
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Time Evolution. In the study of neutron scattering, it will also be necessary to 
know how the operators â and û evolve in time. In the Heisenberg picture, the 
annihilation operators evolve according to 

âlv{t) = ê™lhâlve~i™lh (13.49) 
so that 

^ Ι ^ = j™/*i[ÔÎ, â^e-^'K/n (13.50) 

^àiv(t) = âiue-i^t. (13.52) 

As for the time evolution of ûl, Eq. (13.43a) generalizes to 

"'(0 = j= Σ^/^'^' + ûle-iU'+'^}. (13.53) 

13.3.1 Phonon Specific Heat 

The specific heat of solids was one of the "19th century clouds" over 19th-century 
physics described by Kelvin (1904). Solid objects were clearly built by connect-
ing small massive objects together with some form of spring. According to the 
equipartition theorem of statistical mechanics, the specific heat must be ke/2 per 
degree of freedom. Each mass point must have three kinetic and three potential 
degrees of freedom, and therefore a specific heat of Cy = 3Nke, the law of Dulong 
and Petit. Not many data were available to test this law thoroughly, but by 1907, 
specific heat had been measured down to around 50 K in diamond. Instead of 
remaining constant, as shown in Figure 13.8, it declines precipitously at low tem-
peratures. For some reason, oscillators within the solid refused to take in energy at 
low temperatures. 

Einstein conceived the remarkable hypothesis that one might employ Planck's 
radiation law, which stated that for black-body radiation the probability of exciting 
a mode of frequency ω varied as 1 /(exp(hßu>) — 1). This formula was still purely 
empirical, so there was not as yet the possibility of deriving the specific heat of 
solids from firm underlying principles. However, one could guess that if the solid 
were built of N oscillators of frequency ωο, then the mean energy at temperature T 
would be given by 

3ΝΗωο 
βΗβω0 _ ] (13.54) 

d£ _ 3N(hLü0)2eHßu}o/{kBT2 

ßf l v - ighßwo _ 112 
CV=T^ l v = r S I TT5 ■ (13.55) 

A particular strength of this formula was the fact that one was not condemned 
to fit ωο from the specific heat data alone. If the solid were truly built of oscil-
lators concentrated at a certain frequency, then it should absorb radiation at this 
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frequency. Diamond was known to have a "residual ray," ( Section 22.3.1) at 11 
μνη => ωο = 1.71 · 101 4s" ' ; placing this value into Eq. (13.55) gave the theoretical 
result shown in Figure 13.8. Despite the promise of this initial comparison, fur-
ther experimental measurements drew details of the calculation into question. The 
theory dropped off far too fast at very low temperatures. The resolution of this dif-
ficulty was soon found to lie in more accurate computations of vibrational spectra. 
In order to explain how they entered, one must turn to the formal computation of 
specific heats. 

IO"1 

io-2 

io-3 

io-4 

io-5 

io1 io2 io3 

Temperature T (K) 

Figure 13.8. Specific heat formula Eq. (13.55) with U>Q = 1.71 · 10l4s~' compared with 
data for diamond available to Einstein (1907) and more recent data of Touloukian and 
Buyco (1970b). At temperatures below 100 K, the Einstein formula falls below the data. 
Debye's formula, Eq. (13.75), is a clear improvement. 

In order to calculate the partition function for the Hamiltonian (13.48), one 
must begin by identifying all its eigenstates. The states of a single harmonic os-
cillator are indexed by a single integer / ranging from zero to infinity, producing 
energies Ηω(1 + | ) , and therefore the states of a large collection of harmonic os-
cillators are indexed by many integers /,·, each ranging from zero to infinity, and 
producing energy 

£ = Ç A U ; / ( / / + I ) . (13.56) 

The partition function and ensuing thermodynamic quantities are therefore 
oc oo 

Ζ = Σ Σ···β~βΣίΛωί{1ί+ι/2) <1 3 ·5 7) 
/l=0 /2=0 

Ui 

E 

u 

C3 

o 
Έ 
'ΰ 
Q. 
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OC I OO 

= Π Σ ^ ^ ' ( / + ' / 2 ) Π3.58) 
ι=1 l/=0 J 

= n ( ^ e x p W } 03.59) 

= > J = - y t ß r i n Z = ^ ^ + Α : β Γ 1 η ( 1 - ί > - ^ ω ' ) (13.60) 

" ί' I 

with 1 
/ΐ;· = This expression defines the ( 1 3 . 6 2 ) 

gßhwj _ ] Bose-Einstein factor m. 

=► c v = § iv = Σ G = Σ « ^ - (13·63) 

Phonon Density of States. Just as the density of electronic states plays a crucial 
role in determining the thermal properties of the electron gas, similarly the density 
of phonon states encodes the information needed to deduce thermal properties of 
lattices. This density of states is defined by 

' kv υ 

and one may use it, for example, to write 

f°° d Hui 
CV = V duDUjj)- s= . (13.65) 

,/o y ' dT β?ηω - 1 

Before presenting the simple models frequently used to represent densities of 
states and thereby extract thermodynamic quantities, it is best to present some ac-
tual data derived from experiment. Figure 13.9 presents representative data for 
silicon. 

Two qualitative lessons are apparent in these data. 

1. The characteristic upper frequency at which the phonon modes terminate is 
16 teraherz; this is the characteristic frequency of the optical modes and is the 
upper limit of the acoustic modes. 

2. The densities of states are littered with cusps. These cusps are precisely the 
van Hove singularities discussed in Section 7.2.5. They arise at any point in 
frequency space where one of the phonon modes passes through an extremal 
value. In three-dimensional solids the result is a cusp, in two-dimensional 
solids it is a logarithmic divergence, and for one-dimensional chains it is a 
square root divergence. 
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Figure 13.9. Experimental data for the phonon density of states in silicon, compared with 
results of model calculation that produced Figure 13.7. [Source: Dolling and Cowley 
(1966), p. 469.] 

For temperatures kßT greater than all the energies /ϊω, of the vibrating lattice, 
the specific heat takes the form 

C-O = NflCR Take ^Ί- (13.62) for small β, and differentiate with respect to T. Nf gives M 3 foß\ 
number of terms in Eq. (13.63); for monatomic lattice in 3-d, Nf = 3/V. 

This relation is the law of Dulong and Petit, a result of the classical theorem of 
equipartition of energy. From a classical perspective, it is impossible to understand 
obtaining any result for specific heat which differs from Eq. (13.66). 

The quantum-mechanical expressions for specific heat do however, differ from 
Eq. (13.66), and at low temperatures they differ substantially. Low temperatures 
bring several simplifications. Any phonon mode whose energy Ηω is much greater 
than kgT contributes nothing of note to the specific heat. At a temperature of 10 
K, one needs therefore to focus upon frequencies of order 10 kß/h K=0.208 THz. 
Sound speeds in solids are of order 1000 m s - 1 or more, so such frequencies corre-
spond to wavelengths of 48 Â, a distance comfortably larger than interatomic spac-
ing. The densities of states in Figure 13.9 are settling into the low-frequency limit 
for such frequencies. Either argument leads to the conclusion that for temperatures 
of order 10 K, it should be possible to use the long-wavelength, low-frequency 
limit ω = ck for the dispersion relation of the phonons. In this limit, Eq. (13.64) 
becomes 
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D M 

3ω2 

2π2ϋ3 with 

CV = V 
d 3(kBT)4 

dT2n2(cH)3 

kBT 
V—kB he 

Σ/ 
1 / J 

ί/Σ 1 

dx-

The sum on u is over the three 
acoustic modes, approximately /1 -3 f.n\ 
one longitudinal and two ^ ' ' 
transverse. However, the sound 
speed depends generally upon 
orientation; hence dependence 
upon k. 

The integral is a surface integral ( 1 3 . 6 8 ) 
over orientations of k. 

x = β%ω. (13.69) 

The integral in Eq. ( 13.69) was ( 1 3 . 7 0 ) 
evaluated in Eq. (6.67). 

13.3.2 Einstein and Debye Models 

Before the theory of lattice vibrations made detailed calculations of the density 
of states D(uj) possible, simple guesses for the form of Ό{ω) were employed to 
obtain an estimate for the consequence of quantum mechanics for specific heats. 
To recover Einstein's theory of specific heats, take the density of states to be 

3iV 
D(u)) = δ(ίϋ — U>o), 3iV gives the total number of oscillatory modes 

V in a solid responsible for the specific heat. 
(13.71) 

resulting immediately in Eq. (13.55). 
The Debye model improves upon the Einstein model. Debye's calculation cor-

rectly reproduces Eq. (13.70) at low temperatures and correctly reproduces the law 

0.5 1.0 1.5 

Temperature Τ/θο 

2.0 

Figure 13.10. Specific heat in the Debye approximation, scaled by the prediction of Du-
long and Petit. 
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Figure 13.11. The specific heats of sodium and silver are displayed, illustrating the validity 
of the form (13.76). The intercepts of regression lines accurately reproduce the experimen-
tal values given in Table 6.2. [Source: Touloukian et al. (1975).] 

of Dulong and Petit at high temperatures. The device to achieve this aim is to 
approximate the density of states by 

3a;2 

D(uj) = θ(ϋϋη — w ) See Eq. (13.68). Use the low temperature 
27r2CJ form for the density of states everywhere, but 

cut it off to give the right total number of 
modes. 

(13.72) 

where the sharp cutoff at UJD, the Debye frequency, is chosen so that the total 
number of modes equals the number of vibrational degrees of freedom: 

roo 
3N = V dujD{uj)^n-

Jo 

W r 

67T2C3 
n is the number of ions per volume. (13.73) 

The characteristic Debye temperature Θο at which all phonons become thermally 
active in this approximation is 

kB®D = huD 

The specific heat in this approximation is 

T \ 3 /-θο/Γ v-V 

(13.74) 

(13.75) 
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Table 13.1. Debye temperatures of elements 
El. 
Am 
Ar 
Ag 
Al 
As 
Au 
Ba 
Be 
Bi 
B 
C(gr) 
C(dia) 
Ca 
Cd 
Ce 
Co 
Cr 
Cs 
Cu 
Dy 
Er 

eD 

121 
92 
227 
433 
282 
162 
111 
1481 
120 
1480 
412 
2250 
229 
210 
179 
460 
606 
40.5 
347 
183 
188 

El. 
Eu 
Fe 
Ga 
Ge 
Gd 
H 
He 
Hf 
Hg 
Ho 
I 
In 
Ir 
K 
Kr 
La 
Li 
Lu 
Mg 
Mn 
Mo 

QD 
118 
All 
325 
373 
182 
122 
34-108 
252 
72 
190 
109 
112 
420 
91.1 
71.9 
150 
344 
183 
403 
409 
423 

El. 
Na 
Nb 
Nd 
Ne 
Ni 
Np 
Os 
Pa 
Pb 
Pd 
Pr 
Pt 
Pu 
Rb 
Re 
Rh 
Ru 
Sb 
Sc 
Se 
Si 

eD 

157 
276 
163 
74.6 
477 
259 
467 
185 
105 
271 
152 
237 
206 
56.5 
416 
512 
555 
220 
346 
153 
645 

El. 0 D 

Sm 169 
Sn 199 
Sr 147 
Ta 245 
Tb 176 
Te 152 
Th 160 
Ti 420 
TI 78.5 
Tm 200 
U 248 
V 399 
W 383 
Xe 64.0 
Y 248 
Yb 118 
Zn 329 
Zr 290 

Not available for all elements. Source: Stewart (1983). 

and is plotted in Figures 13.8 and 13.10. 
Because the low-temperature lattice contribution to the specific heat in 

Eq. (13.70) varies as Γ3, it should disappear in metals beneath the electronic con-
tribution, which is linear in temperature. However, putting in numbers, one finds 
that very low temperatures, on the order of a few degrees kelvin, are needed before 
the electronic contribution stands out. The reason is that the natural temperature 
scale for the electrons is the Fermi temperature, which is on the order of 20000 
K, and the electronic contribution goes as T/Tf. However, the natural tempera-
ture scale for the phonons is the Debye temperature, given by Θο = Hujo/kß- The 
contribution of the phonons to the specific heat goes as (Γ /θο) 3 . So the electron 
and phonon contributions are roughly equal when T = θ ο ^Θο/Tf. Debye tem-
peratures are tabulated in Table 13.1. Because they are typically on the order of a 
few hundred degrees, the electronic specific heat has barely become visible even 
at 10 K. Adding together electron and phonon contributions, the low temperature 
specific heat at constant pressure Cp behaves quite accurately as 

Cp ~ ^Τ + βΤ The constant 7 is the Sommerfeld parameter. ( 13 .76 ) 
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a claim best checked experimentally by plotting Cp/T versus T2, as in Figure 
13.11. 

Debye temperatures are usually 30% to 50% percent of the melting tempera-
ture of the element, so that by the time one gets to temperatures high enough to 
see the fully classical specific heat of \kßT per degree of freedom, the harmonic 
approximation for phonons is beginning to break down. 

13.3.3 Thermal Expansion 

Figure 13.12. Thermal expansion of a molecule. 

The change of objects' size and shape as they heat and cool often poses an 
unpleasant challenge for engineers. Road sections swell and buckle in the summer; 
engine parts designed to work at high temperatures barely mesh when they are cool. 
Yet it is a curious fact that the general framework allowing calculation of so many 
other mechanical properties of condensed matter fails completely to predict the 
possibility of thermal expansion. A solid whose energy changes only to quadratic 
order when its atoms move does not change size or shape with temperature at all. 

The reason for this somewhat unexpected result is most easily seen in the small-
est possible solid, one consisting only of two identical atoms (see Figure 13.12). 
In a reference frame tied to their center of mass, the energy of the two atoms is 

„ 1 „ 2 Λ: = «i — «2 is the difference of the deviation 
t = ~Ζ·^Χ · of the two atoms from equilibrium, OC some ( 1 3 . / / ) 

•̂  spring constant. 

In any thermal average over the locations of the atoms, positive and negative 
values of x occur with equal frequency, and the mean distance between the two 
atoms does not change no matter how much the molecule may be heated. If there 
were any solid in which atomic interactions were really only present to quadratic 
order, it would similarly refuse to change size in response to temperature. 

Suppose now that the interaction energy of the molecule is a general function 

1 -, ε(χ) = ε0 + -Χχ2 + . . . (13.78) 

and ask under what conditions the mean size x of the molecule changes. The ther-
mal average of x is 

f dxe-W*) dA V J 

A can be viewed as a purely 
formal quantity, but also 
can be interpreted as an ( 1 3 . 7 9 ) 

A=0 external force acting on the 
system. 

/ dxe-P^x) dA 

In / dxeAx-ßS.(xa)-ß£.'(xo)(x-xo)-ßZ"(xo)(x-xo)2/2\A=Q_ (13.80) d_ 
dÄ 
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According to the technique of steepest descents (Appendix B.4), XQ should be cho-
sen so that the linear term inside the exponential in Eq. (13.80) vanishes; XQ is 
determined by 

A = ß E ' (XQ ) = ß%XQ Maximizing the integrand; A can be ( 1 3 . 8 1 ) 
taken very small because it is on the 
verge of being set to zero, and XQ 
should be viewed as a function of A. 

d_ 
dA 

l n . / ^ Z l _ e A * ö - / 3 £ ( * , ) 
ßV'ixo) 

kBT d 
% dxç, 
kßT δω 

In W 2π
 eßx4/2-0£o 

Λ=Ο (13.82) 

,ο=ο (13.83) 

U=o with μω2(χ) = E"(x). ß is the reduced mass of the ( 1 3 . 8 4 ) 
OCui dx ' molecule 

The possibility of thermal expansion therefore rests upon a nonzero third derivative 
of the energy £ about equilibrium, or equivalently upon the change of vibrational 
frequency ω if the molecule is forced to expand or contract. 

General Theory. The general theory of thermal expansion begins with a collection 
of thermodynamic identities. One wishes to calculate 

„,~ „ , „ I An identity from thermodynamics concern-
e r ) I θΓ/ΟΙ\·γ ing partial derivatives; the minus sign is cor- , . . „ - > 
*ΡΤ = O-JÏ \p i l o / i m i rect. Do not confuse the coefficient of volume ( , l J . o J j 

Ol -Or/OV\T expansion/3r with \/kBT. 

V d23 
= The bulk modulus B = -VdP/dV. ( 1 3 8 6 ) 

so the formal aim can be achieved by calculating derivatives of the free energy 
with respect to temperature and volume. Using Eq. (13.60) for the free energy of 
a collection of interacting ions and using the definition of the Bose-Einstein factor 
in Eq. (13.62), one has 

d15 v-^ dtii δΗω, 
dVdT 4 - dT OV 

(13.88) 

Comparing with Eq. (13.63) for the specific heat, define the Grüneisen parameter 
IT 

V dn'( ν9Ηω'< 
A/y. = _ The Griincisen constant is an average over the ( 1 3 . 8 9 ) 

OYli volume rate of change of the frequencies of 
dT 

l 

d23 7 r C v 

the phonon modes, weighted by the contribu-
tion of each mode to the specific heat. 

The denominator of Eq. (13.89) is just the ( 1 3 . 9 0 ) 
d*V0T V specific heat; see Eq. (13.63). 

JT C-β^ _ΊΤ V ^ Combining Eqs. (13.90) and Eq. ( 13.86). ( 1 3 . 9 1 ) 
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For an isotropie solid, the coefficient of linear expansion ατ is just one-third 
of the coefficient of volume expansion ßj. For a crystal, there will generally be 
different degrees of contraction along different crystalline axes. 

Definition of the Grüneisen parameter does not dramatically simplify the task 
of presenting data on thermal expansion data, but does correctly emphasize the fact 
that trends in the specific heat, particularly at low temperatures, are likely to be re-
flected in thermal expansion data. For some materials, the Grüneisen parameter is 
constant over a wide temperature range, leading the specific heat and thermal ex-
pansion coefficient to become indistinguishable when properly scaled, as shown in 
Figure 13.13. However, even the sign of the Grüneisen parameter can change. Fig-
ure 13.14 shows thermal expansion data for Invar, an alloy useful for its extremely 
small expansion coefficients. 
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Figure 13.13. Comparison of specific heat Cv and volume expansion coefficient ßj for 
aluminum using Eq. (13.90). The comparison employs a bulk modulus B of 77 GPa from 
Eq. (12.29) and Table 12.1, uses a Grüneisen parameter 77 of 2.2, obtained by matching 
specific heat and expansion at 300 K, and obtains the coefficient of bulk expansion from 
linear expansion data through ßj « 3αγ- [Source: Touloukian and Buyco (1970a) and 
Touloukian et al. (1975).] 

Thermal Conductivity. Phonons also participate in thermal conductivity of solids. 
A review focusing upon insulators is provided by Slack (1979). 

13.4 Inelastic Scattering from Phonons 

The scattering experiments described in Chapter 3 relied upon elastic scattering; 
the energy of outgoing particles equals the energy of incoming particles. There is 
another class of scattering experiments—inelastic scattering—where the incoming 
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Figure 13.14. Coefficient of volume expansion (βτ « 3aT) for Invar, a Fe-64% Ni-36% al-
loy in which reduction of magnetic order with increasing temperature offsets the otherwise 
natural tendency toward thermal expansion and produces an alloy with minimal tendency 
to expand. [Source: Touloukian et al. (1975), p. 10a.] 

beam gains or loses energy at the expense of the sample. The first type of experi-
ment determines static structures, while the second focuses upon excitations. 

The theory needed to explain inelastic scattering experiments is available at two 
levels. The first level of explanation derives all its conclusions from conservation 
laws. It is simple and powerful, providing everything needed to deduce phonon 
dispersion relations from neutron scattering experiments, and is easily generalized. 
The second level of explanation attacks the problem with a full formal apparatus. 
It is worth going through the more elaborate analysis because it provides various 
constants that the simpler theory leaves undetermined, determines the effects of 
thermal fluctuations, and settles questions about the workings of quantum mechan-
ics. 

13.4.1 Neutron Scattering 

A particularly important type of inelastic scattering experiment is performed with 
neutrons, as sketched in Figure 13.15. A beam of neutrons impinges on a sam-
ple. Some of the neutrons gain or lose energy by destroying or creating lattice 
vibrations—phonons—and emerge from the sample scattered in all directions. Al-
most everything that needs to be known in order to interpret such an experiment 
can be obtained from two conservation laws. 

Energy. Let the wave vector of an incoming neutron of mass mn be k, let its wave 
vector after scattering be id, and suppose that it creates a phonon with wave 
vector q and energy Ηω^. Then conservation of energy requires 

Λ2 hlkz _ tr{k 
2mn 2m„ 

+ hiüs„. (13.92a) 
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Figure 13.15. Schematic drawing of neutron diffraction experiment. The neutrons pass 
through a first crystal, undergoing Bragg scattering. By choosing only those traveling in a 
certain direction, neutrons of a definite energy are selected. These then pass through the 
sample crystal, and finally through an analyzer crystal, whose purpose, again, is to sort 
the neutrons of various energies according to their Bragg scattering angles. [After Yarnell 
et al. (1965) p. 58.] 

If, on the other hand, passage of the neutron destroys a phonon and steals 
its energy, then 

™<ψ1-^. „3.92b, 
2mn 2mn 

Crystal momentum. The study of elastic scattering in Chapter 3 shows that mo-
mentum is not conserved in scattering from a crystal. A neutron can enter with 
wave vector k and exit with a different one, κ. However, κ is only permitted 
if k — k! = K, where K is a reciprocal lattice vector of the crystal. Crystal mo-
mentum Hk is conserved, where k is always retracted into the first Brillouin 
zone by whatever reciprocal lattice vectors K are necessary. Assuming that 
the same conservation law continues to hold for inelastic scattering events, 
when a phonon is emitted, 

k' + q = k + K (13.93a) 

for some reciprocal lattice vector K, and when a phonon is absorbed, 

k'-q = k + K. (13.93b) 
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Combining Eqs. (13.92) and (13.93) gives 

n2k2 ^r n2{k')2 _ _ n / n 
— 3zHüJ,7_7,\ — — , The reciprocal lattice vectors K disappear from ( 1 3 . 9 4 ) 
2/iîn *■ ' ' ^ΙΐΙη ωτ because ωτ, s = Ι Λ . Also note 

L*J 7 = Ι Λ . 
—κ,ν ku 

where the + sign holds for phonon absorption, and the — sign holds for emission. 
What Eq. (13.94) implies is that for any observation direction, k', there should 

be some neutron scattering. The reason is that although the experiment will gaze 
at the sample in a fixed direction, the magnitude of k' is arbitrary, and therefore by 
scanning through k!, there is every reason to hope that one will obtain a discrete 
number of different solutions to Eq. (13.94). If a solution is obtained, the known 
difference between k and κ gives the wave vector of the phonon, while the differ-
ence in energies between incoming and outgoing neutrons gives the energy of the 
phonon. 

Figure 13.16. Graphical construction illustrating the conditions under which inelastic neu-
tron scattering occurs for k' = 0. 

Consider first the simplest case, where k and k' lie along the same line. Then 
Eq. (13.94) has the graphical interpretation shown in Figure 13.16. Eq. (13.94) is 
satisfied whenever the neutron parabola crosses the phonon dispersion curve. By 
measuring the outgoing neutrons as a function of energy, several peaks are located, 
as shown in Figure 13.17. Each of these peaks constitutes a point on the phonon 
dispersion curve. By varying the angles both of k and k!, the phonon dispersion 
relations can be mapped out completely. Figure 13.18 shows the end result of 
collecting such data for silicon, and it compares the results with density functional 
calculations. 

13.4.2 Formal Theory of Neutron Scattering 

The goal of a formal approach to neutron scattering is to calculate the interaction 
between phonons and neutrons to first order in perturbation theory. The nonin-
teracting states about which one perturbs are product states, of a free neutron in 
a plane wave times a lattice state with some number of phonons. The interaction 
between the ions and the incoming neutrons occurs when the neutrons are within a 
distance on the order of 10~13 cm from the ions. Because this distance is so terribly 
short compared to a lattice spacing, one may safely represent the interaction as a 
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Figure 13.17. Number of neutron counts as a function of energy at 300 K in Ni. Although 
at nonzero temperatures the neutron peaks are not perfectly sharp, they are certainly visible. 
[Source: Mozer et al. (1965), p. 68.] 
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Figure 13.18. The end result of collecting peaks for absorption and emission of single 
phonons is a phonon dispersion curve. These curves display the phonon dispersion relation 
of Si, with experimental data from Dolling and Cowley (1966) and. Nilsson and Nelin 
(1972) (boxes) and a detailed theoretical calculation involving pseudopotentials due to 
Wei and Chou (1994) (solid lines). Compare with the simple estimate in Figure 13.7. 

delta function: it is conventionally normalized as 

2πΗ a 
U l d\ 

mn 

Y^5{Rn-Rl-û (13.95) 

The constant a is the scattering length and is chosen so that the total scattering 
cross section of neutrons off a single ion to first order in perturbation theory is 
4πα2, where mn is the mass of a neutron, Rl is the location of an ion, Rn is a 
position operator for the neutron, and ûl is the displacement operator for the ion at 
Rl. 
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Differential Scattering Cross Section. What an experiment measures is the flux 
of particles per energy and per solid angle coming out of the sample. Let 7{k —> k') 
give the probability of a transition from state k to state k' per unit time. Then in a 
small volume of V space there are 

Well· 
———rr" Because there are Vdk'/(2π)3 states in the ( 1 3 . 9 6 ) 
(27Tj reciprocal space volume: See Section 6.3. 

transitions per unit time. Rewriting the small k! space volume in terms of neutron 
energy £n and solid angle dQ,, one has 

yvmnhk'd£nCm 
ii^hy · ( 1 3 · 9 7 ) 

However, the number of transitions per time, per energy, per solid angle, and di-
vided by the incident flux, / = hk/Vmn, is just the definition of the differential 
scattering cross section 

j y (\>m \2 _^ For elastic scattering, as in Eq. (3.2), there is 
\ n / <Τ>(Ϊ ^ Χ'\ no need to bin the radiation according to its π - i n o \ 

*. '' pnprov hp.ransR inaninp and ni i tpnino nar t i - ^ ' ^ dildE, k (2ΤΓΗ)^ energy, because ingoing and outgoing parti-
n \ ' cles all are the same. For inelastic scattering, 

it is important to keep track of how many par-
ticles have which energy. 

Transition Probability 7. The next goal is to find 7{k —> kf). It can be evalu-
ated with the help of Fermi's Golden Rule [originally derived by Dirac; see Dirac 
(1958), p. 180]. The formula reads 

y(k^k')= Σ -j-o{Ìf-£})\{¥\Ù\¥)\2. (13.99) 
final states f 

Although the use of this formula should be relatively automatic, it is important 
to keep in mind the assumptions under which it was derived. The main assumption 
is that scattering occurs off a structure that is static on time scales needed for a 
scattering interaction to take place. Because the interaction of a neutron or an X-
ray with an ion occurs on times that are very short compared to the time scale on 
which ions move, the assumption is justified. If an experiment could be conducted 
on time scales short compared to phonon motion, one could deduce the precise 
locations of the ions. However, normal experiments just see the time average of 
this instantaneous scattering, and therefore the appropriate calculation is one that 
finds the scattering that would result from any given lattice configuration, and then 
takes the time average over it. Equivalently, one can perform a thermal average 
instead, and this is in fact what will be done. 

The unknown quantity in Eq. (13.99) is the matrix element (Φί|ί/|Φ1). The 
wave function (Φ| is a product of (k\ and (Φ|, where (k\ describes the neutron, and 
(Φ j describes all of the phonons. Moving to a representation where r is the location 
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of the neutron, one obtains 

2πΗ a dr{k'\r){r\{&\ V ^±^5(R-Rl -ul)\k)\&) (13.100) 

= f ^ - * Η ( φ ί | ^ £ $ ( ? _ # _ß<)|<|>i) ( 1 3 . 1 0 1 ) 

= Ι ^ ^ y ^ ' M « ) ^ ) . ( 1 3 1 0 2 ) 
V mn ^ 

Using Eq. (13.102), with Sph denoting the energy of a phonon state and with 

h2k2 h2k'2 

Κωη = - ^ - η - ^ - (13.103) 
Zmn 2mn 

denoting the change in energy of a neutron state, one has that 

v&^ = Ê%a2 Σ δ^-ε^+πω^ί Σ,&\^-*Ηύ+*Ψ)\2. 
(13.104) 

Inserting the transition probability Eq. (13.104) into the differential scattering cross 
section (13.98) one finds that 

tin k' Nn2 ■ -, -, 
a S\k-kf,un), (13.105) dfld£n k H 

where the inelastic structure factor S ' is 

S\q^) = ^ô([Ei
ph-ii

ph]/h + u)\ J2(^\eiHÛ'+âl)m\2- (13-106) 
f / 

This structure factor still depends upon the initial quantum state "i", which is why 
it carries the superscript. It serves the same purpose as the structure factor defined 
in Eq. (3.50), but generalizes it in three ways. 

1. S ' is fully quantum mechanical. 

2. It describes a dynamical, evolving object, and therefore permits studying in-
elastic events. 

3. After appropriate averaging, it will include the effects of temperature. 

To proceed, let Äph be the phonon Hamiltonian, and write 

s-1=]_ r dij'^-E^/n+u) y- ^(tf-^K^k-'^V) ( 1 3 1 0 7 ) 
N ^ J 2π jf χ(Φί\βί^'\Φί)} 
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1 ^ r dt 
~N 

J2 f —eituJ Σ β|9-^-*,')(Φΐ|β-'9·ΰ''|ΦΓ)(Φί|β,9-ΰ'(,)|φΐ) (13.109) 

= Jj I ^ Σ S ^ ^ ' ^ \ e - ^ S ^ W ) - co™ettTfa (13.110) 
J Ζ7Γ ^, phonon states. 

The structure factor still depends upon the initial state of the phonons. The exper-
imental observable is a thermal average over all possible initial states, where the 
thermal average of an operator A is 

(Α) = ^ Λ ' ί ^ - Α (13.111) 
Σ ΐ ( φ ΐ | β - ^ | φ ΐ ) 

After averaging, the structure factor becomes 

S(q, ω) = -Υ e"H"') [ ÉLe^(e-^'e^(')) (13.112) 
Nw J 2vr 

1 / ' j^j^dt 

N 
I drdr'— e>H?-T')eiut y ( $ ( ? _ # -ΰ')δ{Ϋ -R1' - /( /))) .(13.113) 

From ( 13.113) it is evident that the structure factor is the Fourier transform in space 
and time of the density-density correlation function. 

13.4.3 Averaging Exponentials 

Proceeding further with evaluation of Eq. (13.112) requires finding thermal aver-
ages of exponentials of operators such as 

§ Ξ ( / ) (13.114) 

where A is any operator that is linear in harmonic oscillator creation and annihila-
tion operators. For an operator of this form one can write 

§ = ( l + i + I i 2 + . . .). (13.115) 

The second term on the right hand side of (13.115) vanishes because it contains 
only a single power of a creation or annihilation operator, and so one has 

8 = 1 + ί(Α4) + 1(ΛΛΛΛ) + . . . . (13.116) 

According to Wick's theorem (Doniach and Sondheimer (1974), pp. 52-62), an 
expectation value such as (Â1Â2Â3Â4) can be replaced by a sum over products of 
the form (AxÂjj^Aé), where the sum is over all unique ways of grouping the op-
erators into pairs. (Â1Â2) can be grouped into one unique pair; (Â1Â2Â3Â4) can be 
grouped into the three unique pairs {A\A2} (Ατ,Α^), {Α\Ατ,) {Α2Α4), (AyÂ^^Â?,); 
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and a general term with 2/ operators appearing in it can be grouped into (2/)!/(/! 2l) 
unique pairs. Using this result, 

S = \+l-(ÂÂ) + ~(ÂÂ}2 + . . ■ + ^(ÂÂ)1 . . . . (13.117) 

r i / î 2 \ i For those who do not want to rely upon Wick's 
= e x p [ — \A ) \ . theorem, a straightforward proof of this re- ( 1 3 . 1 1 ο ) 

■^ suit is provided by Maradudin et al. (1971), 
Section VII.2, and a swift and sneaky one by 
Mermin(1966). 

Identical arguments show for operators A and B linear in creation and annihilation 
operators that 

„ „ „ ~ „ _ Because Wick's theorem produces sums over 
(eAeB) = e 2 ^ 2 +2AB+ß2 > _ all possible paired groupings of Â and B, this ( 1 3 . 1 1 9 ) 

expectation value equals the expectation value 
(exp[A+ß]>. 

Equation (13.119) has direct application to the scattering crosssection. One 
needs to find 

m={e^-ül' e^ä'^). (13.120) 

Because the mean square displacement of an ion cannot depend upon its location 
or upon the time, one has 

m = exp[-((q-û1)2)} exp[({q-ûl')(q-Ûl{t)))}. (13.121) 

The first term on the right in Eq. (13.121) is known as the Debye-Waller factor. It 
provides a quantitative description of how quantum and thermal fluctuations limit 
the size of Bragg scattering peaks. The second term will lead to a physical picture 
in which incoming neutrons create or destroy zero, one, two, many phonons as they 
pass through the lattice. 

Debye-Waller Factor. For the Debye-Waller factor, one needs to calculate the 
mean-square ionic displacement 

2W = ((q-û1)2) 

vv1 

All the terms in the average (13.111) have the same quantum state on the right 
and the left; the operators in such an average must therefore leave the quantum 
state unchanged, which requires â-kv and al always to multiply each other in pairs. 
Therefore, in Eq. (13.122) one has k = k', v = u', and 

Σ 1 H le? -q\2 , + + , 1 kv fi /gt â +a £ (13.123) 
M ΊΜΐ,,.ν, N kv kv kv ivl v ' N IMhüJr N kv *" kv *"' 

kv 

Σ ι n e? · q\ / \ 
ι_κν '_ i 2n^ _|_ J j n^ is the occupation number in ( 1 3 . 1 2 4 ) 

_ N 2MHu^ \ kv j thermal equilibrium, and M is the 
kv KV mass of a lattice ion. 
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At T = 0 one can take all the occupation numbers n equal to zero, and thus have 

^ 1 H2(er -a)2 

2W = Y V *" H . (13.125) 
4 ^ N 2Mhu>r 
kv kv 

Proceeding further requires some particular form for the phonon dispersion rela-
tion. Problem 7 evaluates Eq. (13.125) within the Debye model, and it shows that 

3 q2%2 

2W = — - . (13.126) 
4 MhckD 

Thus the mean-square displacement of ions at zero temperature is given by the ratio 
of the energy of a free ion with momentum q to a typical phonon energy. Because 
of the factor I/o;, the sum in (13.124) converges for three dimensions, but not for 
one or two dimensions. The divergence comes from the Bose occupation factor, 
which goes as 1 jk for low enough k at all temperatures. Fluctuations destroy Bragg 
peaks for one- and two-dimensional crystals. This point will be discussed further 
in Section 14.3. 

13.4.4 Evaluation of Structure Factor 

The technique that made it possible to find the Debye-Waller factor makes it pos-
sible to complete the evaluation of the structure factor, (13.112), which is 

S(q,u) = y* —^<ä'-W') [ —e
i"t

e-2w
e{<i-"l'<i-û'(t))_ Use Eqs. (13.121) and (13.122). 

~^ N J 2π 
(13.127) 

Equation (13.127) cannot be evaluated immediately. One can, however, expand 
the last exponential and evaluate term by term. This expansion is appropriate so 
long as ionic displacements ul are small. 

Zeroth Order. The zeroth-order term is 

K 

The delta function in ω indicates that the energy transfer from the neutrons 
is zero; the collisions at this order are completely elastic. The remarkable fact 
is that despite the possibility of excitations at arbitrarily low energies provided 
by phonons, neutrons have a nonzero chance to pass through the lattice without 
exciting a single phonon. The Debye-Waller factor shows that phonons reduce 
the amplitude of Bragg peaks even at zero temperature; as temperature rises, the 
amplitude declines further, but does not go to zero so long as the lattice retains its 
long-range order, as first claimed in Section 3.5.1. 
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First Order. Now proceed to look at the next order arising from expansion of the 
exponential in (13.127). One has 

* , ) & " ) = Σ ^ β * ( * " * ' ) !^>e-™((q.û1') (q-ûl(t))). (13.130) 
II' J 

To evaluate the average, one must once again return to the explicit expression for 
û in terms of creation and annihilation operators. The only difference between the 
evaluation of Eq. (13.122) and the matrix element appearing in Eq. (13.130) is that 
now there is dependence upon both Rl and t, requiring use of Eq. (13.53). The 
matrix element in Eq. (13.130) is 

m'={{q-û1') (q-ûl{t))) 

1 ^{(q-[Ûr eilä'' +ÛÎ e-iMl']) 
= — Υ^ kv - kv -. - (13 131) 

έ-^ M ΊΑΛΤ,,.^ χ kv kv kv kv I v ' N TMhuty x kv kv kv kv 

^2(er-q)2 
= y 1" \.*h-q) / e^t + e-i^kA /Ha* -R>) ( 1 3 . 1 3 3 ) 

kv kv 

where η^ is the occupation number in thermal equilibrium, and M is the mass of a 
lattice ion. Placing (13.133) into Eq. (13.130) gives finally 

S^(q, co) = e-2w ] T ί | ^ £ [ ( ΐ + ^ ) δ{ω + ωξι/) + ηξυδ(ω-ωξι/)}. 

(13.134) 
The first term in Eq. (13.134) corresponds to a neutron creating a phonon and 

giving up energy and momentum to it, while the second corresponds to a neutron 
destroying a phonon. In this way, the formalism recovers the energy and momen-
tum conservation laws discussed at the beginning of this section, while also giving 
explicit formulas describing the extent to which thermal and quantum fluctuations 
destroy the effect. 

The probability of creating phonons is proportional to 1 +n^v, because they 
can be created at T = 0 when no phonons are initially present. The probability 
of destroying phonons, however, is proportional to n^v, because it is impossible 
to destroy what does not exist. These two probability factors were deduced by 
Einstein (1916) from simple statistical arguments, and they will be discussed again 
in Section 21.5.2. 

13.4.5 Kohn Anomalies 

Figure 13.19 provides a final illustration of the power of inelastic neutron scatter-
ing. This experiment searches for small discontinuities in the slope of the phonon 
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dispersion relation predicted by Kohn (1959). Just as the Peierls distortion (Section 
11.5.1) tries to create a static lattice distortion with wave number 2kp, Kohn argued 
that phonon dispersion relations should exhibit a singularity whenever q = 2k f. 
The traces of the singularity are faint but visible in Figure 13.19. 

Γ X K 
Wave number k 

Figure 13.19. Kohn anomalies appear as logarithmic divergences in the first derivative of 
the phonon dispersion relation. Here neutron scattering data are compared with the theory 
of Brovman and Kagan (1974) p. 141, showing several Kohn anomalies, marked by arrows, 
as well as other singularities due to electron-ion coupling. The combined information 
from theory and experiment allows accurate determination of several points on the Fermi 
surface. 

13.5 The Mössbauer Effect 

It is rather remarkable that neutrons are able to scatter elastically from lattices, 
even at nonzero temperatures. Because the momentum of the neutron changes dur-
ing the collision, the lattice as a whole must pick up the momentum transferred to 
the neutron, and it does so as a whole in the zero-phonon case. Although this fact 
had become commonplace by the 1950's, it was still a surprise when Mössbauer 
showed that photons impinging upon nuclei of atoms in a lattice could excite nu-
clear transitions in ways that would be forbidden if the lattice were not present. 

Creating nuclear excited states by incoming radiation is impossible for nuclei 
sitting out in free space. The reason is that when a photon is absorbed by a nucleus, 
it imparts both energy and momentum. For energy to be conserved, the recoil 
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energy plus the energy of the excited state at the end of the process must be equal 
to the initial nuclear energy plus the incoming photon energy. This means that the 
incoming photon needs to have more energy than just the energy needed for the 
nuclear excitation. However, if this excess energy is greater than the width of the 
nuclear excitation (H divided by lifetime), there will be no resonant excitation of 
the nucleus. In fact, for nuclear transitions, that is the way it works out, and light 
cannot excite nuclear states of free atoms. However, Mössbauer (1958) discovered 
that light can excite nuclear states if the nuclei sit in a lattice. The reason is that the 
lattice binds the nuclei, and the lattice as a whole takes up the momentum of the 
photon, leaving the energy free to go right to the nuclear excitation. 

3/2 -
1/2 -

- 1 / 2 -
- 3 /2 -

-1/2-

1/2-

(A) 

Figure 13.20. (A) Splittings of energy levels of lowest two nuclear states of Fe57 in the 
spontaneous internal magnetic field seen by the nucleus at room temperature. Note that 
the Zeeman splittings are 10 orders of magnitude smaller than separation between the 
7 = 1 / 2 and / = 3/2 states. (B) Absorption of gamma radiation from Co57 as a function 
of temperature. The vertical axis gives the speed υ of the Co57 source relative to the Fe57 

sample. The motion produces a Doppler shift 1 +v/c in the photon energies, comparable to 
the splittings produced by internal magnetic fields. [Source: Preston et al. (1962), p. 2212.] 

The calculation describing this process is very similar to the one just done for 
neutron scattering. If q is the wave vector of an incoming photon, the nuclear 
excited state involves an energy Δ δ , and has lifetime Γ, then the probability of 
exciting the state is 

S(q) = - V « # ( # - # ' ) H —[βΚΔε/Η+ίΓ)ΐ + e-i(Ae/H-ir)t^e-iq-Û'' eiq-Û<(t)^ 
yV ( JO Ζ7Γ 

(13.135) 
The calculation of the matrix element proceeds as before. The main difference 

between this calculation and the one for neutron scattering is the inclusion of a 
decay rate Γ. At low temperatures the strength of the resonance absorption is given 
by a Breit-Wigner form factor 

2Γ 
- This factor appears instead of the <5(ω) that 

( Δ £ / / ζ ) + Γ appeared for neutron scattering in Eq. (13.129). 
(13.136) 
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multiplied by the analog of the Debye-Waller factor, now called the Lamb-Möss-
bauer factor, 

/ = exp 3 qlh 2*2 

4 Mhcko 
In the Debye approximation. ( 1 3 . 1 3 7 ) 

One application of the Mössbauer effect is to take accurate measurements of 
the internal magnetic fields in iron. Spontaneous magnetization of ferromagnets 
at zero externally applied field is difficult to measure in bulk samples, because 
spins arrange themselves into interweaving collections of domains (Section 24.4.1 ) 
with spins pointing in differing directions. The internal magnetic fields, however, 
split the energy levels of nuclei in a way that is independent of the local field 
directions, shown in Figure 13.20. The strength of the splitting is 2μ/Β·Ι/Ι, with 
μ]/2 = 4.6 · 10~25 erg G"1 and μ3/2 = -8.0 · IO"25 erg G"1. Radioactive Co57 

emits 14.4 keV photons, whose energy can be raised and lowered by parts in 1010 

through moving the cobalt at speeds on the order of millimeters per second toward 
and away from the iron. The Mössbauer line is so sharp that energy shifts of 
10~7 eV can be detected, and resulting measurements of the spontaneous field in 
iron appear in Figure 24.3. The magnitude of the field at room temperature is 
330 kOe, which is comparable to the largest magnetic fields that can be generated 
in the laboratory. 

Problems 

1. Phonon dispersion with alternating springs: Consider a one-dimensional 
array of atoms, in which every mass has mass M, but the springs alternate in 
strength on every other site between values of %\ and %2- Find the vibrational 
frequencies of this array as a function of wave number k. 

2. Optic and acoustic modes: The bulk modulus of (three-dimensional) sodium 
chloride is 2.4 · 101 ' ergs/cm3, and the lattice parameter a is 5.6 Â. From these 
facts (at the level of dimensional analysis) estimate the spring constant % that 
might describe sodium chloride, modeling it as a one-dimensional chain of 
atoms of alternating mass. Use the results following Eq. (13.7) to estimate the 
frequency of the optical mode and the speed of sound. 

3. Wave Speeds for Two-Dimensional Lattices: Consider a two-dimensional 
triangular lattice of particles of mass M and lattice constant a. Let ri; be a unit 
vector pointing from the equilibrium location /?, of particle i to the equilibrium 
location Rj of particle j . Let u,· give the two-dimensional displacement of 
particle / from its equilibrium location. Suppose that the force on particle / is 

Fj = Μω0 2_^fij{fij-{Uj — Ui)). where ; indexes nearest neighbors of / ( 1 3 . 1 3 8 ) 
j 

(a) Find a set of two equations in two unknowns whose solution would give the 
dispersion relation ω ^ for vibrations of the lattice. 
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(b) Take the limit k —> 0 and find the transverse and longitudinal wave speeds of 
the lattice. 

4. Two-phonon scattering: Recall that the basic laws governing neutron scat-
tering from phonons could be deduced from conservation of energy and crys-
tal momentum, without detailed quantum-mechanical calculation. Generalize 
this argument to consider processes in which neutrons incident upon a crystal 
participate in the creation or destruction of two phonons. 

(a) Enumerate the number of distinct ways in which such a process may occur. 
(b) Show that two-phonon processes do not produce sharp peaks in neutron ab-

sorption as a function of incident energy, for fixed observation angle, and may 
therefore be distinguished from one-phonon processes. 

5. Quantizing vibrations: 

(a) Verify if creation and annihilation operators are defined by Eq. (13.42) that 
Eq. (13.43) is then satisfied. 

(b) Verify that the commutation relation Eq. (13.44) is satisfied. 

6. Debye temperature: Use the data of Figure 13.8 to estimate the Debye tem-
perature of diamond, and compare this estimate with the value tabulated in 
Table 13.1. 

7. Debye-Waller factor in three dimensions: Adopt the assumptions of the 
Debye model, so that polarization vectors ê  consist of a longitudinal mode 
parallel to k and two transverse modes perpendicular to it, with the density of 
states given by Eq. (13.72). 

(a) Show that in three dimensions the Debye-Waller factor is given by Eq. ( 13.126). 
(b) Show that in one or two dimensions Eq. (13.124) diverges if T ψ 0. 
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14. Dislocations and Cracks 

14.1 Introduction 

The perfect crystal presents the perfect starting point for analyzing many features 
of condensed matter, but some qualitative phenomena it cannot explain at all. Even 
electrical conductivity technically falls in the latter category; Chapter 16 will show 
that noninteracting electrons in a perfect crystal oscillate and transport no current. 
In the case of electrical resistance, the failings of the perfect crystal are somewhat 
academic. But to understand many mechanical properties of solids, the perfect 
crystal is tremendously misleading. Wigner said that solid-state physics "deals in 
a scientific way with those subjects with which we must deal in our everyday ex-
perience. For example, we are never afraid when dropping a key that it will fly to 
pieces, as a glass would." [Wigner (1936)] The key is ductile. It deforms slightly, 
or bends, but does not break. The glass is brittle and shatters. Familiar though 
these experiences may be, they are not at all easy to explain in a scientific way, for 
they result from the dynamics of defects. To motivate the study of these defects, it 
is necessary to point out how far the everyday world is from mechanical equilib-
rium, how difficult equilibrium is to attain, and how fortunate that the barriers to 
equilibrium are large. 

Figure 14.1. Solids of length L are stretched by force F, causing a change of length 5L. In 
(A) the force is a shear, while in (B) it is pure tension. 

Consider a piece of rock, of area A and height h. According to equilibrium 
principles the rock should not be able to sustain its own weight under the force of 
gravity if it becomes tall enough. To estimate what that critical height should be, 
note that the gravitational potential energy of the rock is pAh2g/2, where p is the 
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Table 14.1. Shear modulus G/5 versus onset of plastic flow for three 
materials 
Material Shear modulus G/5 

(1011 ergs cm- 3) 
Iron 1.0-1.6 
Copper 1.0 
Titanium 1.0 

Yield strength 
(1011 ergs cm- 3) 
0.02-1 
0.005 
0.08 

Source: Baumeister (1978), pp. 5.2-5.5. 

mass density. By cutting the rock into two equal blocks of height A/2 and setting 
them side by side, this energy can be reduced to pAh2g/4, for an energy gain 
of pAh2g/4. The cost of the cut is the cost of creating new rock surface, which 
characteristically equals per unit area Γ = 1 J m - 2 . Estimating p — 2000 kg m~3, 
the critical height at which it pays to divide the rock in two is 

1.4 cm. (14.1) 

So every block of stone more than a few centimeters tall is unstable under its own 
weight; changing the material to steel, concrete, or bone does not dramatically 
change the estimate. 

Obviously rocks can survive to heights of more than 2 cm, so the barriers pre-
venting them from reaching equilibrium must be large. Yet it is not obvious how to 
compute the barriers correctly. An easy way to obtain an estimate is by imagining 
what happens to the atoms of a solid as one pulls it uniformly at two ends. At first, 
the forces between the atoms increase, but eventually they reach a maximum value, 
and the solid falls into pieces. Interatomic forces vary greatly between different el-
ements and compounds, but the forces typically reach their maximum value when 
the distance between atoms increases by around 20% of their original separation. 

Referring to Figure 14.1(A), the shear force needed to deform a solid by 20% 
is given by 

SL F 
f} = — G is the shear modulus. (14 2) 

L A ' 
while as sketched in Figure 14.1(B) the force needed to deform a solid by 20% in 
tension is given by 

6L F 
YT-Ä- (l43) 

The force per area, §, needed to cause deformations of 20% is therefore estimated 
to be 

8 = ί 
A 

G 
5~ 
Y 
~5 

shear 
(14.4) 

tension. 
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Table 14.2. Failure of solids in tension 
Material 

Iron 
Titanium 
Silicon 
Glass 

Young's 
Modulus F/5 
(10nergs cm" 
4.0 
2.2 
3.2 
1.4 

Theoretical 
Strength 

3) (10nergs cm" 
4 
3.1 
1.5 
4 

Practical 
Strength 

"3) (10nergs cm" 
0.03 
0.03 
0.07 
0.04 

Ratio 

-3) 
0.008 
0.009 
0.05 
0.01 

The stress needed in practice to snap solids in tension is compared with 
Young's modulus, and with results of detailed calculations that determine the 
force per area that would be needed to pull a plane's worth of bonds apart at 
once. The calculations involving realistic accounts of interatomic interactions 
produce an answer fairly close to the estimate of Y/5, but quite far from ex-
perimental values. The final column gives the ratio of practical to theoretical 
strength. Source: Averbach (1968) and Grigoriev and Meilkhov (1997). 

As shown in Tables 14.1 and 14.2, these estimates are in error by many orders 
of magnitude. The problem does not lie in the hasty estimates used to obtain the 
forces at which bonds separate, but in the whole conception of the calculation. The 
argument from equilibrium greatly underestimated the practical resistance of solid 
bodies to separation, and now it has been replaced by an equally incorrect argument 
that greatly overestimates it. The only way to uncover correct orders of magnitude 
is to account for the actual dynamical modes by which solids fail. Ductile crystals 
are those in which line defects called dislocations are mobile, allowing the solid 
to flow. Brittle materials are those where instead a more severe defect, the crack, is 
mobile instead. 

Theoretical Strength of Silicon. The theoretical tensile strength of silicon can be 
estimated by using the universal cohesive energy of Eq. (11.50) and the data of Ta-
ble 11.11. Simply compute the inward pressure that silicon exerts when uniformly 
expanded, 

_Ρ>ψ1. ( 1 4 „ 
\-nr%/ drw 

Equation (14.5) is plotted in Figure 14.2, which gives an estimate for the maximum 
tensile stress of 1.5 x 10nerg cm - 3 . 

14.2 Dislocations 

Taylor (1934), Orowan (1934), and Polanyi (1934) developed independently the 
explanation of how crystals flow. The idea of the dislocation is that one can ob-
tain a macroscopic rearrangement of a crystal by breaking a very small number of 
atomic bonds at a time. Figure 14.3 shows how a crystal can be rearranged by the 
movement of a configuration in which one line of bonds at a time snaps. This type 
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E 

PL, 
1.8 2.0 2.2 2.4 
Wigner-Seitz radius, r\y (Â) 

2.6 

Figure 14.2. Plot of Eq. (14.5), showing that under uniform expansion the maximum 
cohesive stress of silicon is around 1.5 erg cm~3 when silicon has been expanded by about 
15%. 

Figure 14.3. A crystal is able to flow in response to external stresses because of disloca-
tions. As this defect moves through the crystal, only one atomic bond is broken at a time, 
but the net effect is to obtain a macroscopic rearrangement of the crystal. (A) Undeformed 
crystal. (B) A defect slides backwards, like a bump on a rug being pushed to the back of a 
room. (C) Top layer of crystal has been displaced by Burgers vector b. 

Figure 14.4. The two basic types of dislocations in three dimensions, (A) edge and (B) 
screw, are pictured from a continuum viewpoint, together with their Burgers vectors b. 
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t 

Figure 14.5. The Burgers vector, in this case for an edge dislocation, is constructed by fol-
lowing a counterclockwise path that would close in the perfect crystal. When it surrounds 
a dislocation, however, the path is open. The Burgers vector is the vector needed to close 
the path. 

of defect costs vastly less energy at any given time than would be needed to pick 
up a chunk of crystal all at once and place it down at a new location. 

There are two basic types of dislocations. The one pictured in Figure 14.3 and 
in Figure 14.4(A) is an edge dislocation. A second type is the screw dislocation, 
shown in Figure 14.4(B). 

A basic characterization of a dislocation is its Burgers vector. This vector is 
obtained by going to the vicinity of a dislocation, and then traversing a counter-
clockwise path around it which would be closed in a perfect crystal—for example, 
6 atoms up, 7 to the left, 6 down, and 7 to the right, as in Figure 14.5. When such a 
path surrounds a dislocation, it does not close, and the Burgers vector is the vector 
needed to close the path. For an edge dislocation, the Burgers vector is perpendic-
ular to the dislocation line, while for a screw dislocation it is parallel, as shown in 
Figure 14.4. 

From Figure 14.3 it should be clear that there is a unique plane in which it is 
particularly easy for a given dislocation line to move. This plane is known as the 
slip plane or glide plane. Motion perpendicular to that direction, which can only 
be achieved by difficult rearrangements of atoms, is called climb. 

14.2.1 Experimental Observations of Dislocations 

Theoretical consideration of the sort considered above were far from able to con-
vince practical metallurgists that dislocations were real. Instead, dislocations seemed 
like elaborate theoretical fictions intended to rescue the improbable theory that 
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Figure 14.6. In order to add a new layer of atoms to a crystal, it is typically necessary to 
add a large clump of new atoms simultaneously. (A) A single atom attaching to the surface 
will be unstable and detach. (B) A large enough clump is stable. 

matter was made of atoms from its embarrassing failure to account for the obvi-
ous practical properties of solids. Even some physicists felt that "the reality of 
the 'dislocations', which form the basis of [Taylor's] theory, seems very doubtful." 
[Frenkel and Kontorova (1938), p. 2]. Starting in the 1950s new techniques imaged 
dislocations directly. The first was in response to theories of crystal growth. If one 
has a flat crystalline surface, it is hard to deposit a new layer of atoms on it. A 
single atom sitting on a surface is not by and large stable, because only by being 
surrounded by neighbors on as many sides as possible does the bonding that holds 
the solid together keep the surface atoms glued on. In Figure 14.6 the atom in (A) is 
likely to jump off the surface, and a clump as large as the one shown in (B), or even 
larger, might well be required for stability. However, forming large clumps simul-
taneously is statistically very unlikely. The calculations of these probabilities were 
due to Volmer: "Keith Burton showed how you could put numbers into Volmer's 
algebraic expressions: and it turned out that while Volmer's curve for dependence 
of growth-rate on supersaturation was qualitatively similar to what was observed, 
there was a quantitative disagreement by a factor of 101000, which we said was the 
largest factor of discrepancy we had ever called agreement." [Frank (1985), p. 9] 

Figure 14.7. Mechanism due to Frank, showing how the presence of a screw dislocation 
should speed the process of crystal growth, by providing open regions to which atoms can 
easily attach. 
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Figure 14.8. Experimental observation of growth spirals on the (0001) plane of silicon 
carbide. [Source: Amelinckx (1964), p. 5.] 

The idea that Frank proposed to rescue the situation was that atoms could easily 
attach to a screw dislocation at the top of a crystal, as shown in Figure 14.7. Such 
spiral patterns, greatly magnified in scale by chemical etching, are now routinely 
observed on crystal surfaces, as shown in Figure 14.8. It is possible, by having 
impurity atoms diffuse to dislocations, to image them directly with electron, X-
ray, and neutron diffraction. A picture showing various dislocations surrounding 
silica particles in brass appears in Figure 14.9(A). Finally, high-resolution electron 
microscopy makes it possible to view dislocations at the atomic scale, as shown in 
Figure 14.9(B). 

Figure 14.9. (A) Experimental observation of individual dislocation loops surrounding 
N13SÌ particles in nickel-silicon alloy. (Courtesy of J. Humphreys, Manchester University.) 
(B) High-resolution electron micrograph of CdTe, showing dislocation loops imaged at the 
atomic scale. [Source: Cullis et al. (1985), p. 205.] 
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14.2.2 Force to Move a Dislocation 

A virtual work argument can be used to determine the effectiveness of external 
stresses in moving a dislocation. Viewing the dislocation as a line being pushed 
through the crystal, define / , the force per length a needed to make the dislocation 
move. If the dislocation in Figure 14.5 moves from right to left past N atomic sites, 
then a layer N atoms long moves by the Burgers vector b. If an external shearing 
force Fext has been applied to the top and bottom of the sample, then the total work 
done in the process is Fextbx. The work required to move the dislocation over one 
lattice spacing is then Fextbx/N, and the force fx per length a required to move the 
dislocation must be 

fx = <7xybx, (14.6) 

where 

">=w (I4J) 

is the external stress appi' ~J to the crystal, with a the lattice spacing. Notice that 
putting the crystal under tension, either with σχχ (pulling along the x axis), or with 
Oyy (pulling along the y axis) has no power to move the dislocation. If L is a unit 
vector pointing along the dislocation line (L = z in the case of Figure 14.5), then 
Eq. (14.6) can be rewritten in coordinate independent form as 

f=(a-b)xL (14.8) 

The first term on the right-hand side of Eq. (14.8) indicates that one forms the 3 x 3 
tensor σ and takes its dot product with the Burgers vector b. The direction of L is 
chosen according to the right-hand rule; the Burgers vector is defined by taking a 
counterclockwise path around the dislocation, and the direction L of the dislocation 
is the direction the thumb points when the right-hand fingers curl around it. The 
advantage of describing the force on the dislocation in this form, due to Peach 
and Köhler (1950), is that it is independent of one's choice of coordinate system, 
is equally true for edge or screw dislocations, and remains true for a dislocation 
which curls about or forms a loop. 

Equation (14.8) is useful when one supposes that there is a critical force fc 

needed per unit length to make the dislocation move. Equation (14.8) then de-
scribes the external stress that will be required for a crystal to begin to flow, if it is 
populated with dislocations. It can also be used, for example, to decide when one 
dislocation will begin to move because of stresses created by another dislocation. 

14.2.3 One-Dimensional Dislocations: Frenkel-Kontorova Model 

In order to understand how dislocations allow crystals to flow, it is necessary to 
determine the critical force fc. This task is somewhat complicated in two- and 
three-dimensional settings, so it is helpful to examine a one-dimensional model for 
dislocations, the model of Frenkel and Kontorova (1938), where the job is easier. 
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F = Fcrit/2 ► 

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 

Figure 14.10. The Frenkel-Kontorova model contains a one-dimensional array of 
parabolic potentials placed side by side, in which are located a collection of masses. The 
masses are acted upon by a force, which tends to push them over the potential, and are 
connecting by springs of constant k. (A) Equilibrium dislocation. (B) Dislocation on the 
verge of beginning to move because the mass at 0 is balanced on the top of the potential. 

In this one-dimensional model, pictured in Figure 14.10, one considers a col-
lection of masses connected by springs, and sitting in a periodic potential, de-
scribed by 

U(x) = hX[x — a int(x/a + l \ i 2 -fx, (14.9) 

where / describes the external forces applied to the particles. The integer part of 
xja + \ gives the integer nearest to xja. If mass n is located at xn, then the total 
force on mass n is 

/„ =k[xn+\ -xn-a\+k[xn-\ -xn+a] 
dU 
dx 

(14.10) 

When a dislocation is present, one of the wells does not have a particle in it. 
Choose that well to be the one centered at 0, so that particle 0 is now sitting in the 
well centered at —a, and particle 1 is sitting in the well centered at a. This means 
that Eq. (14.10) can be rewritten 

h k[xn+\ —xn—a\ +k[x„-i —xn+a] +f — X[xn — (n— l)a] for« < 0 
k[xn+\ —xn — a] +k[xn-\ — xn + a] + / — JC[xn — na] forn > 0. 

(14.11) 
In equilibrium, all the forces /„ have to vanish. Guessing the form for n < 0 

xn = f/X + a(n-\)+Ale'in, (14.12) 
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one immediately finds that for n < 0, 

k{eg-2 + e-q)-JC = 0 (14.13) 

while for n > 0 one again has Eq. (14.13) but the solution is of the form 

xn = f/X + an+Are-qn. (14.14) 

The question is, do the two solutions join properly at n = 0? They only match if XQ 
computed from Eq. (14.14) is the same as XQ found in Eq. (14.12), andxi computed 
from Eq. (14.12) is the same as x\ from Eq. (14.14). So one must require 

To obtain equivalent results more formally, . 
a-{-Ai=Ar carefully write down the two equations/o = 0 ( 1 4 . 1 j a ) 

and / , = 0, using Eqs. (14.12) and (14.14). 

Aieq = a+Are-\ (14.15b) 

which gives 

A/ = —°— (14.16a) 
ei + \ 

Ar= ~a . (14.16b) 

These are the equilibrium solutions. What should correspond to the motion of a 
dislocation? The motion should begin as soon as the force on the system is great 
enough so that mass 0 has reached the peak at —a/2 and is about to slide down into 
well at 0, pulling the mass behind it in its wake. This condition is 

Xo = ~l = x~a+Al (1417) 

=*/c = ^ - t a n h | . (14.18) 

The maximum force that the potential U is able to supply is aX/2—all masses 
would be able to slide when / reached this value with or without a dislocation—so 
the hyperbolic tangent in Eq. (14.18) describes the advantage to be gained from 
having a dislocation. One obtains plasticity with low forces when q is small, which 
means equivalently that the dislocation is quite extended. This limit is achieved 
when X/k is small, in which case one finds 

(14.19) 
y te 

and 

(14.20) 
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14.3 Two-Dimensional Dislocations and Hexatic Phases 
Dislocations play an interesting role in the statistical mechanics of two-dimensional 
crystals. Two-dimensional crystals do not, in fact, technically exist. Long-range or-
der is almost always destroyed by thermal fluctuations in two dimensions. Another 
type of order, orientational order, can however exist, and dislocations are central 
actors in the phase transition that brings orientational order to an end. The mathe-
matics of this phase transition applies almost unchanged to a broad range of other 
physical systems, ranging from two-dimensional electron gases to thin films of he-
lium, and provides a setting in which to gain an introduction to renormalization 
group techniques. 

14.3.1 Impossibility of Crystalline Order in Two Dimensions 

Three dimensions are special in many respects. One surprising property, first re-
alized by Peierls (1934) and Landau (1937), is that three-dimensional space is the 
lowest dimensionality in which long-range crystalline order is possible. Certainly, 
one can draw pictures of crystals in two dimensions, but if one built them, they 
would be destroyed at any nonzero temperature by fluctuations. This fact has al-
ready been demonstrated, because Problem 7 in Chapter 13 shows that sharp Bragg 
peaks cannot survive in one and two dimensions as a result of quantum fluctuations. 
The same conclusion follows from examining the effect of thermal fluctuations in 
a purely classical context. 

Consider, for simplicity, a two-dimensional elastic medium, where in terms 
of displacement field u introduced in Section 12.3, the potential energy takes the 
simple form 

/
■) v-^ dua dua d r -C y . Here C is a constant with dimensions of en- ( 1 4 . 2 1 ) 

2 *—£ drn drg ergy per area. 

In order to study the statistical mechanics of a system whose energy is given by 
Eq. (14.21), it is best to work with the Fourier transform variable ua(k) such that 

ua(r) = Y^errlua(k). (14.22) 

The idea that u describes only fluctuations on a scale larger than some distance T> 
that is bigger than an interatomic spacing may be implemented by requiring that 

u(k) = 0 for k> I/T>. (14.23) 

Then Eq. (14.21) can be rewritten as 

U = J d2r \C £ kßk'ße<k~l'yrua(k)u*a{k') (14.24) 
ßakk' 

The first time Eq. (14.22) is used, it is substituted directly intoEq. (14.21). To substitute the 
second time for «Q, however, one uses the fact that ua is real and substitutes the complex 
conjugate of Eq. (14.22) instead. 
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VC 
y ^ k \ua(k)\ U s e V ^ , =fd2rei(-l-V >'?, where Vis the 

two-dimensional volume of the system. 
(14.25) 

ak 

With this expression for the energy of a slightly deformed system, one can 
perform statistical averages. First, examine the expectation value of the average 
square displacement of particles from their original location, which is 

(u2) 
< / 

d2r 
y UßCr)ußCr)) Here V is the two-dimensional volume of the ( 1 4 . 2 6 ) 
-̂—' system, and () is a thermal average. 

= Σ<Μ*)Ι2> 
ßk 

This calculation is identical to the one that ( 1 4 . 2 7 ) 
leads to Eq. (14.25), except that the deriva-
tives with respect to rß are missing. 

In order to perform the thermal average, one has to integrate over all allowed 
values of u^, weighted by the energy of each configuration. Because u(r) is real, 
one has to restrict this discussion to cases where 

u(k) = u*(—k) (14.28) 

and also restrict it to long-wavelength excitations in accord with Eq. (14.23). Oth-
erwise, all possible functional forms of u(k) are permitted. Picking one value from 
the sum over k indicated in Eq. (14.27), one has to compute 

(\uß(k)\2) 

I E U dua(k')\uß(k)\2e- ■Ρψ ΣαΡ *'2ΙΜ*')Ι2 

!Ylal,duaÇk>)e-^T.av^Ck>)? 

J duß(k)\uß(k)\7 -ßVCk2\uß(k)\2 

J duß(k)e-Pvck2MW 

J durdui[(ur)2 + („y]g-roW+(*02] 
/ durdvte-PKWY+wn 

kBT 
' VCk2 ' 

Returning to Eq. (14.27), one has that 

kBT 
<"Z> ^ VCk2 

ak 

. d2k kBT 
(2TT)2 Ck2 

V» dk kBT 
2^k~C~ 

Regarding all the u(k') for 
different k as independent 
variables, although subject to ( 1 4 . 2 9 ) 
constraint (14.28), and 
integrating over them. 
Most terms cancel between 
numerator and denominator. 
The factor of 2 beneath C ( 1 4 . 3 0 ) 
disappears because, using 
Eq. (14.28), two terms in the 
exponential depend on 
integration over up(k). 

One has to integrate over both 
the real and imaginary parts Ur(\A "Î1 Λ 
and Ui of up(k). 

U s e Γ Ί à**'"* = v^/2(i4.32) 

(14.33) 

Using the two-dimensional density of states ( 1 4 . 3 4 ) 
from Section 6.3. 

OO. Recall Eq. (14.23). (14.35) 
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The integral in Eq. (14.35) diverges logarithmically for small k, just where 
linear elasticity should be working the best. Assuming that deviations of the crys-
tal from equilibrium are small has led inevitably to the conclusion that they are 
infinitely large and that long-range translational order is impossible in two dimen-
sions. This result is known as the Mermin-Wagner theorem, after Mermin and 
Wagner (1966). It does not mean that real two-dimensional systems are liquid at 
any nonzero temperature, nor does it mean that lightning will smite him dead who 
tries to adds the last atom to a two-dimensional array. Rather, as shown in Figure 
14.12, it means that Bragg scattering peaks are substantially broadened. In fact, the 
conclusion is somewhat pedantic. The divergence in Eq. (14.35) is only logarith-
mic, so in any finite-sized sample the deviations from long-range order may not be 
overwhelmingly large. Two-dimensional crystals do not melt at all temperatures; 
they are just somewhat floppy at long distances. 

14.3.2 Orientational Order 

Although the average fluctuations in positions of atoms are large in a two-dimensional 
crystal, Mermin (1968) showed that fluctuations in the angles of orientation of 
atoms with respect to their neighbors are much smaller. This fact may be deter-
mined by arguments that closely mirror the previous ones. 

Figure 14.11. Illustration of how a displacement U causes the angle φ between points r 
and r' to shift. 

Suppose again that one has a displacement field «(?). How do these displace-
ments cause angles between nearby points to shift? Referring to Figure 14.11, let 

(dx,dy) = r'-r. (14.36) 

The angle φ between the two points is 

φ = tan'1 (dy/dx). (14.37) 

When they are displaced by a field w(r), the new locations of 7 and r' are 

r + u(r) and r' + u(r'). (14.38) 
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Therefore, the new angle between them is 

z / = t a n - i fdy+duy/dx dx+duy/°y dy\ ( 1 4 3 9 ) 
^ dx + dux/dx dx + dux/dy dy ' 

dx dy 
>+■ dx2 + dy2 

' duy dux \ dx duy dy dux 

- dy dx ' dy dx dx dy 
(14.40) 

,/ , · , /duy dux\ 2 , duy . 7 , dux /Λ Λ ΛΛ^ ^φ' -φ = οο$φ sin<£ ( — Σ - — - +cos2 ( ^ ^ - s i n 2 φ—1. (14.41) 
V dy dx ' dx dy 

Averaging over φ, one finds that the average change in local orientation δφ at each 
point r is given by 

Adopting the Fourier representation Eq. (14.22), one has 

δΦ<?) = \ Yj&xVh>$) - ikyux(k)yl7. (14.43) 
k 

Therefore, the spatial average of orientation fluctuations is 

^-(δφ{7)δφ{7)) (14.44) 

Ç k2
x(\ux(k)\2) +k2

y(\uy(k)\2) -kxky((ux(k)u;(k) +uy(k)u*x(k)))(l4A5) 
k 

kBT 
ϊ Σ ^ ν Π ^ + ^ ) UsingEq.(14.32),andnoticingthat<^(*)M;(A)> ( 1 4 . 4 6 ) 

r must vanish by symmetry. 

kßT [2π ,n PI"13 dkk kBT 
Jo Jo AC Jo Jo (2TT)2 16TTD2C' 

(14.47) 

In contrast to the amplitude fluctuations, orientation fluctuations do not diverge 
in this analysis. Therefore, it is possible that they will remain finite, although long-
range crystalline order has been broken. The crystal has bond-orientatioml order. 

14.3.3 Kosterlitz-Thouless-Berezinskii Transition 

As the temperature of a two-dimensional crystal increases, there comes a point 
where temperature fluctuations destroy the long-range orientational order present 
at low temperatures, just as the long-range positional order of ordinary solids dis-
appears at the melting temperature. The manner in which the transition occurs was 
first described in detail by Kosterlitz and Thouless (1973) and Berezinksii (1972), 
with an additional transition at higher temperature found by Nelson and Halperin 
(1979) and Young (1979). 
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Experimental Observations. The two-dimensional crystals in which bond-ori-
entational order is observed would be triangular lattices at zero temperature, and 
therefore they are known as hexatics. It is not easy to observe hexatic ordering 
in atomic scale systems, because free-standing films one atom thick are hard to 
make. It has been observed in liquid crystal films only a few monolayers high by 
Pindak et al. (1981). Bond-orientational order has also been observed in colloidal 
suspensions, where latex spheres of about a micron in diameter are placed in a 
micron-thick bath of water. The spheres interact through electrostatic repulsion. 

Figure 14.12 shows experimental scattering data obtained from such a colloidal 
system. The left panel shows the colloidal system heated above its melting tem-
perature and displaying the correlations typical of a liquid. The center panel shows 
the system in an intermediate phase, the hexatic liquid in which orientational order 
is still present, but no traces of positional order remain. The right panel shows the 
hexatic crystal, which is the phase described by calculations in the preceding sec-
tions. The lack of long-range positional order is indicated by the nonzero widths 
of the scattering peaks, along with their slow decrease in amplitude away from the 
upper right-hand corner. Hexatic orientational order, however, is still perfect, so all 
the peaks are in the location one expects for a perfect crystal. The two-dimensional 
positional ordering of this structure is called quasi-long-range order. 

Liquid Hexatic Crystal 

t = 0s 

r = 0.05s 

i = 0.1 s 

Figure 14.12. Experimental correlation functions g(r, t) from a two-dimensional colloidal 
system. The top panel shows correlation functions at t = 0, while the lower panel shows 
the decay of correlations after 0.05 and 0.1 s. [Source: Murray and Grier ( 1996).] 
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Figure 14.13. A two-dimensional array of parallel screw dislocations. 

In the colloidal crystals, particles are confined to a plane, and they move in the 
x and y directions. The dislocations that arise are edge dislocations, as in Figure 
14.5. To study their statistical mechanics, two simplifications will be introduced. 

1. The problem will be treated in the framework of linear elasticity. Continuum 
mechanics only runs into trouble near the core of a dislocation, and it will be 
sufficient to cut off certain dangerous integrals, as in Eq. (14.47). 

2. The vector character of edge dislocations makes them hard to work with, so 
they will be replaced with screw dislocations, as in Figure 14.13. Thus, in-
stead of permitting points in the plane to have displacements ux, uy, for the 
remainder of the section they will be allowed only displacements uz, which 
will be denoted by u. This alteration of the problem simplifies the analysis, 
but does not change any of the qualitative conclusions. 

The displacement fields being considered from now on are of the form 

ux = 0, Uy = 0, u(x,y) = uz(x,y). (14.48) 

According to Eq. (12.33), the energy of a displacement field obeying Eq. (14.48) 
is 

U = -tl I d r (S7u) The gradient operator is understood to be op- ( 1 4 . 4 9 ) 
2 J erating in two dimensions. The factor a out 

front is needed so that the dimensions of U 
will turn out correct; think of the solid of hav-
ing height a in the z direction. 

According to Eq. (12.40), such a displacement field in static equilibrium obeys 

V 2 M = 0 . Laplace's equation! ( 1 4 . 5 0 ) 

Single Dislocation. The simplicity of Eq. ( 14.50) makes it possible to write down 
immediately the displacement field of a single dislocation. All analytic functions 
of a complex variable are solutions of Laplace's equation, so it is sufficient to find 
within the repertoire of such functions one that has the property of increasing by a 
Burgers vector when one passes in a complete circuit around the dislocation. The 
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logarithm is the simplest complex function this property; \og(x + iy) increases by 
2πί for any path that loops once about the origin. A dislocation at the origin with 
Burgers vector a is described by 

u(x,y) =—lmln[x + iy\. (14.51) 
Ζ7Γ 

What is the potential energy cost of introducing such a dislocation into a solid? 
Placing Eq. (14.51) into Eq. (14.49) gives 

-τ(έ)7<Η-^Γ+[^]2 
2 an ( a \ 2 fR 1 

I I / dr ΊτΤΓ— The limits a and R are introduced by hand to ( 1 4 . 5 3 ) 
2 \ 27Γ / Ja i keep t n e integral from diverging, as discussed 

below. 

(aß) In I — 1 -\-W. w K added by hand to account for the energy ( 1 4 . 5 4 ) 
47Γ y O. ) °f the core of the dislocation. 

The passage from Eq. (14.52) to Eq. (14.54) is not completely direct. There is 
the problem that the integral over r diverges both at large and short lengths. The 
solution at large lengths is to cut the integral off at a system size R (taking the 
dislocation to sit at the center of a cylinder). At short lengths, the integral must 
be cut off at the scale of the lattice spacing a, where continuum mechanics breaks 
down. To compensate for the very crude treatment of short lengths, it is necessary 
to add to Eq. (14.55) an additional energy w, which describes the energy needed 
to form the core of the dislocation, meaning those fine adjustments on the atomic 
scale that Eq. (14.54) has gotten wrong. This energy w will be added to the energies 
of all dislocations from now on. 

Two Dislocations. The displacement field of two dislocations with equal and 
opposite Burgers vectors separated by distance XQ along the x axis is 

u(x, y) = — Im {ln[x + /_y] - In[X — XQ +'iy}} ■ (14.55) 
27Γ 

Using the divergence theorem and some properties of complex functions, Problem 
2 shows that the energy of such a configuration is 

2q2 In (^) +2«, with q2 = ^ . (14.56) 
\a J 4π 

The notation of Eq. (14.56) is meant to suggest an analogy with two-dimensional 
electrostatics. The analogy is almost perfect. The dislocations obey exactly the 
same equations as lines of charge q: The displacement u serve as the electrostatic 
potential, and the gradients of u are equivalent to the electrical field. The advan-
tage of employing this analogy is that it permits the use of a subtle quantity, usually 
taken for granted, the dielectric constant e. There is a slight flaw in the analogy, 
which emerges as soon as one draws the field lines Vw that should correspond to 
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the electric field. As shown in Figure 14.14, the field lines surround the disloca-
tion in an axial fashion. This is the magnetic field configuration surrounding a line 
of current, not the electrical field around an electric charge. However, because the 
equations describing the energies of interacting line currents are identical to the en-
ergies of interacting charges in two dimensions, the analogy with two-dimensional 
electrostatics survives and will be employed frequently in what follows. 

# *> » * % 
^ .. — «. \ 

• * / \ « · 

\ ». -» x / 
% m ~ + * 

Figure 14.14. Vector field VM for a dislocation described by Eq. (14.55). The field is the 
same as the magnetic field around a line of current. 

Statistical Mechanics of Two-Dimensional Dislocations. According to 
Eq. (14.54), the energy of an isolated dislocation diverges logarithmically with 
system size. Despite this divergence, thermodynamic equilibrium may happily 
permit many such dislocations to form. All depends upon the competition between 
energy and entropy. The entropy of forming a single dislocation may be estimated 
by noting that in a square with side length L, there are L2/a2 locations at which to 
put the center of the dislocation, so its entropy is 

S = 2kBln(L/a), (14.57) 

while its energy will be 
Picking out the divergent part of the energy, 

c _ „2 \n(T IQ\ and assuming that the difference between a ΙΛΑ <Q\ 
y v / / · disk of radius L and a square of side length L \ ■ ) 

is not important. 

There should be a critical temperature at which it becomes favorable to flood the 
system with dislocations. Using the estimates in Eqs. (14.57) and (14.58), the free 
energy 8, — TS becomes negative at a temperature 

q2 

kBTc = ^ . (14.59) 
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This estimate of the transition is close to the truth, but the numerical value of the 
transition point will turn out to be slightly different. 
Kosterlitz-Thouless Hamiltonian. Motivated by Eq. (14.56), consider a popula-
tion of screw dislocations interacting with energy 

<K=-Y^U{\ri-rj\)+2w with U{r) = 2q2 ln(r/a) (14.60) 

At low temperatures, the dislocations group themselves into pairs that form a 
dilute gas. Proof of this statement comes from comparing the mean square radius 
of a dislocation pair to the mean square separation between pairs. 

At low temperatures, the mean square separation of two dislocations in a pair 
is 

(r2> = ̂  (14.61) 

/•oc 
/ dr 2-nr 

Ja poo 
/ dr 

a2 ~ßq2 

ßq2 

r2e-ßU(r) 

2nre 

- f 
- 2 

-ßU(r) 

Insert Ec Insert Eq. (14.60) and perform the integrals. ( 1 4 . 6 2 ) 

On average, the pairs are situated farther from one another than W (r2). Con-
sider, for example, the density n of dislocation pairs whose separation lies between 
r and r + dr. The grand partition function for vortex pairs is 

V - (,-ßU(\7l-r2\)-2ßw _ Zër=\+^e-l1u^-r^-^w + . . . . (14.63) 

The density n(r) of dislocation pairs with separation lying between r and r + dr in 
a system of size R2 is therefore, to leading order in exp[—2ßw], 

<r)dr=^2 (* r , M | ) = ̂  E e -^ ' -™- 2 ^ , , , , -* , + · · -(14.64) 

% -r- e-ßu(r)-~2ßu\ Total sites in system is roughly/?2/a2· ( 1 4 . 6 5 ) 
a1 a1 

If the core energy w is large enough, n{r) can be made as small as desired for any 
given r. At low temperatures where large pairs are unlikely, the typical distance 
between dislocation pairs is therefore much larger than the separation between dis-
locations in the pair. However, as the temperature rises, the density of pairs rises, 
and their interaction becomes important. 

The essential idea of Kosterlitz, Thouless, and Berezinskii is to treat the in-
teraction of dislocation pairs through a dielectric constant. After all, what one has 
here is a collection of dipoles of different sizes, which in thermal equilibrium rotate 
through all angles so there is no spontaneous polarization, but which would orient 
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and create a polarization P in the presence of any electric field E. This situation is 
just what the theory of dielectrics was created to handle. In a dielectric medium, the 
interaction energy of two charges is not U = 2q2 \n(r/a), it is i/eff = 2q2 ln(r/a)/e, 
and so interactions between many different dipoles can be accommodated by using 
i/eff instead of U. 

However, there is an interesting complication. As the phase transition point 
is approached, dipoles of larger and larger sizes are created, while simultaneously 
the number of very small dipoles grows rapidly. The very smallest dipoles do not 
know they are sitting in a dielectric medium because their charges are much closer 
together than the distance to any other dipole. The appropriate dielectric constant 
for them must be 1. Very large dipoles may have large numbers of small dipoles 
in between them, and therefore they can have a dielectric constant e > 1. So the 
dielectric constant must be taken to depend upon scale. When the dislocations 
become numerous, they can be assigned to dipoles by grouping every dislocation 
with the nearest other dislocation that does not already have a partner, starting with 
the closest dislocations and moving away in distance. The idea of constructing 
a scaling theory in which the results at one length scale are formulated in terms 
of the results at a smaller length scale is the basic idea of the renormalization 
group. Similar ideas appear also in the study of metal-insulator transitions (Section 
18.5.2), of critical phenomena (Section 24.6), and in the study of the Kondo effect 
(Section 26.6). 

Adopting now completely the language of electrostatics (equivalently, magne-
tostatics), focus on a dislocation dipole of separation r but arbitrary orientation Θ. 
When placed in an electric field, it will tend to orient itself along the field. The 
polarizability a(r) of a dipole p of size r is given by 

p — aE = rq((cOS Θ, s in Θ)) Taking È to point along 0 = 0. (14.66) 

= f d±e-ßU(r)-2ßW+ßEqrcos θ^^ ^ s m Q) { Η 6 η ) 

J 2π 
= — ßq r E. Expand the exponential in powers of £ up to (14.68) 

2 linear order and perform average over Θ. 

So the contribution to the dielectric susceptibility d\{r) from dislocation pairs of 
size between r and r + dr is, from Eqs. (14.65) and (14.68), 

dx(r) = n(r) dr a(r) = \ßq2 (-Y 2^Le-ßvl<r)-2ßw_ ( U 6 9 ) 
2 \aj a1 

In order to determine e, make the assumption that all dipoles smaller than r 
contribute to the dielectric constant screening the interactions at scale r, and all 
larger ones are irrelevant. This point is the crucial junction where results at one 
length scale determine an effective theory at larger scales. So, remembering the 
result from electrostatics that e = 1 + 4πχ, one now has 

e(r) = l+4n ί ί/χ=1+4π ί dr'n(r')a{r') (14.70) 
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de(r) 
dr 

de(x) 
dx 

■ 4n2ßq2 -ßU(r)/e(r)-2ßw (14.71) 

: 4π W-*· 2Y3-2ßc,2/e(x)~2ßw . Withx = r/a, and using Eq. (14.60). ( 1 4 . 7 2 ) 

Solutions of Eq. (14.72) appear in Figure 14.15. At low temperatures, the di-
electric function e(x) goes to a constant for large x. At a critical temperature, the 
nature of the solution changes dramatically, and e diverges on large scales. For 
the electrostatic analog, the transition corresponds to a transition from insulator 
to metal, because the system becomes infinitely polarizable, while for the original 
system of dislocations, it corresponds to a melting transition in which the disloca-
tion pairs become unbound. The result is the destruction of quasi-long-range order 
depicted in Figure 14.12. 

10 

10 

10 

- i 

2 

- 3 

/V = 2 

^ßq2 = 2A6 

f ßq2 = 2.20 

W 7?<?2 = 2.40 

10 

x = In r/a 
15 20 

Figure 14.15. Solutions of Eq. (14.70), for w = 2q2 and for ßq2 ranging across the tran-
sition point from 2.0 to 2.4. For temperatures below the transition, the dielectric constant 
flows to a constant value at large distance scales, while above it the dielectric constant 
diverges, signaling the destruction of quasi-long-range order. 

14.4 Cracks 

14.4.1 Fracture of a Strip 

Ductile materials flow when placed under sufficient stress, but brittle materials 
break, and the sort of defect that allows them to do so is quite different from the 
dislocation. Brittle solids fail through propagation of cracks, which are macroscop-
ically long regions of separation, with a microscopically sharp tip. The question 
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Figure 14.16. The upper surface of a strip of height L and thickness w is rigidly displaced 
upwards by distance δ. A crack is cut through the center of the strip, and it relieves all 
stresses in its wake. When the crack moves distance dl from (A) to (B), the net effect is to 
transfer length dl of strained material into a length dl of unstrained material. 

of whether a given solid should be brittle or ductile is not easy to determine the-
oretically, and it is bound up with the question of whether a sharp crack tip will 
propagate, or whether it will emit dislocations and become blunt, as reviewed by 
Carlsson and Thomson (1998). Roughly speaking, when atoms are connected by 
large numbers of bonds, individual bonds can easily be broken and reformed, dis-
locations move easily, so fee and bec metals such as copper, lead, or iron tend to 
be ductile. The hexagonal metals, such as beryllium, are more likely to be brittle, 
and covalent solids such as silicon or carbon tend to be very brittle. 

An important feature of cracks is their ability to funnel energy from large ex-
panses of a macroscopic object, and to direct it down to the atomic scale in the 
service of snapping bonds. The way this process works is quantified by a simple 
scaling argument. 

Consider a long strip with a crack down the middle. The upper and lower 
boundaries of the strip are rigidly displaced upwards by distance δ, as shown in 

1 > 

c 
ω 

A 

o 

Figure 14.17. For brittle solids under tension, energy 
ΤΓ. ', ~1Γ and force as a function of displacement take the uni-Displacement ò _ _ , · , ,· versai forms shown in these diagrams. 

Displacement δ 
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Figure 14.16. Far to the right of the crack, the potential energy U stored per unit 
length is 

1 ? Y 
U = —δ W— K is Young's modulus and u> is the thickness ( 1 4 . 7 3 ) 

2 L of the strip. 
while far to the left there is no stored elastic energy. In Figure 14.16(B) the crack 
has moved a distance dl. The elastic fields around the crack tip may be compli-
cated, but they are the same in (A) and (B), and the total change dU in the stored 
elastic energy between the two cases is 

dU = dl-52w-. (14.74) 
2 L 

The only difference between (A) and (B) is that the crack has moved distance 
dl. Suppose that it costs fracture energy Γ per unit area to extend the crack, and 
suppose that all the elastic energy relieved by crack motion goes into creating new 
crack surface. Then 

i _ v 
(14.75) 

1 2 Y 
Tu> dl = dl-δ w — 

2 L 

δ = ν Y and Gyy' 
= Yi = 2ΓΥ 

V L ' (14.76) 

Therefore the stress needed to make a crack propagate in this geometry is pro-
portional to the square root of Young's modulus and inversely proportional to the 
height of the strip, meaning that large objects break more easily than small ones. 

Consider now a strip without a crack in it at all. Place it under tension. Its 
energy will rise according to Eq. (14.73) until enough energy is available to allow 
a crack to run. Once the crack has severed the object, additional tension no longer 
changes the energy. Note from Eq. (14.76) that the tension at which the crack can 
initiate becomes smaller and smaller as the height of the system L becomes larger 
and larger. Therefore, for large enough systems, the energy and force-displacement 
curves for all solids take a universal form, as shown in Figure 14.17. In princi-
ple, these curves represent the thermodynamic minimum energy of solids under 
tension, with separation occurring when the energy per length equals twice the 
surface energy 7. In practice, solids only act in this fashion when cracks are ini-
tially present and are able to run through them. A brittle solid is by definition one 
for which the energy-displacement or force-displacement curves resemble Figure 
14.17. Equivalently, a brittle solid is one where cracks are able to run consuming a 
constant amount of energy per unit area. 

To understand why cracks are so effective in breaking brittle objects, it is help-
ful to realize that they concentrate stresses. If one takes a plate, puts an elliptical 
hole in it, and pulls, then the stresses at the narrow ends of the hole are much larger 
than those exerted off at infinity, as shown in Figure 14.18. 

The ratio of maximum stress at the tip of the hole to the stress applied far away 
is 

Maximum stress / / , „ „ 
Oc \ — The coefficient of proportionality is of order ( 1 4 . 7 7 ) 

applied stress y R ' unity. 
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Figure 14.18. The stresses at the tips of an elliptical hole in a solid are much greater than 
those applied off at infinity. The plot shows a solution of ayz derived from Eq. (14.99) for 
Σ = 1 and m = 0.9. Note the 20-fold increase in stress near the crack tip. 

where / is the length of the hole and R is the radius of curvature at the tip. Therefore, 
assuming that typical solids have cracks with tips of radius 10 Â and of length 106 

Â, one can account for the discrepancies in Table 14.2. If thin wires of glass or 
iron are carefully prepared so as to be absolutely free of surface flaws, then their 
strength under tension in fact reaches the ideal limits listed in the table. 

14.4.2 Stresses Around an Elliptical Hole 

It is possible to find the stresses surrounding an elliptical hole sitting within a plate 
that has been placed under remote tension, as illustrated in Figure 14.18, and to ver-
ify Eq. (14.77). To simplify matters as much as possible, assume that the stresses 
applied to the plate are such as only to create a displacement u = uz in the z direc-
tion, which as in Eq. (14.50) obeys Laplace's equation, 

V2w = 0. (14.78) 

The theory of complex variables can once again be brought to bear in order to find 
solutions. For the boundary problem at hand, conformai mapping is the appropriate 
technique. Because u is a solution of Laplace's equation, it can be represented by 

Φ(0 + Φ(0 (14.79) 
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where φ is analytic, and ζ = x + iy. 
The asymptotic behavior of φ is easy to determine. Far from the hole, the stress 

ayz goes to a constant value Σμ, where Σ is dimensionless. So 

du μ 
σ,Ζ = μ~ = ^ [ίφ'(χ + iy) - ίφ'{χ + iy)] (14.80) 

=>0'(C)->-ffifOrC->oc. (14.81) 

How does the presence of the hole affect the stress field? Because the edges of 
the hole are free, all stresses normal to the edge must vanish. Let ? be a variable 
that parametrizes the edge of the hole, so that 

(x(t),y(t)) (14.82) 

travels around the boundary of the hole as t moves along the real axis. Then 

dx dy\ -. f dy dx\ _ _ 
— , — ] and N = I — — , — I It is easy to verify that N ■ T =0, and because 
dt dt J \ Ot Ot J f i s t a n g e n t fi m u s t be „ormai. 

(14.83) 
are tangent vector and normal vectors along the edge of the hole, so requiring 
normal stress to vanish means that 

(σ,ζ ,σν ,)·;ν = 0 
(du du\ ( dy dx\ dudx du dy 
\dx' dy J V dt' dt J dy dt dx dt 

( άφ δφ\ dx ίάφ άφ\ dy 
— -J — = — L - L- -L Insert (14.79) for«. 

\ dix dix) dt \diy diy 1 dt 
θφ dò 
—— = —— This equality holds only on the boundary. 
dt dt 

(14.84) 

(14.85) 

(14.86) 

(14.87) 

=> φ(£) = φ(ζ) Because φ is arbitrary up to a constant any- ( 1 4 . 8 8 ) 
way, there is no worry about dropping a con-
stant of integration. 

when ζ lies on the boundary. 
Equation (14.88) appears innocent, but is in fact a powerful relation that can 

lead to rapid solution of complicated boundary-value problems. Suppose, to be 
definite, that the hole is elliptical and thus can be described by 

(" = io -\- — p is a number lying between 0 and 1. ( 1 4 . 8 9 ) 
Lü' 

with ω lying on the unit circle, 
ω = είθ, (14.90) 

and Θ real. When p = 0, the boundary is circular, and when p= 1, the boundary is 
a cut along the real axis. Considering φ as a function of ω, one has 

_ ] The notation φ(ω) means that if φ(ω) is ex-
φ(ΐθ) = Φ(ί-ϋ) = Φ( ) panded as a power series in ω, one should Π 4 9 1 ) 

CO take the complex conjugate of all the coef-
ficients in the expansion. 
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because ώ = Ι/ω on the unit circle. Equation (14.91) is a relation between two an-
alytic functions that holds over the whole unit circle. The difference between φ{ω) 
and φ{\/ω) is an analytic function; the Taylor series of the difference vanishes on 
the unit circle, and by analytic continuation the difference vanishes everywhere, so 
the two functions must be equal everywhere in the complex plane. 

Now φ(ω) can be determined completely by analyzing its asymptotic behavior. 
Outside of the hole φ must be completely regular, except for the fact that it diverges 
as — ίΣζ for large ζ. The relation between ω and ζ is 

If the other sign of the square root were cho-
C + v / C 2 — Ap s e n here, the argument below would have to 

OJ = . be modified in several places, but the final an- ( 1 4 . 9 2 ) 
2 swer would be the same. 

Therefore, when ζ is large, large, ω = ζ, and in accord with Eq. (14.81) one obtains 

φ{ω) -f -ίΣω for ω -> oo. (14.93) 

Consulting Eq. (14.91) one concludes also that 

φ{\/ω)^-ίΣω ΐοτω^οο, (14.94) 

which means that 

φ{ω)^:^— foru;->0 (14.95) 

φ(ω)^ — forw-^O. (14.96) 
ω 

However, φ(ω) can have no other singularities within the unit circle, or else φ(ω) 
would have corresponding singularities outside the unit circle, which is forbidden 
if u is to be smooth away from the hole. 

Having determined all the possible singularities of φ within and without the 
unit circle, it is determined up to a constant. It must be given by 

φ(ω) = -ϊΣω + ΐ— Add Eqs. (14.96) and (14.93). ( 1 4 . 9 7 ) 
ω 

=> 0(C) = - i s | ( l + ̂ / l-4 /7/C2) + ffi^(l - V/1-4P/C2). (14.98) 

Use Eq. (14.92) and 1/ω = ζ(1 - y/] -4ρ/ζ2)/2ρ. 

Displacements and stresses can now be determined from Eqs. (14.79) and (14.80). 
Figure 14.18 shows a plot of ayz along the line y = 0 for a narrow ellipse with 
p = 0.9. Problem 4 uses Eq. (14.98) to verify Eq. (14.77). 

14.4.3 Stress Intensity Factor 

The limit p —> 1 is particularly interesting. The elliptical hole closes down and 
becomes a thin crack reaching from x = — 2 to x — 2. The function φ acquires a 
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branch cut over exactly the same region. The displacement u is finite everywhere, 
but the stress oyz becomes singular, diverging on the x axis as 

du μΣ,χ μΣ, 
'dy ~ yfx-2Λ/Χ + 2 ~* y/x-2 

The stress intensity factor K is a coefficient of the diverging stress, defined by 

K = l i m v2irravz. r = x ~ 2 is the distance from the crack tip. ( 1 4 . 1 0 0 ) 
r—»0 

■yz = μ— = , \ , _ n■ - > ] a s * - ^ 2 . ( 1 4 . 9 9 ) 

In the case of Eq. (14.99), K = ^2-ημΥ,. 
The stress intensity factor serves for fracture the same purpose as the Peach-

Kohler force served for dislocations. A crack is presumed to become mobile when 
the stress intensity factor reaches a particular critical value that can be tabulated 
for each material. This criterion is equivalent to assuming, as in the argument 
accompanying Figure 14.16, that the crack moves when the energy transmitted to 
its tip reaches a critical value. The relationship between energy flux to crack tips 
and stress intensity factor is determined in Problem 3. 

14.4.4 Atomic Aspects of Fracture 

Problem 5 shows that a microscopic theory of crack motion has some features that 
are difficult to understand from continuum analysis. Cracks can be trapped by a 
lattice even when continuum calculations predict they should have enough energy 
to move, as discussed by Thomson (1986). 

When a crack begins running in a brittle material, it excites phonons that radiate 
off behind it, shown in Figure 14.20. The amplitude of these phonons is difficult to 
calculate, but their frequencies are easily determined by the following argument: 

Suppose any object moves at velocity v in a medium that supports phonons 
of frequency ω(κ). Far from the moving object, radiation must take the form of 
traveling waves. Take the motion of the object to be along a line of atoms, so that 
at time intervals a/v the object moves from r to r + R, where R is a lattice vector 
of magnitude a. Because the motion of the object is steady, the radiation it emits 
must be invariant under the replacements 

r^r + R (14.101a) 
t->t + a/v. (14.101b) 

At the same time, because the radiation far away is of the form exp[ik ■ r — ίωί], the 
symmetries in Eq. (14.101) require 

eik-(r+R)-iui(t+a/v) _ £ά·7-ίωί ( 1 4 . 1 0 2 ) 

^/k-R-iwa/v = χ ( 1 4 . 1 0 3 ) 

=> (k + K) -V = Uj(k) Because Rv/a = v, with K a reciprocal lattice ( 1 4 . 1 0 4 ) 
vector. 

=> k · V = U)(k). Working now in the extended zone scheme, ( 1 4 . 1 0 5 ) 
so k is not restricted to the first Brillouin zone. 
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4 6 
Wave number k 

Figure 14.19. Graphical solution of Eq. (14.105), showing the resonances excited by a 
steadily moving object as it travels through a lattice. 

The radiation frequencies emitted by a moving crack are therefore determined by 
drawing the phonon dispersion relation along the direction of crack motion and 
then finding where the straight line k ■ v crosses the dispersion relation. This graph-
ical construction is illustrated in Figure 14.19. 

The condition (14.105) for radiation emitted by moving objects, often ascribed 
to Cherenkov and Landau, applies to many different situations, including damping 
in liquid helium (Section 15.5.4) and plasmas (Problem 4 in Chapter 23), and to 
electrons participating in the anomalous skin effect (Section 23.2.1). 

Problems 

1. Tensile stress: Carry out the computations needed to reproduce Figure 14.2, 
and estimate the maximum tensile stress of silicon. 

2. Interacting dislocations: 

(a) Show that for the displacement field in Eq. (14.55) it is legitimate to write 

υ = -ψ (d2ruV2u. (14.106) 

Why would this equation be incorrect for the displacement field (14.51)? 
(b) Show that V2« is proportional to a delta function when applied to Eq. (14.51 ), 

and find the coefficient of proportionality. 
(c) As a consequence, obtain Eq. (14.56). The factor 2w is added in by hand, as 

in Eq. (14.54), and cannot be derived. 

3. Relation between stress singularity and energy flux: This problem demon-
strates that once the strength of the stress singularity around a crack tip is 
known, the energy flowing to the crack can be determined as well, and the 
two are simply related. 
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(a) Consider a two-dimensional elastic medium subjected to out-of-plane distor-
tions uz, so that its total energy is 

£ = — / dxdy 

By considering dtjdt, show that 

L(ùz)2 + (vuzy 

J = ßüzVuz 

gives the flux of energy at every point in the elastic medium. 
(b) By working with Eqs. (14.98) and (14.100) in the limit p 

near a crack tip 

=-'Js^-^ ζ = χ + ίγ. 

(14.107) 

(14.108) 

1, show that 

(14.109) 

(c) Consider a crack moving very slowly at velocity v <C c in the x direction. 
Thus ù = —vdu/dx. Suppose that the crack is straight and lies along the 
negative x axis; also suppose that its tip has just reached the origin. Using 
Eq. (14.109) in (14.108), find the integrated flux of energy into the crack tip. 
The most convenient contour for the calculation is one running from x = — oc 
to x = oo while y — a, and then from x = oo back to x — — oo for y — —a; 
the calculation is carried out in the limit where a is very small. Because the 
contour is horizontal, only the y component of the energy flux is needed. 

4. Stresses at end of an elliptical hole: 

(a) The curvature κ— 1 /R of a general plane curve is defined by 

00 
K = ds' (14.110) 

where Θ is the angle of a tangent vector, and s is arc length along the curve. 
Show that for a general parametrization of the curve one obtains 

K ■ 
1 
R 

dx d2y dy d2x 
'dt~dtI~~dt~dti 

[d),+(i)l 
3/2 (14.111) 

(b) Show that the radius of curvature R at the tip of an ellipse described by 
Eq. (14.89) is 

R={P-\y/{p+\). (14.112) 

(c) Show that the maximum stress at the tip of the ellipse is 2Σμ/( 1 — p). 
(d) Verify Eq. (14.77) for ellipses with small radii of curvature R. 
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Figure 14.20. This one-dimensional model mimics the motion of a crack in a strip, incor-
porating effects of discreteness. One can view it as a model for the atoms lying just along 
the surface of a crack. The mass points are only allowed to move vertically, and they are 
tied to their neighbors with springs that break when they exceed a certain extension. The 
lower portion of the figure shows a dynamical solution of the model, where the crack is 
emitting phonons. 

5. Lattice trapping of cracks: This problem concerns a one-dimensional model 
of crack propagation, analogous to the Frenkel-Kontorova model of Section 
14.2.3. Consider the model shown in Figure 14.20. One can view it as a 
model for the atoms lying just along a crack surface. They are tied to nearest 
neighbors by elastic springs, with spring constant % = 1, and tied to a line 
of atoms on the other side of the crack line by similar springs, which snap 
when extended past some breaking point. The lines of atoms are being pulled 
apart by weak springs of spring constant X = 1 /N. These weak springs are 
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meant schematically to represent N vertical rows of atoms pulling in series. 
The equation that describes the upper row of mass points is 

um+\ — 2um + um~\ Elastic coupling to neighbors 
+jj(S — um) Driven by dispk 

+(«m>- — «m>+)ö(2 — 2um). Bonds that snap 
+jj (δ — um) Driven by displacing edges of strip 

(14.113) 

(a) Consider equilibrium solutions, so that Um = 0. What is the potential energy 
per bond far to the right of the crack, as a function of the imposed opening 
extension <5? 

(b) What is the potential energy per bond far to the left of the crack, including 
the energy needed to snap the bonds? 

(c) Following the logic of Section 14.4.1, show that the crack should be able to 
move when δ — ^2N + 1. 

(d) Following the steps that solve the Frenkel-Kontorova model, find an explicit 
expression for function of δ. 

(e) Show that the bond at 0 reaches height 1 and snaps when 

-N/3 + 1 S = V2N+l r- . (14.114) 
V2 

6. Conformai mapping: Repeat the calculations leading to Eq. (14.98) but for 
an elliptical hole of arbitrary length /. 

7. Positional fluctuations in three dimensions: Return to Eq. (14.26), but con-
sider a three-dimensional crystal rather than a two-dimensional one. Show 
that the mean square displacement of atoms vanishes at sufficiently low tem-
perature. 
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15. Fluid Mechanics 

15.1 Introduction 

Raise the temperature of almost any solid sufficiently, and it melts, passing into a 
liquid state. The transition is dramatic because of the change in mechanical prop-
erties. From a structural point of view, the change in the solid at the the transition 
point is the loss of long-range order, but there is normally no need to set up a neu-
tron scattering experiment in order to detect melting. Liquids flow and solids do 
not. 

15.2 Newtonian Fluids 

15.2.1 Euler's Equation 

In a hydrodynamic description of a fluid, one specifies a velocity vector at every 
point in space. To obtain an equation of motion, it is easiest to begin by adopting 
a reference frame moving with a small volume dV of fluid. If fdV is the net force 
acting upon this section of fluid, and p its mass density, then the acceleration of 
the small volume will be given by f/p. Now move back to the stationary reference 
frame. If the velocity of the fluid is described by v(r, t) at time /, then a short time 
dt later it will be described by 

v(r + vdt,t+dt)=v(r,t)+f(7,t)dt/p The fluid now at r + vdt was at? (15.1) 
a time dt ago. 

=φ. 1- fy . V Ì V = —. Expand to first ordering/. ( 1 5 . 2 ) 
dt p 

The pressure in a fluid is defined as the force per unit area across any face one 
imagines inscribing within it. Therefore, the force / acting on a small volume of 
fluid may be identified with —VP, the gradient of the pressure, and Eq. (15.2) can 
be rewritten as Euler's equation 

dv - VP 
^- + (v-V)v + — = 0. (15.3) 
ot p 

The density p of a fluid does not have to be constant, but it must obey the equation 
of continuity 

—— = — V · OU. This general statement of conservation of mass ( 1 5 . 4 ) 
Qt first appeared as Eq. (5.25). 
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Equation (15.3) can be rewritten in the form of a continuity equation for the con-
servation of momentum, so that the time rate of change of momentum equals the 
divergence of a momentum flux. The manipulations are simplest if one moves to a 
component notation, rewriting Eq. (15.3) as 

dpva dp v^ 9 d „ ,.,..+. 
dt dt ^ Hdrß dra 

Ci OD (1 Ci Ci 

= X+E^(m+V(· (15.7) 

Momentum in a small region changes because of two additive contributions: One 
is from forces applied to the region, and the other is from fluxes of neighboring 
fluid into the region. The fluid stress tensor σ is defined by 

σαβ = -ρναυβ - δαβΡ, (15.8) 

leading Euler's equation to take the form 

dpVr, v-^ d 
-JL-^L = ) T — - σ α 0 . Compare with Eq. (12.35). (15.9) 

dt ^ drß 

Incompressible Fluids. In many liquids, such as water, the change of pressure 
needed to produce any appreciable change in density is larger than readily occurs 
even in turbulent flows. In this case, the fluid is best approximated as incompress-
ible, the equation of continuity Eq. (15.4) becomes 

V-w = 0, (15.10) 

and the pressure P must be determined by the condition that the velocity v contin-
ually obey Eq. (15.10) while evolving according to Eq. (15.7). 

The stress tensor in Eq. (15.8) has two physical interpretations. On the one 
hand, Eq. (15.9) is in the form of a continuity equation, although missing a minus 
sign that might be expected on the right-hand side, so σαβ gives the flux of mo-
mentum pa in the direction — rß. Sometimes the tensor na/g = — σαβ is defined so 
as to alter this minus sign convention. The motivation for the sign convention of 
Eq. (15.9) is to make it identical to the equation of linear elasticity in Eq. (12.35), 
and corresponding to the sketch in Figure 12.3. Thus σαβ can also be interpreted 
as the force along a per area exerted by material outside upon a fluid region of 
interest. 

Apart from the superfluids described in Section 15.5, no real liquid comes ter-
ribly close to obeying Euler's equation Eq. (15.7). A fluid obeying Euler's equation 
conserves energy in the flow, and a swirl of liquid once started never decays. Real 
fluids have dissipation and behave quite differently. The mathematical properties of 
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Euler's equation are uncertain. Despite tremendous effort, it is not known whether 
nonsingular initial conditions remain nonsingular for all times, or whether flow can 
concentrate into vortices whose rotation rate becomes infinite at some time, after 
which the equations break down. 

15.2.2 Navier-Stokes Equation 

The correction of Euler's equation to allow for dissipation can take place in two 
ways. It can be done by considering the statistical mechanics of fluids and gases, 
or through phenomenological arguments. In either event, the process is greatly 
aided by having some idea of the form the theory should take. 

L 
Figure 15.1. When liquid is sheared between two plates, the force is proportional to the 
shearing speed and is inversely proportional to the separation d. 

Newton observed that when water is sheared between two plates (Figure 15.1), 
if the rate of shearing is not too fast, the force of one plate upon the other is pro-
portional to the shear velocity and is inversely proportional to the distance between 
the plates. Fluids behaving in this way are Newtonian. The force per area applied 
to the top plate is 

where η is the dynamic viscosity (see Table 15.1). The stress tensor σ of Eq. (15.8) 
simply does not predict a force of this type. Recall from Eq. (12.37) that the stress 
tensor component σ^ gives the force in the x direction acting on a surface in the 
fluid perpendicular to y. According to (15.8), this force vanishes, because vy = 0, 
while Eq. (15.11) says the force is not zero. Therefore the expression for the fluid 
stress tensor must be modified. 

Assume from Eq. (15.11) that the modification of the stress tensor involves first 
derivatives of the velocity field v. Because the fluid is isotropie, the possible ways 
that these derivatives can enter are limited, and they were given in Eq. (12.38). 
Additions σ' to the stress tensor can be of the form 

σ'αβ = ν 
9υα dv0 

drß dr0 + 
2 dv-, 

C 77 δαβ } - ; ?7 and Ç are two arbitrary positive ( 1 5 . 1 2 ) 
1 -<-—' Qf ' constants. 

7 'Ί 

but for an incompressible fluid obeying (15.10), only the first term of Eq. (15.12) 
survives, producing 

σαβ = -ρναυβ-οαβΡ + ηγ—Γ + —Γγ (15.13) 
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Table 15.1. Viscosities of various liquids and gases at 300 K 

Gas 

He 
Ne 
Ar 
Kr 
Xe 

η 
(g/[cm-sec]) 
1.99 ·10~4 

3.17 
2.27 
2.55 
2.33 

io-4 

IO"4 

IO"4 

IO"4 

Liquid 

NH3 

H20 
co2 
Hg 
Glycerine 

η 
(g/[cmsec]) 

14·10~4 

82·IO"4 

6.0· IO"4 

160-IO"4 

85 000·IO'4 

0 
0" 
0" 
0" 
0 
n-

-4 

-4 

-4 

-4 

-4 

Source: Grigoriev and Meilkhov (1997). 

Using Eq. (15.13) in (15.9) gives the Navier-Stokes equation 

n \- p(v · V ì u = — V P + 77V V. The fluid is assumed incompressible, so p is ( 1 5 . 1 4 ) 
dt constant. 

Solutions. Solutions of the Navier-Stokes equation constitute a vast subject. One 
representative and physically important calculation finds the pattern of flow about a 
slowly moving sphere, and it is treated in Problem 2. Fluid flows range from cases 
that can be solved in their entirety, through situations profitably studied as stability 
problems, as in Drazin and Reid (1981), up to turbulent flows best analyzed in 
statistical fashion, as in Monin and Yaglom (1971-1975). Despite the enormous 
effort devoted to them, many simple questions in fluid flow are still not solved. It 
is not known whether the Navier-Stokes equation contains vortex solutions where 
the speed of fluid flow becomes unbounded in finite time, and the pressure needed 
to push turbulent fluid through a pipe still cannot be computed from the starting 
equation. 

15.3 Polymeric Solutions 

The behavior of simple molecular fluids can be changed in radical ways by the 
addition of even small quantities of polymers. Any flow pattern will drag the poly-
mers with it, as sketched in Figure 15.2, and stretch them out, while simultaneously 
they are buffeted by thermal kicks. Because it takes some time, even on the order 
of seconds, for the polymers to adjust to local flow conditions, the fluid displays 
complicated time-dependent behavior. Furthermore, the polymers are elastic, and 
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Figure 15.2. A polymer in a shear flow slowly stretches out in response to the fluid motion, 
exerting forces back on the fluid, but without losing the random twists and turns created by 
thermal fluctuations. 

are constantly tempted to spring back toward unstretched configurations. Accord-
ingly, the fluid responds to rapid changes in stress more like a solid than a liquid. 
It is easy to construct a fluid with these properties: Put corn starch in a bowl and 
mix water into it until it just becomes possible to stir slowly with a spoon. A sharp 
blow shatters the mixture as if it were solid, but if one picks up a lump it soon oozes 
through the fingers. In its response to time-dependent forces, such a liquid is called 
viscoelastic. It is also called non-Newtonian, because the equation for momentum 
flux is no longer given by the form (15.13). 

Dilute polymeric solutions are of particular interest because the theory relating 
mechanical properties of the polymer chains to the ultimate properties of the flow 
is quite far advanced. Much more progress has been made along these lines than, 
for example, in relating the plastic flow of metals to the dynamics of dislocations. 
The theory in its full glory can be found in Doi and Edwards (1986), Grosberg and 
Khokhlov (1994), Bird et al. (1987), or de Gennes (1979). The following discus-
sion will simply attempt to give some of the flavor of what can be accomplished. 

The theory has two parts. The first part finds the change in the stress tensor 
σαβ that should be expected when polymers are present in the flow, if the statistical 
probability of various polymer configurations is known. The second part obtains 
an equation of motion for the polymers that depends upon the surrounding fluid 
flow and upon thermal fluctuations. The probability of polymer configurations can 
therefore be evaluated, and the theory can be closed. 

Stresses Exerted by Polymers. The stress tensor gives the force per unit area 
across the faces of a small volume in the fluid. In a dilute polymeric solution, the 
force has two contributions, the first from the fluid acting upon itself, producing 
the stress tensor of Eq. (15.13). However, if two adjacent beads of the polymer 
reach across the surface of the small volume, then the force of one bead upon the 
other also contributes. 

Denote the probability that bead / be at Rl and that bead / + 1 simultaneously 
beatfl / + 1 by 

Q(R / ? ' + ) = — g ( R —R). In a homogeneous system, the probability of ( 1 5 . 1 5 ) 
V finding two beads somewhere depends only 

upon their relative locations. 
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Figure 15.3. When one bead is above the 
dividing plane at 0 and an adjacent one is 
below, it exerts a force upon the region be-
low the plane and therefore contributes to the 
stress tensor. 

Let Fl+l'1 be the force that the bead at Rl+i exerts upon the bead at Rl; more 
generally, Fl ' is the force exerted by the bead at Rl upon the bead at /. Figure 15.3 
depicts a situation in which bead / + 1 applies a force upon bead / across the upper 
x-y plane bounding a small volume, and therefore contributes to the σζβ component 
of the stress tensor. This contribution is 

°zß = \ j dRl dRt+i ^g(Rl+i -R1) 9(Rl
z
+])9(-R{)F>+lJ (15.16) 

The integrals are over the volume shown in Figure 15.3. Divide by A because 
stresses are forces per area. The Heaviside Θ functions enforce the condition 
that bead / + 1 be above the plane at 0 and that bead / be below it. The subscript 
ß on F indicates a component of the force. 

i r- Go over to variables 

=— I dsdtg(s) e(sz/2+tz)e(sz/2-tz)Fi
ß
+i>i *:§:;>?,$ os.n) 

\ f Integrating /along z gives a 
= — / ds g(s) Sz9(sz)Fß' factor of s:, and integrating T ( 1 5 . 1 8 ) 

V J along the other two directions 
gives a factor of A. 

i Moving back to the original 
= « < \Rl+ ' - M l Θ (R[+ ' - R[ ) Fl+ ' ' ' ) s P a t i a l variables, and using ( 1 5 . 1 9 ) 

Y \ L z zi \ z z) p I angular brackets to denote a time v ' 
or thermodynamic average over 
relative locations of Ä' and /? ' + 1 . 

When bead / drifts above the plane at 0 and bead / + 1 drifts below it, (15.19) 
vanishes, but there is an equivalent contribution in which the roles of / and / + 1 are 
interchanged. Because Fß+ ' = —F~ + , this contribution to the stress tensor is 

1 ([M+1 -Rl
z]e{Rl

z-R[+x)Fl
ß

+{>1) . (15.20) 

Thus, adding Eqs. (15.19) and (15.20) gives the total contribution σ 'e+ due to 
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beads / and / + 1, which equals 

. . . \ i /-LI ; \ The reason for the factor Äz
+ —R[ is that the 

σζβ = V V-^z ~^z*^ß ') larger the distance between «^+' and «J in ( 1 5 . 2 1 ) 
* Figure 15.3, the larger the probability that the 

plane at 0 will lie between them. 

1 <[Ri+iFi+hi\+l/RiFi,M\ (l522) 

- v V z 0 I V \ z β 

= τζ (\RÌ+ÌF'+1'1) + - (RÌ^FÌT1'1) . Changing the labeling cannot ( 1 5 . 2 3 ) 
V \ z P / V \ Z β I affect the results. V ' 

The contribution to the stress tensor obtained by summing over all the beads is 

σ«/3 = ̂ Σ ( < ^ ' , / ) · ( 15 ·24) 

//' 

The subscript z has been replaced by a, because it does not matter whether x, y, 
or z was chosen. This expression gives the contribution from the polymer beads, 
and it must be added to the contribution from the fluid. Equation (15.24) follows 
from Eq. (15.23) when beads interact with nearest neighbors, but it is true more 
generally. 

Polymer Equation of Motion. In order to evaluate Eq. (15.24) one needs to know 
the probability that adjacent beads will differ in height by certain amounts, and then 
to take averages. These probabilities depend upon the flow in which the polymer 
finds itself, and also upon the magnitude of thermal fluctuations. 

There are two common schemes to calculate the motions of polymers. The 
first is called the Rouse model, and it treats the interaction between liquid and 
polymer in a fairly naive way. In addition to a shearing force created by the fluid, 
the polymer beads are subject to random kicks, and they interact with their nearest 
neighbors. This calculation is oversimplified because of the way it treats the fluid 
flow around the polymer. In reality, whenever a thermal fluctuation kicks one bead, 
its motion moves the surrounding fluid and makes other beads move as well. Incor-
porating the rather long-range effective force between beads due to this effect leads 
to the Zimm model. The word "model" is somewhat misleading because the effec-
tive interaction between beads mediated by the fluid is certainly real, and the only 
question is whether the approximations used by Zimm (1956) are adequate to treat 
the actual complexity. However, for the sake of simplicity, only the calculation of 
Rouse (1953) will be presented here. 

The motion of bead / is given by 

Rl = — ^2 Fl 'l — b(Rl — v) + ξ ■ As before, F1'>' gives the force on bead / due ( 1 5 . 2 5 ) 
Wl ,i to bead /'. m is the mass of the bead. 

The form of this equation is in accord with the fluctuation-dissipation theorem 
mentioned in Eq. (5.41). The constant b describes damping of the bead propor-
tional to the difference between its velocity and the local velocity of the fluid v. 
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The random force ξι is chosen so that while the time (or thermodynamic) average 
of any component \ξι

α) vanishes, the product of two components obeys 

?/)A k ΤΛ(7ί Treating this time correlation function as a 
le (0)£a(t)\ = aß B { I delta function means that the thermal kicks Q 5 2 6 ) 
xsav /SpV 11 ■ are very rapid in comparison with any other ^ ' ' 

dynamical process in the system. 

How exactly one should think about the fluid velocity v is a matter that at first 
seems simple, but then becomes complicated after further consideration. In the 
view of Rouse (1953), v is simply the average fluid velocity in the vicinity of 
the bead at Rl, and the drag force on the bead is naturally the Stokes drag b = 
βπηΐί found in Problem 2. The problem that Zimm (1956) noted with this point of 
view is that the bead is not a single isolated sphere moving in a flow that arrives 
asymptotically at a value of v. Other beads are nearby, interacting with the flow, 
pushing at the bead in question whenever they move, and making it difficult to 
determine how v is supposed to be measured. 

Neglecting this difficulty, consider the case where particles have sufficiently 
light mass and sit in a sufficiently viscous and slowly moving fluid that acceleration 
of particles is negligible. Taking forces between nearest neighbors only, with spring 
constant % as given by Eq. (5.67), Eq. (15.25) becomes 

_; JC -, - -> ? 
Rl = v-\ [Rl+l — 2Rl +R'~1} + — . Eq. (5.67) calculated the spring constant X/N ( 1 5 . 2 7 ) 

bin b ofyv monomers in series, while what is needed 
here is the spring constant 3C between two 
monomers. 

Sticking with the simple view in which one pretends that the flow v can be set equal 
to a large smooth macroscopic flow that might be observed externally, note that the 
flow will vary with the precise location of the bead, but that for small motions and 
slowly varying flows, only linear spatial variations of v should matter. Let W be 
the tensor giving these variations: 

Assume that the polymer is sufficiently small 
„. _ r»0 , \ Λ i y nl that W can be considered constant over its full n c 98') 

a a ' j aP ß ' extent. Different polymers at different loca- ^ ' ' 
tions may see different flow features, but each 
one sees only a uniform shear flow. 

Then Eq. (15.27) becomes 

Ri = U° + WRl + — \R I + 1 -2Rl+R'-i} + - . (15.29) 
bin b 

The resemblance with the tight-binding model of Section 8.4 should suggest 
the value of moving to Fourier components to solve Eq. ( 15.29). Denote the Fourier 
modes by 

1 N 

"φ = —■= y e [R —V t\. Subtracting v°t means going to a reference ( 1 5 . 3 0 ) 
y N 7~f frame that moves with the mean flow, and N 

is the total number of beads in the polymer. 
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Substituting Eq. (15.30) into Eq. (15.29) and neglecting the term Wv°t, which 
vanishes for pure shear flows, and in any event is quadratic in velocities, gives 

ψ< = {W - Uk) ψ'+η- ξ" = l/y/N Σ ? εχρ[2π/«//ν], (15.31) 
With this normalization, ξ* 
continues to obey Eq. (15.26). 

with 
uk = —r(l-cos[27rk/N\). (15.32) 

mo 
If W is independent of time, one can write 

lk_ [' JJ „-U'-tW-Ui]^') 
1pK = dt e^K >[ ki^-^—L. Remember that W is a matrix. ( 1 5 . 3 3 ) 

In general W depends upon time, as the flow changes, and the polymer is swept 
into new regions. In this case, it is easiest to solve Eq. (15.31) with perturbation 
theory, first taking W = 0 and then modifying the solution to first order in W. In 
this perturbative scheme, 

dt' e^'~'^k Just set ^ = 0 in Eq. (15.33). The superscript ( 1 5 . 3 4 ) 
_oc è 0 means zeroth order in perturbation theory. 

=► (^)k{t)r]V)) = *~M >^<W (15.35) 
This result will be useful shortly. It results from a brief calculation 
employing Eq. (15.26) that is the subject of Problem 5. 

^ a - V ^ + Z dt' Σ Wß(t')ip0°)k{t') Keep everything to order W. ( 1 5 . 3 6 ) 
J-oo 0 

J—oo . x ' 
a ' 

+ Ji <*' Σ «"«»'««.«'«"(O) ■ - i V S i « , <1537> 
a' 

= ^ [δαβ + J^dt' e-(t-t'^[Wßa(t')+Waß(t')]} . (15.38) 

Assembling the Pieces. In Eq. (15.24) the stress tensor is related to an average 
over bead locations, while Eq. (15.38) evaluates an average of some Fourier trans-
forms of the locations. With a bit of extra manipulation, Eq. (15.38) turns out to be 
just what is needed to find the stress tensor σ. 

Rewrite Eq. (15.24) as 

°°β = ΐΣ, W**) = -% Σ («1-24+^-1)) (15.39) 
//' ι 

= — ^ (2 - 2 COS 2nk/N) (tpqlpff*) Invert Eq. (15.30) and replace/^ ( 1 5 . 4 0 ) 
£ = 1 with V's; see Problem 5. 
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mo y-^ 
V k=\ 

UJk Ψίψ"β (15.41) 

See Eq. (15.32). Why was the term k = 0 eliminated? Because ω^ = 0 for k = 0. 
One might worry about factors of ω^ arising from Eq. (15.38). However, one can 
see from Eq. (15.33) that perturbation theory gets the wrong answer when ujk = 0, 
that ψ* is actually finite, and eliminating k = 0 from the present sum is correct. 

kBT 
V 

kBT 
V 

kBT 
V 

kBT 
V 

Σ 
k=l 

δαβ + waß+wßo 
UJk 

Use Eq. (15.38) with W assumed constant in 
time. 

N/2 

Νδαβ + 2Σ 
k=\ 

waß + wß0 
UJk 

Νδαβ + 2 
oo 

Σ 
k=\ 

waß+wßa 
2XÌ_ /2nk\: 

~mb2 \N~) 

Use (15.32), expand out the 
cosine to leading order for 
i < i / , and extend the upper 
limit of the sum to infinity, 
because it converges. 

Nöaß + {Waß + Wßa 
mbN2 

' \2% 
The sum ^ ■-n2/6 

(15.42) 

(15.43) 

(15.44) 

(15.45) 
was performed in Problem 6, 
Eq. (6.83) in Chapter 6. 

The first term of Eq. (15.45) leads to a uniform decrease of fluid pressure; the 
osmotic pressure tries to surround polymers with as much fluid as possible, and 
will try to suck water away from regions with lower density of polymer to make it 
happen. The second term corresponds to an increase in viscosity. 

Uniform Viscosity. Suppose, for example, that the flow v is a uniform shear flow 
where vx increases linearly in the y direction, so Wxy = dvx/dy is nonzero but all 
other components of W vanish. Then 

' xy 
kBT N2 8vx 

~^mbÜX^y- (15.46) 

Compare with Eq. (15.13) and assume that instead of one polymer, there is a con-
centration c/N of polymers per unit volume, where c is the number of monomers 
per unit volume, and N is the number of monomers per polymer. Then the viscosity 
of the fluid is enhanced by an amount 

δη 
c N1 

—kBTmb—— 
N \2X 

1„2 c , Nla 
— —mo N 12 

The increase in the viscosity η. ( 1 5 . 4 7 ) 

See Eqs. (5.66) and (5.67), which express the (15.48) 
spring constant 3Cas OC = kgT/a2. 

Problem 6 determines the frequency dependence of the viscosity. If a shear 
velocity field oscillates as Wxy(t) = Wo cos ut, then 

σ xy 

N-l 

Έ 
k=\ 

W0kBT 
ν(ω2 + ω2 [uJk cos ujt + ω sin cot]. (15.49) 
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E-, 

ü 
be 
o 

log[u*isN/kBT] 

Figure 15.4. Storage (Re[G]) and loss (Im[G]) moduli of polystyrene in Θ solvents com-
pared with the results of the Rouse calculation in Eq. (15.50). A Θ solvent is one specially 
chosen so that the coefficient B in Eq. (5.74) vanishes. The viscosity η5 is the viscosity 
of the solvent without any polymer. N is the number of monomers per polymer. The 
theoretical curves were obtained by evaluating Eq. (15.50) and multiplying G and ω by 
arbitrary constants to obtain a best fit. Better fits are obtained by including hydrodynamic 
interactions. [Source: Ferry (1980), p. 197.] 

It is possible to use Eq. (15.49) to define a complex viscosity η(ω), but it is more 
conventional to define the complex shear modulus G*(u) = —ίωη(ω) so that 

0{ω) 
kBT 
V 

N-] i . ■ \ 

k=\ ωί + ω^ 
(15.50) 

The real part of G is called the storage modulus, and the imaginary part is called 
the loss modulus. Measurements of dilute mixtures of polystyrene compared with 
Eq. (15.50) appear in Figure 15.4. 

15.4 Plasticity 

It is commonplace to think of water flowing, but many metals, however, can also 
flow. The boundary between those that can and those that cannot is not easy to 
define precisely. For example, even rocks that ordinarily seem brittle can begin to 
flow when placed under sufficiently great confining pressure. 

The flow of ductile metals resembles in some respects the flow of liquids, but 
there are also some important differences. A first difference is that metals do not 
begin to flow noticeably until a critical stress level, the yield stress is approached. 
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The yield stress corresponds to the point where the force per length / on dislo-
cations reaches the critical value needed to make them mobile. Even at very low 
stresses, flow of metals can be observed, but it is extremely slow and it results from 
exponentially rare thermal fluctuations that permit rearrangement of small portions 
of the metal. As a matter of practice, a definite stress at which a metal begins to 
display irreversible deformation is a useful quantity to define. 

The possibility of plastic flow after the yield stress is exceeded is explained in 
principle by dislocation motion. Knowledge of dislocation mobility has some pre-
dictive power for describing flow. Metals in which dislocations are immobile tend 
to be brittle; those in which dislocations are mobile along one or two directions can 
be deformed in those directions but still are not fully plastic, while those with five 
or more independent slip planes will permit flow in any directions, and if assembled 
into a polycrystalline aggregate will deform in a fully plastic fashion. Dislocations 
provide only one type of mobile defect permitting flow. Some ceramics can flow 
at high temperatures through the motion of vacancies, while amorphous materials 
can flow through rearrangement of local groups of atoms. 

The theory of plasticity is a phenomenological account of deformation that 
does not depend upon the microscopic mechanism that makes it possible. Its con-
struction is an interesting combination of guesswork based upon symmetry princi-
ples, a desire for simplicity, and constraints imposed by experimental observations. 
The most common form of the theory is heavily influenced by the characteristic be-
havior of structural steels, which provided the greatest impetus for its creation, and 
the theory might have a different form if aluminum or nickel alloys had an equal 
practical importance. 

Suppose one has an isotropie solid capable of plastic deformation; a practical 
definition would be that the solid is capable of being drawn into wire. Whether the 
solid begins to flow at any given location depends upon the state of stress there, 
described by the stress tensor σαβ. The tensor σ is symmetric, so there is some 
basis in which it is diagonal, with diagonal elements σ\, σ^, and σ^. The solid is 
assumed to be isotropie, it cannot matter how these three elements are numbered, 
and the onset of yield must be determined by some symmetrical function £F of σ\, 
CT2, and στ,. Demanding that 3" be symmetrical is equivalent to requiring it to be a 
function of symmetrical combinations of σ\ . . . σ^. There are three conventional 
combinations of the elements of the stress tensor, the stress invariants, similar to 
the strain invariants of Eq. (12.16), defined by the eigenvalue equation 

det|a - el\ = - e 3 + e2/, + e/2 + h = 0 (15.51 a) 
with 

Ιι=Σσαα (15.51b) 
a 

Ι2 = Σ {σαβσαβ-σαασββ} (15.51c) 
αβ 

73 =det|cr|. (15.51d) 
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Bridgeman (1949) found that a uniform hydrostatic pressure or tension, so long 
as it is much less than Young's modulus, does not much affect the yield properties 
of metals. Letting 

σ = - ^ σ α α (15.52) 

be the hydrostatic component of stress, it follows that yielding depends only upon 
the deviatone stress 

^αβ = σαβ-σδαβ. (15.53) 

Three invariants analogous to those defined by Eq. (15.51) can be defined in terms 
of s. The first of these invariants must vanish, while the others are 

h = -z Σ SaßSaß (15.54a) 
aß 

73 = det|s|. (15.54b) 

The requirement that yielding of an isotropie material be independent of hydro-
static stress can therefore be expressed by having flow begin when 3"(72, J3) reaches 
a critical value. The Mises yielding condition says that flow begins when 

— ft. K is some constant that needs to be tabulated ( 1 5 . 5 5 ) 
for each material. Mises supposed that J3 is 
irrelevant. 

The characteristic features of metals that particularly distinguish them from flu-
ids are, first, that flow is negligible below this threshhold and, second, that the 
threshhold κ itself evolves as the metal deforms, a bit like egg whites stiffening 
up as they are beaten, but much more rapid. The tendency for κ to increase is 
called work hardening, and implies that stresses on a metal will continually have 
to increase if it is to continue to flow. 

The theory must now grapple with the question of how precisely a solid de-
forms once the yield stress has been exceeded. The solid always has both reversible 
and irreversible components to its deformation, because after removal of stress the 
solid will snap back to some extent and may continue relaxing into a final config-
uration over long times. A simplest account of the process keeps only two time 
scales, an instantaneous elastic relaxation, and a permanent plastic deformation. 
These are distinguished by stating that the strain tensor eaß is the sum of two 
pieces: eig, the elastic strain tensor, and ev

ao, the plastic strain tensor. The elastic 
part of the strain is defined by Eq. (12.39); when the stress is given, the elastic strain 
is also instantly known. It would be misleading, however, to say that when stress 
is relieved the elastic strain instantly vanishes, because after all external stresses 
on an object have been released, it may have deformed in such a way that internal 
stresses are still present. 

It remains to decide how the plastic strain evolves, in a final flurry of guesses. 
Guess that flow in any direction is proportional to the deviatoric stress along that 

Vh 
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direction; 

èP „ = \ W W-^2 — li\Saß II V Jl — ̂  > U w is s o m e unknown constant; the point of this 
aP y Q O t h e r w i s e . equation is to make an hypothesis about the 

tensor structure of the flow and to make sure 
it vanishes when yield conditions are not met. 

(15.56) 
Not only does Eq. (15.56) have the virtue of simplicity, it also predicts Σα eaa = 0, 
which means that volume is preserved by irreversible flow, in accord with experi-
ment. 

It is not easy to decide how precisely the increase in flow stress κ should depend 
upon the flow history. A common guess makes κ a function of the total plastic 
work, 

W = / dt' y ^ èP
 ηΟαβ. Integral over time. Writing energy as strain ( 1 5 . 5 7 ) 

J ^—' aP times stress comes from Eq. (12.22). 
aß 

Suppose that a plastic body at rest is subject to some small increment in stress 
άσαβ. According to Eq. (15.56), the body begins to flow. After a time, it hardens 
up, and flow ceases, resulting in a small increment of plastic strain deL: 

deaß = Cdsaß. C is a constant of proportionality. ( 1 5 . 5 8 ) 

How should the proportionality constant C be chosen so that flow has stopped when 
just the right amount of hardening has occured? The plastic work involved in the 
small amount of flow is 

dW = C ^ anßdsnß Combine a small change in Eq. (15.57) with ( 1 5 . 5 9 ) 
^ ap ap E q ( 1 5 5 8 ) v 
aß 

= C^2 saßdsaß Use Eq. ( 15.53). ( 15 .60 ) 
aß 

= CdJ2, Use Eq. (15.54a). ( 1 5 . 6 1 ) 

so the change in κ is 

du = K'C dJ2- ^ n e prime on κ means to take a derivative ( 1 5 . 6 2 ) 
with respect to W. 

The only way for Eqs. (15.62) and the flow condition (15.55) to be consistent is for 
the amount of flow C to be 

C = ^ T = (15.63) 

de a = ——. Actually, the plastic strain only changes if the ( 15 .64 ) 
n n ' nr~ change in deviatoric stress is such as to ' 

J? increase. Otherwise, def „ vanishes. 
Δ aß 

For applications of these equations, and for many solutions in special cases, 
see Hill (1950) or Lubliner (1990). 
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15.5 Superfluid 4He 

Failure of Helium to Solidify. Helium stands out among the elements because 
at atmospheric pressure it remains liquid down to a temperature of absolute zero. 
A tentative explanation for this perplexing fact, simple but not convincing, follows 
from data of Table 11.3. Were helium like the other noble gases, then the van der 
Waals attraction would cause it to crystallize in an fee structure whose spacing is 
given by Eq. (11.10) as 2.8 Â. The zero-point energy of a helium atom confined 
to a region this size is approximately h2/(Irrido), which, for 4He, works out to be 
2-10 -3 eV. According to Eq. (11.11), the cohesive energy per particle in an fee 
structure would be around 7-10-3 eV. Although from this rough argument crystal-
lizing in fee appears to be favorable, the substance in actuality finds the penalty 
of zero-point energy too costly and chooses to remain liquid in the ground state, 
rather than solid. 

The ground-state liquid has, however, bizarre properties matched by no other 
substance on Earth. Poured into a container, it runs up the sides and flows down 
over the edges. It flows through tubes as small as 500 Â in diameter without 
measurable resistance, while in other respects displaying ordinary liquid viscos-
ity. These facts deserve a more systematic presentation. 
Some Experimental Phenomena in 4He. Liquid 4He undergoes a phase transi-
tion at 2.186 K and atmospheric pressure, called the λ pointby Keesom, its discov-
erer, because of the appearance of the specific heat curve. Below this temperature, 
helium begins to display the strange phenomena that lead it to be known as a su-
perfluid, and thought of as the new phase He II. Out of the dozens of ingenious 
experiments designed to probe properties of helium II, here are two that are partic-
ularly revealing. 

Figure 15.5. Narrowly spaced disks undergo torsional oscillations in a bath of helium II to 
investigate its viscosity. 

The peculiar mechanical properties of superfluid helium are best indicated by 
an experiment of Andronikashvili (1948), illustrated in Figure 15.5. A collection 
of 100 mica disks of around 4 cm in diameter and spaced by 0.2 mm is lowered 
into a bath of superfluid helium, suspended upon a fiber. The experimental quantity 
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measured is the rotational frequency of the disks, which is given by 

ω ■ 
/ or Here % is the spring constant of the fiber in 

torsion, /o is the moment of inertia of the disks, 
Jn 4- JF

 a nd IF is the effective moment of inertia of 
the fluid dragged along with the disks. 

(15.65) 

Calculating the effective moment of inertia of the fluid If is a complicated problem 
in hydrodynamics, but to first approximation the result is rather simple; a classical 
fluid should act like a solid mass dragged along in the space between the disks, but 
not moving outside them. In this approximation, the moment of inertia due to the 
fluid is simply proportional to its density and independent of its viscosity. When the 
experiment was performed, the resonant oscillatory frequency of the disks began 
to rise as the temperature decreased below the λ point, rising to Λ/OC/IQ when the 
temperature fell to 1 K. It was as if the density of helium began to drop at the λ 
temperature and fell nearly to zero by 1 K. 

T2 

Pi 

Ά 
Pi 

Figure 15.6. A thermally isolated container 
of helium at temperature T\ and pressure Pi 
is placed inside a second with temperature T2 
and pressure P2, the only connection being a 
micron-scale tube. 

A second experiment displays the unusual thermomechanical features of the 
superfluid and is illustrated in Figure 15.6. Into a bath of helium at temperature 
Ύ2 is placed a thermally isolated chamber that communicates with the outside bath 
only because of a small opening, on the order of a micron in diameter. A resistive 
coil allows heat to be delivered to the inner chamber, and thermometers measure 
temperature both inside and outside of it. When heat is supplied to the inner cham-
ber, the pressure Pi rises in direct proportion to the change in temperature 7\. This 
fact is not at first surprising, because fluids typically do expand when heated. How-
ever, the phenomenon has nothing to do with ordinary thermal expansion, because 
it ceases if the microscopic connection between the inner and outer basins is closed. 
The inner and outer basins are in thermodynamic equilibrium, although they are at 
different temperatures and pressures. A striking example of this phenomenon is the 
fountain effect. If a thin tube whose base is packed with fine powder is placed into 
a basin of superfluid helium, then a slight increase in temperature of the helium 
bath causes superfluid to race up the tube and fly out the top, up to a height of tens 
of centimeters. 

These experimental observations lie behind a phenomenological picture of 4He 
called the two-fluid model. In this view, He II consists of two intertwined fluids. 
One of them, the normal fluid, has ordinary fluid properties such as viscosity. The 
other, the superfluid component, has no viscosity and carries no entropy. There 
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is no completely accepted microscopic theory to underlie the two-fluid model, but 
clearly helium does not actually consist of two different fluids. The superfluid 
component corresponds to a low energy state with quantum-mechanical coherence, 
while the normal fluid corresponds to thermal excitations traveling about on top of 
the low energy state. 

Andronikashvili's experiment is easy to explain from this point of view. As 
temperature drops below the λ point, more and more of the fluid converts to the 
superfluid component. Because this component lacks viscosity, the oscillating mica 
disks do not perturb it, and only the normal component of the fluid is dragged 
along with them. In fact, the results of the experiment may be interpreted as a 
measurement, or even a definition, of the density of the superfluid component. 

The thermomechanical experiment shows that two regions of helium may be 
in contact, particles flowing from one to another, but without the two regions shar-
ing the same temperature or pressure. Let G\(T\, P\, N\)be the Gibbs free energy 
of the helium bath, with G2(T2, P2, N2) the Gibbs free energy of the internal con-
tainer. Because the two regions of fluid can freely exchange particles, equilibrium 
demands that 

0 _ dG _dGx{N{) + G2(N-Ny) 
dN{ dN{ 
dG\ <9G2 

G = Gl+G2andN = Ni+N2. ( 1 5 6 6 ) 
TP 

- «Λ7 «ΛΓ ' μΐ(Τ1,Ρΐ)=μ2(Τ2, Pi)- μι and μ2 are the chemical ( 1 5 . 6 7 ) 
θΝ\ 0Ν2 potentials of the two regions. 

If entropy could flow between the two fluid regions, then equilibrium would require 
the condition 

ö£i(Si,Vi) d£2(S2, V2) 
i_^_n \j_ _ £ ν _ ^ ii _^ ^ —T2: Not true for superfluid helium! 
dS\ 8S2 

(15.68) 
thus the fact that two fluids can be in equilibrium at different temperatures while 
exchanging particles is a demonstration that the particles moving between them 
somehow contrive to carry no entropy. 

According to Eq. (15.67), equality of chemical potential is the basic require-
ment for superfluid equilibrium. When temperature and pressure differ only slightly 
in two regions of superfluid, then μ2 can be expanded to first order in the small dif-
ferences AT = Ύ2 — T] and AP = P2 — P\. As a result 

w^T+w^p=0 (15-69) 
1 AP 

=>· s AT = —AP =>- = OS. s ' s t n e entropy per unit mass, and p is the ( 1 5 . 7 0 ) 
n AT mass density in region 2; obtain these expres-

sions from μ = dG/dN. 

The entropy of helium can be measured directly by integrating the specific heat up 
from zero, so as to verify (15.70). 
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15.5.1 Two-Fluid Hydrodynamics 

The superfluid component of helium differs from an ordinary fluid because of the 
particular thermodynamic force that makes it move. The thermomechanical effect 
demonstrates that superfluid flows so as to equalize the chemical potential. Because 
the chemical potential describes the change in energy of a small portion of fluid due 
to addition of a single particle, the force per particle acting upon the superfluid is 
—V/x, and the velocity vs of a region of superfluid is described by 

_j_ (y . \7)vs = . "* is the mass of a helium atom. ( 1 5 . 7 1 ) 
dt m 

As a consequence of the Gibbs-Duhem relation 

V S 
du=—dP dT See, for example, Landau and Lifshitz ( 1980) (15 7 2 ) 

p N N ' P. 72. 

one may write alternatively 

dvs - VP 
~ ~Ί~ (fis ' V^)VS = \~sVT. P = mass density, and s = S/Nm is entropy ( 1 5 . 7 3 ) 

dt p per unit mass. 

In accord with Eq. (15.70), superfluid can be in equilibrium in the presence of 
simultaneous pressure and temperature gradients. Equation (15.73) predicts that 
without pressure gradients, thermal gradients can make a superfluid flow as easily 
as pressure differences move an ordinary fluid. 

The equation describing motion both of superfluid and normal components of 
helium is 

+ (ν5-ν)ν5}+ρη^ + (νη-ν)υη} = -νΡ + ην2νη. (15.74) 

At first glance, Eq. (15.74) appears obvious, but it is not. The relation between 
pressure and acceleration is no longer as clear as for a single-component fluid, 
because there is no single reference frame in which all the fluid is stationary and 
in which one can measure the pressure. An alternative to Eq. (15.74) might be an 
equation in which the left-hand side contains only the total density p — ps + pn and 
the mean velocity (pnvn + psvs)/p. A partial justification for Eq. (15.74) is that it 
produces the correct acceleration of superfluid or normal components if either the 
normal or superfluid density vanishes, and in addition it is an equation for which the 
two fluid components are independent; motion of the superfluid does not produce 
convective transport of the normal fluid, and vice versa. Such arguments cannot, 
however, rule out the presence of a term such as pssVT, because ps vanishes in the 
normal fluid, while s vanishes in the superfluid. Landau's unambiguous derivation 
of Eq. (15.74) is described in the final chapter of Landau and Lifshitz (1987). 
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15.5.2 Second Sound 

A remarkable consequence of Eqs. (15.73) and (15.74) is the existence of prop-
agating waves in helium moving at a speed of sound, but involving temperature 
rather than pressure variations. The origin of these waves can be deduced from 
Eq. (15.73). Any gradient in temperature spurs a flow of superfluid toward the hot 
region, trying to cool it down. This motion can occur without noticeable change 
in the density of the fluid, because an equal amount of normal fluid flows in the 
opposite direction. The region away from which the superfluid flows heats up, but 
because the superfluid has already acquired some inertia, it needs some time to 
reverse course. The consequence is a wavelike oscillation of temperature in which 
normal fluid and superfluid are out of phase. 

Speeds of First and Second Sound in Liquid 4He. Sound is a disturbance trav-
eling at long wavelengths and small amplitudes. Therefore in analyzing the con-
sequences of Eqs. (15.73) and (15.74) it is enough to retain only first order in all 
small quantities, and to ignore the dissipative term proportional to V2, because it is 
negligible for long-wavelength excitations. In addition to Eqs. (15.73) and (15.74), 
two conservation laws are needed to describe sound completely. Conservation of 
mass requires 

-^ + V-(pnvn + psvs)=0 (15.75) 

while conservation of entropy requires 

dps -> 
= — \/■ psv„ Because the viscous term in Eq. (15.74) is ne- (15.76) 

Qt glected, entropy production can be neglected. 
Remember that s was defined to be entropy 
per unit mass and that it is carried only by the 
normal fluid. 

Rewriting Eqs. (15.73) and (15.74) to linear order gives 

(15.77) 

Dropping the contribution from viscosity. ( 1 5 . 7 8 ) 

Differentiating Eq. (15.75) with respect to time and using Eq. (15.78) to describe 
the time evolution of the mass current gives the customary relation between density 
and pressure 

d2p 
— r - = V P . One is free, forexample, to replace dp„v„/dt (15.79) 
Qt by p„dv„/dt because vn is a small quantity, 

and multiplying by dp„/di would produce a 
second-order quantity, which may be neglected. 

A second relation, between entropy and temperature, is obtained by writing 

Ι=1^--Ι <ΐ5·8ο> 
Qt p at p at 

dvs 

dt ~ 
dvs dvn 

p*-d7 + Pn-d7 = 

+ sVT 
P 

-VP. 
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— 1-. s -
= V · psvn + - V · (pnV„+ psVs) Use Eqs. (15.75) and (15.76). ( 1 5 . 8 1 ) 

P P 
SO —* 

= ——V · (vs — Vn). Pulling p„, ps, and s outside derivatives be- ( 1 5 . 8 2 ) 
n cause they multiply vn or vs, which are al-

ready small, and combining terms. 

Solving Eqs. (15.77) and (15.78) for 8{vs - v„)/Bt gives 

-{vs-vn)=s^-VT (15.83) 
Ot pn 

=>. — - = s
2 £ l 1 \ / 2 T . Combining Eqs. (15.82) and (15.83), and bring- ( 1 5 . 8 4 ) 

Qt nn ing zeroth-order quantities outside the derivative. 

To obtain sound speeds from these relations, one needs to observe that p and s 
are related to P and T by equations of state. The small variations of p and s can be 
rewritten in terms of the deviations T(1) and P(1) of temperature and pressure from 
equilibrium as 

Bn (9 2 P ( 1 ) Bn B2TW Cross terms such as 92p/dP9i 
if. I _ L 1SL I _ = V 2 P ( 1 ) 9P/9i are second order and ( 1 5 8 5 ) 
ÖP Bt2 BT Bt2 negligible. Comes from 

Eq. (15.79). 

Bv B2P^ r)ç B2T^ n 
| ρ " \τ ^ + Ί^ \Ρ d~i^=S2^V2T^. Comes from Eq. (15.84). ( 1 5 . 8 6 ) 
ÔP dr oT r dr Pn 
Suppose now that both Pm and Γ(1) have the form of traveling waves of wave 
number k and frequency ω = ck. Then 

% \rpW + % \PTm=c~2P^ (15.87a) 

EH I PC) , ^ 1 I T ( i ) _ r - 2 „ 2 f t 
BP BT pn 

Because the determinant of Eq. (15.87) vanishes, 

τ ρΜ + Ρ \ Ρ Γ(,) = c - V ^ 7 ( , ) . (15.87b) 

/ \ / \ ds dp 
— 1 Ί I _ 1 _ — 

1 
c lszps/pn 1 C 

2 

dp 
ΘΡ l r BT ip 

Bp Bs Bs_ _ _ _ 
\ dT lp Ì \ BP lTJ BP lT BT 
Cp — Cv 

(15.88) 

Use dp/dT\r/dp/dP\T = -dP/8T\p and the standard ( 1 5 . 8 9 ) 
Cp relation for the difference between constant volume and 

constant pressure specific heats Cp and Cv ■ 

~ 0 . The difference between Cp and Cv is very small for 4He. ( 1 5 . 9 0 ) 

The two values of c solving Eq. (15.88) are therefore 

\dP_ 
Tp 

and 

C\ = \\—_\T ( 1 5 · 9 1 ) 

Ts2 p 
C2 = i / — Here Cp is the specific heat per unit mass. ( 15 .92 ) 

V Cp pn 
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υζ/ν„ 

Figure 15.7. Direct observation of two-fluid motion in liquid helium. Hydrogen crystals 
trapped in vortices move downwards while others move upwards. The figure displays 
the probability distribution P of different tracer particle velocities for three different flow 
conditions. The scale is set by v„ in Eq. (15.93a). [Source: Paoletti et al. (2008), p. 5.] 

Experimental Observations. These traveling waves were first found experimen-
tally by Peshkov (1946). First sound has a velocity ranging from around 240 m/s 
at very low temperatures to 220 m/s at the λ point. The second sound velocity 
vanishes at the λ point, in accord with Eq. (15.92), has a plateau at around 20 
m s^1 between 1 and 2 K, and then rises to a value greater than 100 m s - 1 at low 
temperatures, which approaches c\/\/3 as T —> 0. 

First sound is generated by inducing periodic variations of pressure in the he-
lium, by tapping it or other mechanical agency. Second sound is induced by tem-
perature variations, such as produced by an oscillating heater.. Pressure variations 
simply will not induce it to any measurable degree, a fact that defeated the earliest 
experimental attempts to measure it. 

15.5.3 Direct Observation of Two Fluids 

The two-fluid model of superfluids has often been regarded as a crude represen-
tation of a complicated underlying quantum mechanical state, but Paoletti et al. 
(2008) found an experimental situation in which the two fluids can be observed 
directly. The experiment is conducted by injecting superfluid helium with micron-
sized tracer particles of frozen hydrogen, and then injecting heat into the superfluid 
from below. The heat is transported upwards by normal fluid, since the superfluid 
component carries no entropy, while superfluid moves downwards to keep density 
constant. Specifically, if heat Q is injected per time into a system of area A, density 
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p, entropy per unit mass s and temperature T the velocities of the two fluids are 

That the full density p appears here is due to ( 1 5 . 9 3 a ) 
the conventional definition of s. 

To conserve mass density. ( 1 5 . 9 3 b ) 

Most hydrogen crystals are carried upwards because of drag by the normal fluid. 
However, some of the crystals become trapped in the cores of vortices, and the vor-
tices move with the superfluid. Thus the experiment produces images where some 
particles are drifting upwards at a speed centered on the prediction of Eq. (15.93a), 
while a smaller population drifts downwards, as shown in Figure 15.7. 

15.5.4 Origin of Superfluidity 

One common explanation for the superfluidity of helium follows from displaying 
the dispersion relation for propagating modes. These modes, which are the ana-
log of phonons in crystalline solids, can be measured by neutron scattering, using 
Eq. (13.93), and the results of such investigation are displayed in Figure 15.8. For 
small values of the wave vector k, neutrons excite long waves capable of traveling 
long times with little scattering. These are the sound waves described in the pre-
vious section. As the wave vector increases, the dispersion curve passes through 
a maximum, called the maxon peak, and then through the roton minimum before 
proceeding to wavelengths too small for measurement. In addition, there is a class 
of background excitations corresponding roughly to the neutron knocking a single 
helium atom into motion; this sort of excitation is heavily damped, and therefore 
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Figure 15.8. Neutron scattering data giving dispersion relation for 4He. Dashed line 
shows Cherenkov-Landau criterion, Eq. (14.105), for exciting an excitation in the helium. 
[Source: Donnelly (1991), p. 46.] 
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Ps 

Vs = -V„ — 
Pn 
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quite broad, but does not appear to have appreciable amplitude below the solid 
dispersion curve. According to the Cherenkov-Landau condition Eq. (14.105), il-
lustrated by Figure 14.19, a moving particle in superfluid helium should not be 
able to transfer any energy until its velocity vp reaches the smallest value vi « 56 
m s - 1 (Landau's critical velocity) for which the straight line vik is able to touch 
the dispersion curve uj(k). In fact, negative ions injected into He II at pressures 
between 21 and 25 atmospheres and below 0.5 K begin to experience drag right 
around a velocity of 45 m s_1. 

However, explanations based upon the dispersion curve in Figure 15.8 do not 
provide a persuasive account of superfluidity. The velocity VL is orders of mag-
nitude larger than the characteristic velocities at which flows in narrow capillaries 
lose their superfluid character. Ions injected by Allum et al. (1976) into helium 
at atmospheric pressure and velocities on the order of a meter per second display 
the unexpected property of traveling slower in helium the more energetic they are, 
behavior that may only be explained quantitatively by supposing that the ions gen-
erate a large vortex ring that travels with them. These experimental facts can only 
be appreciated by making a conceptual shift. An experimental probe such as neu-
tron scattering can confirm the existence of certain sorts of excited states. However, 
explaining superfluidity requires something different. It requires making plausible 
the complete absence of any excitation, whether phonon, roton, vortex, or anything 
else not yet classified, capable of causing a degradation of superfluid flow. For ex-
ample, the argument needs to provide a way to understand why a superfluid flowing 
at 1 m s_1 through a thin rough-walled vibrating quartz channel is unable to excite 
any phonons in the quartz, although the quartz dispersion relation, similar to that 
of Figure 14.19, will permit satisfaction of Eq. (14.105) at all velocities. 

The only simple explanation for such phenomena is that helium undergoes a 
transition to a radically new state below the λ transition. A model for this state 
is the weakly interacting Bose gas, which is studied as a model for superfluidity 
in Problem 7. For a highly interacting system such as helium, one cannot hope 
that the ground state of the ideal Bose gas, in which all particles occupy the same 
single-particle ground state, provides a quantitative description. However, one can 
abstract one of the features of this ground state and can guess that the ground-state 
density of 4He is almost completely uniform. That is, unlike a crystal in which 
atoms adopt specific locations relative to one another, the ground state density of 
4He is symmetrical and featureless, except at system boundaries where it rapidly 
drops to zero. The helium is able to flow through complicated constricted geome-
tries because its wave function is truly smooth, and it does not exert periodic forces 
upon the containing walls. 

This state can be characterized by a wave function Ψ(Γ) that gives the quantum 
mechanical amplitude for finding condensed helium atoms at position r. One way 
to define this wave function is to suppose that one has found the complete wave 
function ΨΝ(7Ι ■ ■ ■ Ov) for N helium atoms. This wave function might be the 
ground state eigenfunction or else a low-lying excited state. Suppose that one also 
knows ΨΝ+\(?\ . . . 7N+\), which is supposed to be essentially the same as ψκ, but 
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with one extra atom added at ?N+\. Define 

Φ(Γ) = J dNrrN{h ■ ■ ■ 7Ν)ΨΝ+Ι (n . . . 7N, 7) (15.94) 

Far away from r, the two wave functions coincide, but in its neighborhood, they 
differ, because ΨΝ+Ì must accommodate the extra particle. The time evolution of 
Φ may be determined approximately in closed form. Let 

N pi 
XN = V~ + U(n...rN) (15.95) 

f^2m 
be the Hamiltonian for the helium. Applying Schrödinger's equation to Eq. ( 15.94), 
almost all kinetic energy terms cancel out and 

■ / dNr— ^φΝ+λ%Ν'φ*Ν-'φ*Ν'ΚΝ+\'φΝ+\^ (15.96) 

/ 
άΝ7—ψΝ I —-—r- + UN+l (n . . . rN, r) - UN{r\ . . . rN) \ φΝ+ι. 

(15.97) 

Carrying out exactly the integrals associated with the potential energies U is a task 
lying somewhere between the difficult and the impossible. However, one can make 
a guess about the nature of the result based upon the picture of low-lying states of 
helium as corresponding to a featureless liquid. Suppose that the potential energies 
UN and t/#+i have broad minima of nearly uniform energy corresponding to many 
equivalent locations of the atoms r\ . . . r^. Suppose further that for any atomic 
configuration not lying within this minimum, the amplitudes ψη and ΨΝ+Ì drop 
very rapidly to zero. Thus, the low energy wave functions act like projection oper-
ators picking out a large number of atomic configurations of low potential energy, 
and the functions UN and ί/jv+i can be replaced by their minimum values. Given 
this hypothesis and recalling that the chemical potential μ is defined as £^+i — 8-N, 
one has 

-h ΟΦ -/ i 2V2 

— -κ- = ^ * + μΦ· (15-98) 
ι at 2m 

The wave function evolves in an effective potential given by the chemical potential 
for the whole fluid. 

The only difference between the wave function for a stationary system and one 
moving at a uniform velocity v is that the latter has a phase of eimv'rln. Therefore 
it is valuable to rewrite Φ in terms of amplitude and phase, as 

*(r) = y/ne®. (15.99) 
Placing Eq. (15.99) into Eq. (15.98) and taking both n and φ to be real gives two 
equations, when (15.98) is separated into real and imaginary parts. The first is 

^ = - V - - V < M , (15.100) 
at m 
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which is an equation of continuity for density n if 
H -ws = —V0 (15.101) m 

is tentatively identified as the superfluid velocity. The imaginary part of (15.98) is 

/ ^ = - ( μ + ^ 2 / 2 ) + ^ ^ · (15.102) 
ot 2m ^Jn 

The last term of Eq. (15.102) is only appreciable near system boundaries, where 
the density of helium is dropping to zero, and because helium is a nearly in-
compressible fluid, this last term is negligible in bulk flow. Once this term is 
dropped, Eq. (15.102) turns into Euler's equation: Taking its gradient, and using 
Eq. (15.101) one has 

m—-+mV^f = -V/x (15.103) 
at 2 

„ _ »̂ Use the identity 

^ ~ + (vs-V)vs = -— ^7h = 7v>/2-TjsX,îxT)ïan,dT (15.104) 
ßl v ■> ' jjj the tact that because vs is the gradient ot a 

scalar, V x vs vanishes. Thus one obtains 
Eq. (15.73). 

Vortices. In the course of deriving Eq. (15.104), the observation that vs is the 
gradient of the scalar function φ, and that therefore V x vs = 0 was crucial. If this 
description of liquid helium is correct, it should therefore be impossible to set the 
superfluid into rotational motion. This conclusion is experimentally incorrect. It 
is true that if a bucket of helium is cooled below the λ point and the bucket then 
slowly made to rotate, the superfluid component of the helium remains station-
ary. However, if instead the bucket is set into rotation above the λ point, and then 
cooled down below the superfluid transition, the fluid continues to rotate, as can be 
deduced from the bowing of the liquid free surface. Nevertheless, the rotating su-
perfluid continues to exhibit the fountain effect, so superfluidity is not completely 
destroyed. 

The explanation of this apparent paradox is that superfluid is capable of sus-
taining vortices, rotating states at whose cores superfluidity is destroyed and the 
phase φ is not defined. They are perfectly analogous to dislocations in solids. If 
one assumes that the phase φ is destroyed only along isolated lines, but that other-
wise the wave function is defined and single-valued, one arrives at the prediction 
that flow around superfluid vortices must be quantized in units of h/m. To see why, 
suppose for example that the phase φ is not defined along a line passing in the z 
direction through the origin, and integrate the superfluid velocity vs along a closed 
contour C in the x-y plane around the vortex core. The condition that the wave 
function Φ be single-valued is 

/ ds-Vs = 2πΙΗ/ίΠ T h e P h a s e Φ c a n change by an integer multi- ( 1 5 . 1 0 5 ) 
JQ pie / of 2π going around a loop and leave the 

wave function single-valued. 

f ? h 
=> / d r Z· V X Vs = K = I —. Using Stoke's theorem and defining K to be ( 1 5 . 1 0 6 ) 

J j{ ' m the total circulation enclosed by the contour 
e. 
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The quantization of vorticity has been observed directly, as shown in Figure 15.9. 
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Figure 15.9. Circulation κ of 4He vortex in units of h/m as a function of the rotation rate Ω 
of a container. The experiment is conducted by passing a wire of about 25μπι in diameter 
through the superfluid and observing its vibrational modes. If a vortex is present, its core 
can preferentially attach to the wire. The additional angular momentum lying along the 
wire changes its vibrational frequency and allows a direct measurement of the circulation 
K of the vortex. [The method is due to Vinen (1961), while the source of these data is Karn 
et al. (1980), p. 1799.] 

The discussion of vortices in He II also implies a new explanation of the phe-
nomenon of superfluidity. Suppose that superfluid is flowing through a narrow 
channel from one bath of helium to another. In the two baths the fluid is essentially 
at rest, so each of them is characterized by a constant phase of the wave function, 
say φ\ in the first and Φ2 in the second. Within the narrow channel, the phase 
changes linearly (up to multiples of 2π from φ\ to 02). In order for the flow in the 
channel to degrade, the gradient of φ must decrease. However, it must at all times 
be compatible with the boundary conditions, which means that the change in φ 
must in some respect be discontinuous and occur in discrete jumps. The superflow 
can only decay by spawning a vortex, and the difficulty of accomplishing such a 
transition accounts for the persistence of superfluid flow. 

A quantitative theory for the decay of superfluid flow may be obtained by com-
bining a basic fact of statistical mechanics with some results from classical hy-
drodynamics. The basic fact of statistical mechanics is that the probability of any 
configuration of energy δ is exp[—t/kßT]. The results from hydrodynamics, dis-
cussed by Donnelly (1991) p. 23, are that a vortex ring of vorticity κ, radius R, 
and hollow core at constant pressure of size a in a stationary fluid of density p has 
energy 

w dr\ pv2{r) = \ρκ2ΙΙ(η - §), η = ln(SR/a) (15.107) 
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and momentum 

Pv 

and moves at velocity 

<9£v κ(η—\ 

[ dr pv{7) = pnnR2 (15.108) 

This is the rate at which the whole vortex drifts, ( 1 5 . 1 0 9 ) 
dP\/ ATÏR 'ike a smoke ring 

Consider now superfluid flowing at velocity v% in a pipe. If a vortex forms in this 
moving superfluid, the change in energy due to the vortex will be 

£ t o t = £ v — Ρνν$ If the velocity field of the vortex has <3S sub- (15 .1 10) 
tracted from it and substituted intoEq. (15.107), 
this form results immediately, using Eq. (15.108) 
and omitting the constant energy of flow vs. 

For small radii R, the energy of a system with a vortex increases with R, but even-
tually the vortex is sufficiently successful in reducing the kinetic energy of fluid 
motion that it becomes energetically favorable to make it even larger. The saddle 
point in energy beyond which this change occurs is found from 

-dR- = 0^Wv^R--jR-V* = 0 ^V* = V- ( 1 5 · Π 1 ) 

That is, the energy of the vortex reaches the saddle point when it moves against the 
prevailing flow at just the speed needed to sit stationary in the laboratory frame, as 
shown by Langer and Fisher (1967). 

This theory predicts that superflows will decay through formation of vortices 
of radius Rc = κ(η — ^)/4πν5, whose energy is £c = ^pn2Rc^ — | ) and whose 
probability of formation is proportional to exp[—/3£c]. Superflows should last ex-
ponentially longer as either the temperature or their velocity decreases. A com-
parison of these predictions with experiment was carried out by Langer and Reppy 
(1970). 

15.5.5 Lagrangian Theory of Wave Function 

Because the the wave function of liquid helium is rather a mysterious object, it is 
interesting to obtain equations for it in a more systematic way, one that provides a 
general procedure for finding effective equations of motion in complicated many-
body systems. That is, there is a definite set of equations governing the motion of 
all the helium atoms, but the vast number of atoms and the strength of their inter-
action makes a direct solution impossible. On the other hand, there is every reason 
to suspect that most important features of the helium are encoded in a single wave 
function, a collective coordinate, that is much simpler to understand. The question 
is how to pass from the microscopic laws for the helium atoms to dynamical rules 
for the wave function in a controlled and consistent way. 

Demircan et al. (1996) showed that one way to proceed is to use the formalism 
of Appendix B.3, which shows that the time-dependent Schrödinger equation de-
rives from a Lagrangian. If one can think of a good approximate wave function for 
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helium, the formalism describes how it will evolve in time. Feynman (1953) sug-
gested a way of building a wave function. Imagine that the ground-state wave func-
tion of helium in some experimental geometry is known, and call it φ{τ\ . . . r#). 
This ground state wave function may be tremendously complicated, and cannot be 
found in practice, but in the end one will need to know surprisingly little about it. 
Only three things need to be assumed. First, it is a true ground state, so 

ih. 
d 
dt* Σ 

L / 2m V/ means -â-. (15.112) 

The interactions described by the potential Ü may be quite strong. Second, because 
4He is a boson, φ is symmetric under interchange of any of its arguments. Third, 
because φ is a ground state, there are no currents flowing anywhere in it, which 
means that 

-0*V,<; Φν 0. (15.113) 

Next imagine that all the low-lying excited states of the wave function are of the 
form 

V>(n . . . rN) = e x p [ ^ Φ(?/, ή] Φ(λ · · - rN) „ΣΦ, (15.114) 

The essential point in this single-mode approximation is that there is only a single 
function *(r, t) shared by all the particles; this is the wave function of 4He. The 
wave functions in Eq. (15.114) are not guaranteed to be normalized; one can divide 
through by a normalization factor at this point, but it is simpler to use a Lagrange 
multiplier later that ensures \ψ\2 integrates to one. 

Adopt abbreviated notation in which Ψ/ is shorthand for *(r/, t), and the ar-
guments of φ are not indicated explicitly. The effective Lagrangian defined by 
Eq. (B.16) corresponding to Eq. (15.114) is 

L = J άΝ7φ*β^^^) ■ a ^ h2vì 
dt 

ι 1m 
■U ,Σ,» *«»), (15.115) 

In evaluating L, the only term that is difficult to evaluate is the one involving the 
spatial gradient: 

/ 
Σ Φ ; e i' 

Σ Φ ; 

■V? eE*'"< 

72„Σφ„ φνΐβ^ψ>" +2(ν/<?
Σφ'") · (V/0) +*Σ φ '" V^ 

Expand derivative. 

|0|2ν2βΣΨ,„ + (ν/ί?ΣΨ,„ ) . (ν ; |0 | 2 ) + βΣφ/"0*V?<î 

Using Eq. (15.113). Only middle term changes. 

ΣΦΓ/ e i' 

(15.116) 

(15.117) 

(15.118) 
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Ί βΈ^'\φ\2ν^^>'-\φ\2^ΓβΈ^Ηνιβ^''') + εΈ^+^>'φ*Ψιφ (15.119) 

Integrate middle term by parts. 

* V 7 2 J . | j . | 2 | 6 Σ Φ ; , + Φ , , 'vfa-ΗΊν,Φ, Two terms cancel. (15.120) 

With the use of Eqs. (15.112) and (15.120) it is simple to evaluate L from 
Eq. (15.115) and find 

L = j άΝΤ\φ\2βΈ>'*ϊ+*>'Σ ' 0Φ; h2 .-. τ .,' 
(15.121) 

An approximation to Schrödinger's equation is obtained by taking the variation of 
L with respect to Φ(Γ, t). In order to ensure that φ remain normalized, the variation 
will be carried out with a constraint enforced by a Lagrange multiplier μ, so the 
equation of motion for Φ is 

5Φ* 
L-μ I / r l ^ l ^ ' * ? ^ 

Enforce constraints by taking the thing that is 
_ n supposed to remain fixed, multiplying it by a 

constant, and adding it to the Lagrangian. 

(15.122) 
Before completing the equation of motion for Φ, it is helpful to define two quanti-
ties. The density n\ (r) is 

„,(?) = f dNr |</>|2ί>Σ<'φ*'+φ'' Σ δ(?-7ι) (15.123) 
·* ι 

and the structure function S(r, ?') is 

S(r, r') = ^ f dNf \φ\2εΈ>'^>+*' Σ δ(7-7ι)δρ-7ιι). (15.124) 
J w 

The functional derivative with respect to Φ* in (15.122) has two pieces. First, 
there is a contribution from (V/Φ/Ι2, and second there is one from the factors of 
ε χ ρ[Σ/ ' Φ*']- Performing the functional derivative with the methods of Appendix 
B gives 

2m 
ν · « , ν Φ ( ? ) = ^ j dNr\i)\28{rv-r) 

11 

N 
V 

. ΟΦ, H2
 | π τ |2 

ί Τ ζ ^ τ 1 - — | ν Φ , | 2 - μ dt 2m 
(15.125) 

df ih- ' IV7 ,T ,« 'M2 
dt 2m \νπη-μ S{r,Y). (15.126) 

To proceed further, assume that Φ is small, and that therefore anything involving 
more than one power of Φ may be neglected. In particular, any spatial variation of 
n\ can be neglected, and the term involving |νΦ(Γ')|2 can be thrown out. S(r, r') 
becomes the static structure factor of the ground-state wave function φ, and because 
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the ground state should be translationally invariant, S should depend only upon 
r — r'. Taking the Fourier transform of Eq. (15.126) gives 

2 ;,2 

2m ■Ψ(& α;) = [hw*{q, ω) - ßö{q)ö{u)]S{q) (15.127) 

Hijj(q) ■ 
h2q2 6.02kB[q · Â]2 

2mS(q) S(q) 
K So long as one stays away from ( 1 5 128) 

' ω = o, q = 0. 

where S(q) is precisely the static structure factor measured in neutron scattering. 
Equation (15.128) is due to Feynman (1953) and permits comparison of excitation 
energies (obtained with inelastic neutron scattering) with the static structure factor, 
as shown in Figure 15.10. The agreement shown in the figure is good only within 
a factor of two and has been improved substantially through elaboration of the 
theory, as discussed by Feynman (1972), Chapter 11, and Glyde (1994). 

□ From S(q) 
- Neutron scattering 

1 2 
Wave number q (Â~ ' ) 

Figure 15.10. Comparison of Feynman's expression (15.128) for excitations in helium 
with direct measurement using neutron scattering. The neutron scattering data are from 
Donnelly (1991) p. 46, and data for S(q) are from Svensson et al. (1980). 

15.5.6 Superfluid 3He 

Because 3He particles are fermions, they cannot drop into a Bose condensed state 
with the same ease as 4He. They nevertheless form a superfluid. The Pomeranchuk 
effect makes it possible to reach very low temperatures in 3He. Pomeranchuk ob-
served that at temperatures below 100 mK the entropy of liquid 3He falls below 
that of the solid; under pressure, 3He nucleates solid crystals that cool the cell in 
which they grow. Building such cells, Osheroff, Richardson, and Lee (1972) ob-
served slight changes in the slope of pressure versus temperature at temperatures 
around 2.5 mK, and pressures around 30 atmospheres. They first attributed these 
anomalies to phase changes in the solid, but subsequently determined that the liquid 
was changing phase and becoming superfluid. Essentially, pairs of 3He nuclei join 
together forming effective Bose particles, which can then condense, in a manner 
reminiscent of superconductivity. Wheatley (1975) and Leggett (1975) reviewed 
the experimental and theoretical situation not long after the original discovery of 



Problems 443 

superfluidity, while Osheroff (1997), Richardson (1997), Lee (1997), and Leggett 
(2006) provide more recent overviews. 

Problems 

1. Viscosity obtained from kinetic theory: Consider a shear flow where dvx/dy 
— v'. Viscosity may be calculated by drawing a plane at y = 0 in Figure 15.1 
and finding the rate σ^ at which momentum px in the x direction travels across 
it. 

(a) Argue that 
σ^ = -(ρχνγδ{?)) . (15.129) 

(b) The average is not an equilibrium average, because the fluid is flowing, and 
therefore is not in equilibrium, and Eq. (15.129) would vanish in equilibrium. 
The Boltzmann equation, derived in Section 17.2, deals with this problem by 
defining g(7, v, t) to be the normalized probability that a particle has position 
r, and velocity v at time /. The time evolution of g is given by 

dg d _ g-geq 
-^τ = --^-ν8 -> (15.130) 
dt or T 

where r is a characteristic time for a nonequilibrium state to approach equi-
librium once driving forces are removed, and geq is the distribution function 

* " · ( Μ ) = ^ 2 ^ e X P 

3 Γ ßmn.. . . / i 2 , „.2 , „.2 
2 {[vx-v'yY + vf,+vz

z) (15.131) 

Here n is density, and v' — dvx/dy. At every point in space, this distribution 
takes the form that equilibrium would demand for the local conditions. So 
Boltzmann's equation says that the system always tends to drift toward local 
equilibrium. Show that the solution of Eq. (15.130) is 

* — geqe-{y-y/)/v>T ■ (15.132) 
VyT 

(c) Show that 
θχγ = rirkeTv', (15.133) 

and that the viscosity can therefore be written as 

η=^ηηιΙτν, (15.134) 

where v is the root mean square velocity in equilibrium at temperature T, and 
IT = TV is the mean free path. 
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2. Flow resistance of a sphere: Suppose that a sphere of radius R moves at ve-
locity Ü = uz in a viscous incompressible liquid. The velocity u is sufficiently 
slow that the nonlinear term (v ■ V)v is to be neglected everywhere. The goal 
is to calculate the force that must be applied to the sphere to keep it moving 
at constant velocity, as originally determined by Stokes (1851). 

Move to a reference frame traveling with the sphere; the sphere is stationary, 
and the fluid moves at velocity — u far away. The flow pattern is steady in this 
reference frame and obeys 

vV2v = VP. (15.135) 

(a) Because the liquid is incompressible, V ■ v = 0. Therefore, v results from the 
curl of a vector potential A, v = V x A. Move to spherical polar coordinates. 
Assume that the solution v(r, θ, φ) is independent of φ and that νψ = 0. Show 
that only Αψ needs to be considered, and express v in terms of Αψ. 

(b) From Eq. (15.135) it follows that 

V x V2t5 = 0. (15.136) 

Show that 

i d2 

rdr2 r2d02 
]_d_ 
r2dO r1 sin 

Αώ = 0. (15.137) 

(c) Because far from the sphere, Αψ ex r sin Θ, assume that 

Αφ = f(r) sin Θ. 

Show that 
]_c?_ _2_ 
rdr2r r2 Ar)=0. 

(15.138) 

(15.139) 

(d) Show that 

with 

/( r)=Ar3+ßr+^+D, C 
72 (15.140) 

A = 0, B = -u/2, C = -R3u/4, and D = 3Ru/4. (15.141) 

(e) Show that the pressure is given by 

3 R 
P = PQ~\ uri-x COS Θ. Po is a constant background pressure. ( 1 5 . 1 4 2 ) 

2 rl 
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(f) The force on the sphere is given by integrating the tangential component of 
the stress tensor in an appropriate fashion over its surface, including contribu-
tions both from pressure and viscosity. Expressing the relevant components 
of Eq. (15.13) in spherical coordinates as 

σ„ = 2η^-Ρ (15.143) 
or 

fìdvr Ove νθ\ 
σ'θ = η{-Γ-θθ+^-7) ( 1 5 · 1 4 4 ) 

show that the downward force F on the sphere is 

F = 6^Ru (15.145) 

3. Vortex I: The vorticity ω of a flow is defined to be ώ = V x v. A vortex is a 
swirling flow pattern containing a large amount of vorticity in its core. 

(a) Show that the vorticity of a two-dimensional flow v living in the x-y plane 
points entirely in the z direction. 

(b) Consider the flow v that in cylindrical coordinates (r, φ) has the form 

vr = 0, νφ = -. (15.146) 
r 

Show that the vorticity of this flow vanishes. 
(c) Show, however, that the line integral of v along any circle surrounding the 

origin is constant, and find the constant. 
(d) Using Stokes' theorem, relate this integral to an integral over ω, showing 

that the vorticity has a delta function singularity at the origin. 

4. Vortex II: It is possible to construct solutions of Euler's equation that behave 
as a vortex but without any singularities in the flow field. Thus the previous 
problem provides a rough description of a vortex seen from far away, while 
this one focuses upon a possible structure for the core. 

(a) By taking the curl of Euler's equation, show that the vorticity obeys 

-£- + (ΰ·ν)ώ = (ώ·ν)ΰ. (15.147) 
at 

(b) Consider a time independent, incompressible, two-dimensional flow v. Ar-
gue that because the flow is incompressible, there exists a stream function ψ 
with 

- Τ Γ ' Τ Γ ) - ( 1 5 · 1 4 8 ) 

oy ox J 
(c) Rewrite Eq. (15.147) for this steady two-dimensional flow by eliminating v 

in favor of the stream function ψ. 
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(d) Show that the preceding equation is satisfied whenever ωζ = f{\b), where / 
is an arbitrary function, and rewrite this condition entirely in terms of φ. 

(e) Construct a vortex by moving to cylindrical coordinates and by requiring for 
r < a: 

ωζ = —1<1'φ. ί is a constant. ( 1 5 . 1 4 9 ) 

Find a solution of Eq. (15.149) that is proportional to sin φ and to a Bessel 
function of kr. 

(f) For r > a require 
2 

φ= (r-— ) t / s i n 0 . (15.150) 

Find the conditions at r = a that make velocity and vorticity continuous, and 
employ these conditions to complete the solution for the flow field near the 
center of a vortex. 

5. Chain dynamics: 

(a) Using Eq. (15.26), verify Eq. (15.35). 
(b) Verify Eq. (15.40). 

6. Frequency dependence of viscosity: Assume that Wjy in Eq. (15.38) varies 
as Wo cos ujt. Show that the shear stress is given by Eq. (15.49). 

7. Weakly interacting Bose gas: Bogoliubov (1947) treated the problem of 
superfluidity in a fashion quite similar to his method for superconductivity, 
presented in Section 27.3.4. Consider the Hamiltonian for Bose particles 

A = Σ e?4** + 2V Σ 4 -A+f~ka* ' (15-151) 
Ά kk'q 

e^ = H2q2/2m is the kinetic energy of a noninteracting Bose particle, and U 
has dimensions of energy times an interaction volume and will be assumed to 
be very small. In the ground state, a macroscopic number of particles inhabits 
the single-particle state q = 0. The occupation number of q = 0 should be 
very high for low-lying excited states as well. 

Whenever âo or a'0 act on a state, they will change the occupation number of 
the q = 0 state, it is true, but the change will be negligible compared with the 
NQ particles already in this state. Therefore, it should be accurate to replace 
âo and â0 by y/Nô whenever they appear. Furthermore make the mean-field 
approximation of excluding from the interaction term of Eq. (15.151) all terms 
except those where two or more of the indices equal zero. 

(a) Show that the Hamiltonian becomes 

& = Σ e<?4^ + ̂ W + ̂ W Y^âl^ + â-qâq + Aâ^]. (15.152) 
q q-φθ 
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(b) Using the fact that the total number of particles 

Ν = Ν0 + ΣαΙά'ί (15.153) 

Ä = Σ > * + ^ ] φ ? + ^ Σ[^4+«-?«?]· ( 1 5 · 1 5 4 ) 

is a conserved quantity, rewrite Eq. (15.152), up to a constant, as 

NU,^„ NU 

m 
(c) Introduce the canonical Bogoliubov transformation 

^ = Μ<?7<? + V^-? (15.155a) 
ä\ = Uql\ + Vql-q- (15.155b) 

Show that for 7^ to preserve the Bose commutation relations of Eq. (C.5), one 
must have ui — v~= 1. 

(d) Set out to diagonalize the Hamiltonian. The task can be accomplished if 
Uq = u~q and vq = ν^ξ, so assume these relations. Putting Eqs. (15.155) into 
(15.154), find the condition on iig- and v$ needed to ensure that the coeffi-
cient of %T-3 vanishes. Imposing this condition is enough to diagonalize the 
Hamiltonian. 

(e) Note for later reference that u^v^ must be less than zero. Solve for vl and w|. 
(f) Insert the expressions for VQ and u^ into Eq. (15.154), remembering that 

uqvq < 0, putting the Hamiltonian into the form 

z L £ ^ j 7 ? + c o n s t · (15.156) 
q 

(g) In the limit q —» 0, £^ = Hcq. Thus even weak interactions are able to change 
the low-energy excitations from free particle form to sound. Find the sound 
speed c. 
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16. Dynamics of Bloch Electrons 

16.1 Introduction 

Condensed matter physics provides an enormously successful account of the elec-
trical properties of solids. The reason for this success is not so much because 
agreement between theory and experiment is better in this area than in any other, 
but because many surprising and productive qualitative concepts have emerged. 
The central idea is that response of a solid to weak electric and magnetic fields is 
determined by the energy band curves £^. First derivatives of these curves give 
effective velocities of electrons, while second derivatives give effective masses. 
When the second derivatives are negative, the solid can behave as if filled with 
particles with positive charge, called holes. All these dynamical phenomena result 
in fact from interactions between electrons and the lattice potential, but the simple 
ideas are so powerful that it is possible to forget all the theoretical underpinnings 
and adopt a few apparently classical dynamical rules. Much of modern electronics 
is built on this foundation. 

16.1.1 Drude Model 

The electron was only a few years old when the first theories of electrical conduc-
tion of metals appeared, by Drude (1900), Thomson (1907), and Lorentz (1909). 
The Drude model imagines that a metal contains a population of electrons that are 
accelerated by external electrical and magnetic fields, and are damped by some sort 
of frictional force. They obey 

-> v -* v mv = —eE — e- x B — m-, (16.1) 
c T 

where r is a coefficient describing the damping and is called the relaxation time. 
It acquires this name because if an electron is given an initial velocity VQ and let 
loose in a solid without either electrical or magnetic fields present, the electron's 
subsequent behavior is 

v(t) = Vn£~ • T g 'v e s the characteristic time for any fluctu- ( 1 6 . 2 ) 

ation to decay. 

In the presence of an electrical field E, an initial velocity vo develops instead to 

v(t) = E+[VQ-\ E}e~''T Assume a solution of the form A + Be~'/T ( 1 6 . 3 ) 
tïl m and solve for the unknown constants. 453 
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so that at times much longer than r one obtains 

re -
E Equivalent to observing that at long times v 

m win stop changing, so one can just set v to 
zero in Eq. (16.1) and solve for v. 

(16.4) 

If the density of mobile electrons is n, then the current density j arising in response 
to E is 

(7 : 

-nev 
ne2r 

m 

ne2r 

m 
(16.5) 

(16.6) 

where the electrical conductivity a is defined to be the linear coefficient relating 
current flow to electrical field. 

Measurements of electrical conductivity are usually reported in terms of its 
inverse, the resistivity p, in terms of which the relaxation time can be expressed as 

m 
ne2p 

3.55-10 13 

n/[\022 cm"3] p/[pÜ cm] (16.7) 

Using the resistivities from the periodic table inside the front cover in Eq. (16.7) 
shows that the relaxation time is on the order of 10~14 s. By itself, this calcula-
tion does not seem to make any real predictions, because it determines electrical 
conductivity only at the expense of introducing another unknown, the relaxation 
time. It does, however, frame electrical conductivity in the terms that will be used 
later for more detailed calculation, as a balance between the force — eE causing 
electrons to accelerate, with the damping from scattering events encoded in r that 
causes them to decelerate. 

Colder Hotter 

Figure 16.1. Flow of energy from a 
hot to a cold region carried by col-
liding electrons. 

Drude's equation acquires more substance when the same framework is used 
to calculate some transport property in addition to the electrical conductivity, so 
that the unknown r can be eliminated. Drude (1900) calculated the thermal con-
ductivity of the electrons, which may roughly be estimated as follows: Thermal 
conductivity is the coefficient K giving the flux of energy _/g opposite to a ther-
mal gradient V7\ Pick some point x in a solid with a thermal gradient, depicted 
in Figure 16.1. Electrons arriving from the right with velocity in thex direction vx 

have characteristically traveled a distance VT since last colliding with the scattering 
forces that produce thermal equilibrium, and carry energy 8.(X + VXT), while those 
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coming from the left carry energy £ (x — VXT) . The density of electrons arriving 
from the right is something like n/2 because half the electrons to the right have 
positive velocities. So the net flux of energy is roughly 

JE = -jVx \£{X-VXT)-£(X + VXT)\ K. ~nvA
xT— = -nvxT^f^c (16-8) 

In 1 2 dT rn 3k2
BT dT 

— -mvxcyT—- = —- -r- , - - . 
m 2 OX m 2 OX classically equal to 3kB/2, while 

average x kinetic energy is 
kBT/2. 

mvicyT—- = Specific heat is d £ / 9 7 \ ( 1 6 . 9 ) 
O) " " . - . - . . . 

^ ^ _ = 3 fkß\ = 1 2 4 10-13 c m - l K - 2 ( 1 6 1 0 ) 

<JT 2 \ e J 
Through what was arguably a logical error, Drude originally obtained twice this 
value, in rather good agreement with experiment. 

The argument used here to obtain the thermal conductivity does not stand up at all 
to close inspection. It pretends that electrons all traveling with mean velocity vx 

carry differing amounts of kinetic energy. The most that can be said for it is that it 
is dimensionally sound and makes an essentially correct prediction, which is that 
the thermal conductivity divided by electrical conductivity and temperature yields 
a constant for metals. This fact was observed by Wiedemann and Franz (1853), 
and the experimental constant is around 2.3 • 10~13erg cm - 1 K - 2 . 

Producing a theory substantially better than these crude estimates requires a 
fair amount of effort, and will occupy the next two chapters. The first point to ad-
dress is the fact that distinct energy bands, indexed by n, are dynamically separate. 
Under influence of weak and slowly varying fields, an electron that begins in one 
band can easily move about among energy states in the same band, but is exponen-
tially unlikely to move into another. Next, by constructing an effective Lagrangian 
for wave packets, it will be shown how electrons can act like classical particles 
despite being described by Bloch's theory as waves. Finally, Boltzmann's general 
framework for describing electrical and thermal transport of classical particles will 
be used to predict the thermoelectric properties of metals. 

16.2 Semiclassical Electron Dynamics 

Rules of Semiclassical Dynamics. For many purposes, electrons in periodic 
solids act like classical particles with slightly unfamiliar laws of motion. Before 
beginning the lengthy process of deriving, justifying, and analyzing these laws, it 
is best to begin simply by stating what they are. 

1. The band index n is a constant of the motion. An electron that begins its life 
in one band remains in it thereafter. For this reason, the band index n can be 
omitted from energies and wave functions in the following discussion. 

2. The position of an electron in a crystal with inversion symmetry evolves ac-
cording to 

• 10£r 
r= =*. (16.11) 

ft Ok 
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3. The electron's wave vector obeys 
A _ e ■ -

Hk = —eE rxB (16.12) 

where È and B are electric field and magnetic induction and may be spa-
tially varying. Because all energy functions and wave functions are periodic 
functions of k, k is physically indistinguishable from k + K, where K is any 
reciprocal lattice vector. 

16.2.1 Bloch Oscillations 
Although representing a semiclassical picture, many quantum-mechanical effects 
are retained in Eqs. (16.11) and (16.12). These result from the fact that E^ is a 
periodic function of k, as well as from the fact that the electron states are occupied 
according to the Fermi distribution rather than according to classical statistical me-
chanics. 

OJ 

3ir/a 

Figure 16.2. Energy of a tight- binding 
band, Eq. (16.13). Electrons have negative 
effective masses at k = ir/a and positive 
effective masses at k = 0. 

As an example, consider the semiclassical dynamics of electrons whose energy 
is given by the tight-binding model, Eq. (8.72). For simplicity, specialize to a one-
dimensional lattice of lattice constant a and write the energy functional as 

-2t cos ak, (16.13) 

as shown in Figure 16.2. In the presence of a uniform electric field E, one has 

From Eq. (16.12). Hk = —eE 
>k = -eEt/h 

2 ta . /aeEt\ 
4 > r = Sin From Eq. (16.11). 

2t /aeEt\ 
cos K-r)-

(16.14) 
(16.15) 

(16.16) 

(16.17) eE V H 
The location of the electron oscillates in time; this behavior is called Bloch 

oscillation. Despite the fact that k increases without bound, the mean position 
of the electron is fixed. If this phenomenon were commonly seen, it would mean 
that under sufficiently intense electric fields electrons would start to oscillate rather 
than travel, and metals would become insulators. This simply does not happen. As 
shown in Problem 2, small amounts of damping added to Eq. (16.14) destroy the 
phenomenon, and electric fields in metals cannot practically be made large enough 
to overcome it. However, under special circumstances, Bloch oscillation can be 
observed, as shown in Figure 16.3. 
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£ 

1.0 

0.5 

0.0 

-0.5 

-1.0 
2 3 

Time f/[v«/a] 

Figure 16.3. Experimental observation of Bloch oscillations. These are not observed 
for electrons in a solid, but are observed for cesium atoms trapped in potentials created 
by standing waves of laser light. Atoms are attracted to regions of high field density. 
The potential is made to undergo uniform acceleration, but the atoms oscillate rather than 
following the potential. Time is measured in units of VR/Ü, where VR = 0.35 cm s_1 is the 
recoil velocity of a cesium atom after being hit by a single photon, and the a is the imposed 
acceleration, a = 0.85 m s~2. [Source: ben Dahan et al. (1996), p. 4510.] 

16.2.2 k P Method 

A first derivation of Eq. (16.11) follows from asking carefully what it means for 
the band index to be a constant of motion. Under the action of weak static fields, 
electrons remain trapped within a single band. In drawing pictures it is usually clear 
what this statement means; the eye naturally connects energy levels together. In 
solving equations, the matter is less clear. The effective Hamiltonian in Eq. (7.47) 
poses the solution of Bloch's equation for each value of k as a new and independent 
problem. As illustrated in Figure 16.4, there is no label on an energy eigenvalue 
telling which band it belongs to. The identity of bands is determined by continuity. 
Therefore, in order to determine how electrons stick to bands, it is necessary to 
begin by asking how energy eigenvalues En^ respond to extremely small changes 
in the Bloch index k. 

To find the answer, note that the large &-space matrix in Table 7.1, used to prove 
Bloch's theorem, is made up of a series of blocks along the diagonal. Each of these 

Figure 16.4. If one finds energy eigenvalues 
at two isolated values of k, it is impossible 
to tell which eigenvalues belong to the same 
band. 

k\ k2 
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blocks, which has a dimension equal to the number of reciprocal lattice vectors, is 
the same size as all the others. Therefore, if one restricts attention to any one of 
the blocks, uses it as a Hamiltonian, and finds the eigenfunctions, then one can use 
those eigenfunctions as a complete set with which to discuss the eigenfunctions of 
any of the other blocks. That is, one can describe the eigenfunctions indexed by 
k + dk using for basis functions the eigenfunctions with index k. This calculation 
gives a systematic way of approaching the question of how wave functions and 
eigenvalues deform into each other as k changes. 

Return to Eq. (7.47), and imagine solving it for some value of k, finding all the 
energy eigenvalues corresponding to the different bands. Now increase k slightly 
to k + Ok. The equation to be solved is now 

H2 - - - -
Kl+Sk = —[-V2-2i{k + 8k)-V + \k + 5k\2}u{r) + U(r)u{r) = E,u(r). (16.18) 

View this problem as a problem in perturbation theory, with the unperturbed Hamil-
tonian Ä 0 = 'K-j, and the perturbation 

« � � - "2 
-ök2-2ök-k + 2iök-V 

k 2m 

The energy eigenvalues change as 

Just expand out Eq. (16.18 

(16.19) 

P - -. = P —L £ 'L -4- P^2} -4- Successive terms are successively higher or- ( 1 6 2 0 ) 
n,k+Sk nk nk nk j • F, ' 

* "* der in ok. 
The first-order change in the energy under this perturbation is 

»-2 The first term on the right of 
P,°} = (ui\( — )ök-(k-iV)\ur). Eq.J16.19) is second order ( 1 6 . 2 1 ) 

nk m m in 6k and can be neglected. 

To simplify Eq. (16.21) it is valuable to notice the handy operator identity 
_, _ - .j _ _ When the gradient acts on 

( £ _ / V ) e r = — / e _ V . the exponential it eliminates ( 1 6 . 2 2 ) 
the term proportional to k. 

Because u -^ = exp[—ik-7]ipn^, Eq. (16.21) simplifies to 

h 
Jnk ~ m^^nk1""' ' ]Ynk ^l = -Mnk\^-^nÙ (16-23) 

Write (16.21) out as an integral, substitute ip for u using (7.45), use P = —iHV 
and rewrite as a matrix element. This expression explains the title of this 
subsection. 

o p *-

=> —^ = -(lp t\P\lp t) Because of Eq. (16.20). ( 1 6 . 2 4 ) 
dk m nk 

=^ ™={V)=VT. Defining v = P/m. ( 1 6 . 2 5 ) 
dhk n 

As in Section 7.2.4, Eqs. (16.25) and Eq. (16.11) show that the group velocity of 
an electron wave packet, du/dk, equals its mean velocity. 
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16.2.3 Effective Mass 
External electric and magnetic fields accelerate electrons, forcing them to glide 
along the energy bands. Suppose that these fields are very weak and that the change 
in k is accordingly very slow. If it is sufficiently slow, then one can invoke station-
ary perturbation theory, as in the previous section, and argue that 

dt 

y \ = \ —- - — va is the ath component oft). ( 1 6 2 6 ) 

p dkß dt 

(v)=hM-lk, (16.27) 
where 

1 9%ï 
h2 dkadkß (^~l)aß = -2^-^t- FromEi- (16 '25)- (16-28) 

The tensor M defined in Eq. (16.28) is called the effective mass tensor. Because the 
energy £^ is in general not isotropic, acceleration will not in general be parallel to 
k. However, that is not the most interesting feature of the effective mass. Because 
£ £ is a periodic function in k, its second derivatives will sometimes be positive 
and sometimes negative. For example, in Figure 16.2, the inverse effective mass is 
negative at k = ir/a and positive at k = 0. According to Eq. (16.12), the index k 
always increases in the direction of decreasing electric fields. However, when the 
effective mass is negative, the velocity of electrons is in the direction opposite to 
k. Rather than thinking of these electrons as having negative mass, one thinks of 
them as having positive charge and calls them holes. 

Additional information on the effective mass tensor can be obtained by contin-
uing the perturbation expansion of Eq. (16.20) to second order. Problem 3 shows 
that it can be written as 

( M - 1 } I , +1_ E {^iPal^X^l^l^+CC. 
n'^n nk n'k 

"c.c." means "add the complex conjugate of the previous term." The sum is 
carried out only over n!—not over n. 

One can interpret Eq. (16.29) as saying that the effective mass of an electron arises 
from virtual transitions between bands. The closer the energy En,^ of band n' is to 
the energy £-n^ of band n, the larger the deviation of the inverse effective mass from 
\/m will be. A nearby band of higher energy tends to make the effective mass 
negative, while a nearby band of lower energy tends to make the effective mass 
positive. 

16.3 Noninteracting Electrons in an Electric Field 

Understanding why electrons obey the semiclassical equations and why they are 
not able to change band index requires considering the behavior of noninteracting 
electrons placed in a weak electric field. This calculation is plagued with technical 
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difficulties. Periodic boundary conditions have played an important role in simpli-
fying the mathematics of the electrons, but it appears that when a uniform electric 
field is turned on, one must abandon them. The electrostatic potential V(r) = — E ■ 7 
of a uniform electric field grows linearly in space, and so it must be larger at one 
side of the sample than at the other. As a reflection of this fact, if one actually 
places a finite sample of metal in an electric field, surface charges build up and 
cancel out the field in the interior altogether. 

There are two solutions to this difficulty. The method to be pursued in this 
section recasts the problem so that the linear potential is eliminated altogether. 
This technique allows great formal progress, including a calculation of the rate 
of transitions between bands, but is hard to generalize so as to include magnetic 
fields. The following section proceeds instead by restricting attention to a subset 
of all wave functions, which are localized in space and therefore cannot see the 
divergences in the electrical potential. 

To recast the problem, eliminating the scalar potential V, note that one is inter-
ested in electric fields under conditions where electrons flow continually around in 
a loop, and charge does not build up at the edges of the sample. A trick permit-
ting such a calculations follows from recalling that electric fields are generated by 
time-dependent vector potentials according to Maxwell's equation 

1 ÔA - Use ß = V x A in Eq. (20.5b), and observe 
E = W . that if the curl of a function vanishes, it equals ( 1 6 . 3 0 ) 

C dt the gradient of a scalar. 

By introducing a time-dependent vector potential A(t), one can generate an electric 
field even when the scalar potential V vanishes. The advantage of employing A 
rather than V is that it remains perfectly legitimate to work with periodic boundary 
conditions. A convenient one-dimensional geometry is illustrated in Figure 16.5. 
Mathematically, there is no difficulty at all in passing a thin tube of magnetic flux 
through the middle of a loop of wire, although experimentally it is difficult to 
achieve this feat without having some magnetic induction escape the thin tube and 
impinge upon the wire. 

Rather than focus upon details of a loop of wire, it is simplest to pose a one-

Figure 16.5. A thin tube of increasing mag-
netic flux through a loop of wire, so thin 
that no magnetic induction is visible in the 
wire, generates a constant electromotive force 
around the loop. The magnetic flux tube cor-
responds to a vector potential A parallel to 
the wire and of strength —cEt, allowing an 
electric field to coexist with periodic bound-
ary conditions. This geometry is the setting 
for the definition of the Houston states. 

Magnetic flux tube 
Bz = 2TT:R cEt 6(7) 
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dimensional problem, making use of Eq. (16.30). The Hamiltonian is 

Û=^-(P+-A) +Û(R), (16.31) 
2m \ c J 

where 
A = -cEt. (16.32) 

Notice that the potential and hence the Hamiltonian are explicitly time-dependent. 
This is the price one pays for the ability to impose periodic boundary conditions. 
In order to solve (16.31), define 

2m \ c 
(x t) = E[d)(x t). The subscript f on £ serves as a reminder that 

£ is time-dependent. 

(16.33) 
The function <f>(x, t) is an eigenfunction of the Hamiltonian at any given time, 

viewing time as a parameter. Because it resides on the loops shown in Figure 16.5, 
it must be a periodic function and obey 

d>(x-\-L) = <b(x). Taking L to be the circumference of the loop. ( 1 6 . 3 4 ) 

Glancing back at Eq. (16.22) shows that by multiplying wave functions with a 
phase factor, constants added to gradients can be induced to disappear. In fact, one 
can eliminate the vector potential A from Eq. (16.33) altogether by defining 

4>(x, t) = e~ieAx'hc${x, t). (16.35) 

Using Eq. (16.22) shows thatEq. (16.33) becomes 

P2 -
[— + U]</>(x,t) = Zt<l>(x,t). (16.36) 

Equation (16.36) is nothing but Bloch's equation and its solutions are Bloch eigen-
states 

4>nk(,){x) =elk{')xUniiU-](x). Where unk is a periodic function, and k, like ( 1 6 . 3 7 ) 
£, depends upon time. 

Disturbingly, the electric field appears to have vanished from the problem al-
together. Where did it go, and why are the energies and wave vectors shown de-
pending upon tl The answer is quite subtle. The electric field cannot really have 
disappeared from the problem, and because the only part of the mathematical prob-
lem not dealt with carefully so far is the imposition of boundary conditions, that 
is where the electric field must reside. Inserting Eqs. (16.35) and (16.37) into the 
boundary condition (16.34) and recalling that un^t) is periodic gives immediately 
that 

e-ieA{x+L)/nceik(,){x+L)Unk^x + L) = e-ieAx/*c+ik(,)x ^ ( 1 6 _ 3 g ) 
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-eA , 
nc 

eEt , 
=> -—+k(,) n 

2TTI 

~~L' 

2TT/ 

~~L' 

Because 
"nk(,)(x + L) =unk(,)(x)- / i s 

some integer. 

(16.39) 

(16.40) 

(16.41) 

It follows from Eq. (16.40) that if the boundary conditions are to be obeyed, the 
wave vectors k are indeed time-dependent, obeying 

hk=-eE. (16.42) 

Despite the influence of the periodic potential U, the index k obeys classical 
equations of motion for an electron in an electric field. The identical semiclassical 
result is derived by another route in Problem 7. 

The functions 4> a r e called Houston functions. The Houston functions are 
orthonormal wave functions, but they are not exact solutions of Schrödinger's 
equation, because as soon as eigenvalues are time-dependent, the connection be-
tween the time-dependent Schrödinger equation and an eigenvalue problem such 
as Eq. (16.33) has been lost. If one starts an electron in a particular Houston state 
at t = 0 and follows its time evolution, it begins to deviate from a perfect Houston 
state in two ways. First, as it evolves, the amplitudes of Houston states with nearby 
k become nonzero and grow, as shown in Problem 8. This behavior is typical of 
wave packets, and it corresponds to the spread of the wave packet under the in-
fluence of Schrödinger's equation. The spread cannot be prevented, although its 
effects can be minimized by starting the electron in a superposition of states with 
nearby k. In addition to this gradual spread of wave vectors within a band, there is a 
more interesting phenomenon where the electron jumps from one band to another, 
a phenomenon known as Zener tunneling. 

16.3.1 Zener Tunneling 

Rough Calculation. One way to explain Zener tunneling is to observe that the 
effect of an electric field is to change electrons' energy by eE ■ r, so that the band 
energy £ ^ shifts up and down with position, as shown in Figure 16.6. Suppose that 
an electron sits at the top of a valence band, Ev, and the bottom of a conduction 
band £c sits a distance £g above it. If the electron can jump over a distance £g/eE, 
then without changing energy, it can enter the conduction band. The problem is 
that during this voyage, it will need to have an energy lying in the gap between 
valence and conduction bands. 

It is not precisely true to say that states with energies lying in the energy gap are 
forbidden. They exist, but only if one permits complex values of the Bloch index 
k. Because these solutions grow exponentially, they cannot uniformly fill a macro-
scopic crystal. According to the WKB approximation, introduced in Eq. (4.9), the 
amplitude for an electron to tunnel from one band to another should roughly be of 
the form 



Noninteracting Electrons in an Electric Field 463 

x = £-g/eE 

Figure 16.6. An electric field can be thought of as shifting energy bands up and down 
as a function of spatial location. An electron that tunnels through the energy gap over a 
distance x can succeed in changing bands. 

exp 
1 f J I /-> / 7c c \ 7 c cTl Want something with dimensions . 0 
- d X y Zmy {tc — t){tv — t) of energy that is negative in the (16.43) 

L« JO ' J gap, and that vanishes at £c and 

exp 

exp 

2mEt Very rough estimate. 

I2m£e 

eE\ H2 

(16.44) 

(16.45) 

This simple estimate is borne out surprisingly well by the detailed calculation 
that follows. 
Detailed Calculation. A solution of Schrödinger's equation with Bloch index k 
must be some linear combination of Houston states with the same index: 

So 

implies that 

M0> = £c»'(')l^'*<.)>-

ih-
dt = W> 

^ I V ' ) = z2 Cn'(.t)£n'k(.t)\(i)n'k(t))) Because <f> obeys Eq. (16.33). 
n' 

"ih^2 -^-\4>n'k(,))+C„'(t) — \4)n>kil))k 
n' 

Using Schrödinger's equation, and the fact that (j> depends upon t only through k. 

(16.46) 

(16.47) 

(16.48) 

(16.49) 
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{<l>nk(,)\W\lp) =Cn(t)£.nk(l) 

ih 9Cn 
dt £ iCni Pnk(t) I 

ß(j)n � ' * ( < ) 

dk 
eE. 

(16.50) 

(16.51) 

For simplicity, restrict attention to a two-band model so that there are only two 
coefficients C\, and C2. The first of these begins at amplitude 1 when t = 0; the 
second begins at 0, and the goal is to see how fast it will grow. To leading order 
one has 

dC\ 
C\£\k(,) = ih- dt 

=> C\ = exp 

Now look at the equation for C2. Defining 

dt' £ \k(,') 

(16.52) 

(16.53) 

«2(0 = C2W exP 

one has 

dt'l 2k(,') Because a and C are related by a phase factor, ( 16 .54 ) 
they can be used equally well to determine the 
probability that the electron arrives in band 2. 

a.2 52*(0 I 
wo eE 

exp ft Jo dt'{2-lk(,,) ■\k(i')) (16.55) 
dk ' h 

Equation (16.55) is sufficiently difficult to solve exactly that the greatest benefit 
comes from evaluating its leading behavior. Krieger and Iafrate (1986) evaluated 
the matrix element between d(p/dk and 4> and found that it was of order L/N, where 
L is the system length and N is the number of lattice points. This matrix element is 
largest when k is near the Brillouin zone boundary, and oscillates as a function of 
k. However, variations in the matrix element are unimportant in comparison with 
much more rapid oscillations of the exponential that make a exponentially small. 
It is reasonable to treat the matrix element as a constant, and to estimate the rate of 
tunneling from band 1 to band 2 after time 7 as 

dt {&2k(i') — &\k(,')) a2{7) 
N o 

T eE 
dt -r- exp 

ft 0 
(16.56) 

Take 7 to be the time needed for k to advance by one reciprocal lattice vector 
K = 2nN/L. Changing the variable of integration from t to k gives 

a2(7) 
L 
N 

2-KN/L 

dk exp dk?(£ 2k' ■\k' Use Eq. (16.42) for the change of 
variables. 

— I 

o \_eE JO 

(16.57) 
Assume, as in Figure 16.6, that the tunneling is to take place between two 

parabolic bands, the lower of the form £ = Ev — ft k2/2m* and the upper of the 
form £ = £,c + h2k2/2m*. Then defining the reduced mass 

1 
m 

gives 

f 1 
-ml + 

1 i 

m*- (16.58) 
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2t/2 
'■■2k' ■Ik' £,+ 2m* (16.59) 

Placing Eq. (16.59) into Eq. (16.57) produces an integral that is impossible to per-
form exactly, but that easily can be estimated by the method of steepest descents 
(Appendix B.4). Let q be the point in the complex plane where 

2^2 
£,+ ¥q 

2m* 
0. (16.60) 

Then the method of steepest descents gives immediately that 

&2{T) ~exp 

exp 

exp 

' -i H _,,, . h2k'2 

-2I 

3eE <?£« 

-28 3/2 12m* 
3eE 

2m* 

In the original calculation by Zener (1932), 
the energy bands did not have the form in 
Eq. (16.59), but were instead linear except for 
a small region where they avoid one another. 
The tunneling rate is then 
exp[-2TTE2

g/(eE rf(£, - E2)/dk)]. 

exp f—3.41 ■ 107 [£,g/éV]3/2[m*/m]l'2/[E-cmV-

(16.61) 

(16.62) 

(16.63) 

(16.64) 

Equation (16.64) shows that because band gaps are typically 1 eV for metals, 
and because it is difficult to obtain voltages larger than 104 V cm - ', the probability 
for an electron to tunnel from one band to another is on the order of exp[—103]. 
This probability is negligible. In semiconductors, on the other hand, electric fields 
can reach 106 V cm - 1 , effective masses may be one-tenth of the electron mass, 
band gaps are typically less than 1 eV, and Zener tunneling is therefore a common 
feature in the reverse bias of heavily doped diodes, as discussed by Sze (1981), 
pp. 516-536. 
16.4 Semiclassical Equations from Wave Packets 

16.4.1 Formal Dynamics of Wave Packets 

As pointed out in Section 7.2.4, in any situation described by a wave equation 
where one wishes to speak of "particles," in fact one is referring to wave packets. 
The most powerful and general way to derive a semiclassical equation of motion 
for electrons is to consider carefully how wave packets evolve. 

While formal analysis essentially recovers the results of Section 7.2.4, it does 
not exactly reproduce them. The dynamical equations for electrons acquire terms 
not presented in Eqs. (16.11) or (16.12). These extra terms should in principle 
always be used to describe electron dynamics. In practice, they are frequently 
neglected, for two reasons. First, they vanish by symmetry in any centrosymmetric 
crystal. Second, they are unfamiliar and difficult to compute. 

Sundaram and Niu (1999) discuss a formal method that can be used systemati-
cally to find electron dynamics. It is the same as the one used in Section 15.5.4 to 
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find an equation of motion for the wave function of superfluid helium, the effective 
Lagrangian of Appendix B. 

It is first necessary to define carefully a wave packet W- 7. (r) centered in space 
at rc and dominated by wave vector kc. In the presence of a magnetic induction 
whose vector potential is A, the proper definition is 

] r • 2/—i-/s -Z ~ N is the number of unit cells in the system. £ 
W- r (r) = / Wrr e~ ' r' ''ll>7 (V). ' s summed over a single Brillouin zone, ip]; 

' ' vAf _ ' are solutions of Schrödinger's equation, all 
k sharing band index n. 

(16.65) 
The phase factors in ( 16.65) are needed in order to ensure that W vary slowly as 

rc and ~kc vary. Bloch functions naturally oscillate with phase factor e'kr and, in the 
presence of a magnetic field, acquire an additional phase factor e~'e J drA(r)/nc^ by 
incorporating these phase factors into the definition of the wave packet, the hope is 
to eliminate wild oscillations in W. The wave packet must be normalized, so 

i = KiKi) =4 E / 0 ^ - l ) - f e ^ ^ T & w m = E wu,wkM 
kk' ' kk' 

( 1 6 . 6 6 ) 

=> 1 = \ \wrr I . ^ is normalized over the volume V of the crystal. ( 1 6 . 6 7 ) 

k 

Reciprocal space Real space 

Figure 16.7. A wave packet involves a range of wave vectors that is considerably smaller 
than the width of the Brillouin zone, so the spatial extent of the wave packet is much 
larger than an atomic spacing. By taking the spatial extent to be on the order of 100 Â, 
it is possible to have the packet tightly localized in comparison with external potentials, 
making it possible to speak simultaneously of the wave number kc and position ?c. of an 
electron. 

The shape of the wave packet is dictated by the weighting function w, which 
in addition to being normalized, must be taken to have a rather special form. Its 
amplitude | ^ | j _ ^ depends only upon k — kc. This amplitude determines the range 
A^ of wave numbers involved in the wave packet, and also determines its spatial 
extent A r ~ l/Ak. One should think of Ak extending about 1% of the spacing 
of the reciprocal lattice, which implies that A r extends over about 100 unit cells 
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as shown in Figure 16.7. Electrical fields, magnetic fields, and other external po-
tentials must therefore vary slowly on a scale of around 100 Â, a limitation being 
violated more and more frequently in modern electronics. 

The phase of w carries information about the actual spatial location of the wave 
packet, and it must be chosen carefully if it truly is to be centered at rc. In particu-
lar, 

u U = lu;lt-*c
c ,' (*~*c)'^' ( 1 6 - 6 8 ) 

where %^ is precisely the Berry connection of Eq. (8.59), 

%l=i / d7ui(7)—ul(7). (16.69) 
h Jn k< 'dkc

 k^ ' 
The demonstration that such a wave packet truly is centered at 7C follows from the 
computation 

(W7 î\r-rc\W7l) = (W7 ? \r\W7 ? ) - r c Because the packet is (16.70) 
rc^c rcKc rcKc rcKc normalized. 

Use Eq. (7.45) for the periodic function u to replace ip in (16.65). ( 1 6 . 7 2 ) 

= / —Y v& m,z w ^ r W , ( r ) ^ l v ( * ' - * H ^ ) (16.73) 
J N tr! kk< kkc k k dik' 

k'k 

= - j di E ̂ «î^^^-^^^^Wl (16-V4) 
k'k 

Change the k! sum to an integral with (6.11), integrate by parts, and return to the sum. 

= - Jn
 d7 E hk'wkut^^wkrkM7^ (16-75) 

k'k 
As in Eq. (7.26), J indicates integration over a single unit cell. No reciprocal lattice 
vectors K needed because k and k' lie in a single zone. 

/ ^ 1 d 
= - [ drY Hr r uUr) ^\wu ur(7)} (16.76) 

k KKc 

= / dr m- (7)—U7 (7) In wu , , = ftr -Dk = 0 (16.77) 
Jn k< ' dkc

 kc ' dik kkc k=kc
 kc <<c 

\u\2 integrates to 1; \w\2 sums to 1; and d\w\-k_~k /dk = 0 because of the maximum a.tkc. 

=> ( W - r \r\W~7 ) = 7C Hence the definition in (16.78) 
rckc> rckci (16.69). 

16.4.2 Dynamics from Lagrangian 

Given this wave packet, one can obtain equations of motion for rc and kc by evalu-
ating the Lagrangian 



468 Chapter 16. Dynamics of Block Electrons 

$i=—[P+^Q\1 + U{r) (16.80) 
2m c 

[2m 
+ U{r)]ll>i = fijV^- Suppress the band index rc. ( 1 6 . 8 1 ) 

Magnetic fields are included through the vector potential A, and electric fields are 
included through the scalar potential V. Because the focus is on wave packets, 
which are localized in space, one does not have to worry about the impossibility of 
incorporating the scalar potential rigorously into periodic boundary conditions. 

Evaluation of the expectation values needed to find the Lagrangian (16.79) is 
a matter of evaluating various integrals. Whenever \w\Z - appears, it should be 
treated as a delta function centered at kc. Details are left to Problem 5, and the 
results are 

(J €,Y dA(Y ) —* • —■ —* 

<rç& i / Ä ä lw&} = ~f ' ̂ r + h k c '?c+hkc ► ̂  (16-82a) 

(WTcl\%-eV(r)\WTcl) = £l-B.ml-eV(rc) (16.82b) 

To obtain this result in the presence of the magnetic field requires the phase factor in-
volving A in Eq. (16.65), and it requires that the wave packet not be spatially extended 
on scales where the electric and magnetic fields vary noticeably. The term m^ is an 
intrinsic magnetic moment of the wave function and comes formally from expanding 
A about rc. c.c below is "complex conjugate." 

with the orbital magnetic moment of the wave packet m-^ given by 
eft 1 f dm * d 

in? = / dr\—Z--%i uy 1 x [— +kc] u? +c . c . (16.82c) 
*< 2mc2 Jn [ dikc

 kc k< dir cj ^ 

Finally, employing Lagrange's equations, one obtains 

ö£ d dC _, du d dL , ^ 0 „ N 
— = -—r- and — = — ^ . (16.83) 
drc dtdrc dkc dt ^ 

Problem 6 shows that after dropping the subscript c on k and r, one has the semi-
classical equations of motion 

nk=-eE--7xB (16.84a) 
c 

• \dh i -, 
r= ^-kxQ, (16.84b) 

n Ok 
where 

£j = £ ] E - B - % , (16.85a) 
d -B(r) = — xA(r), and (16.85b) or 
d - -

n(k) = — x%(k). (16.85c) 
dk 
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The terms involving the anomalous velocity Q and wave packet magnetic mo-
ment rhp can sometimes be omitted from semiclassical equations of motion for 
electrons. One reason is that they often vanish by symmetry. In particular, they 
vanish for crystals that have both time-inversion symmetry, and spatial inversion 
symmetry. Under time inversion, k, d/idr, r, and B flip sign while E and %^ are 
unchanged; therefore Ù(k) = —Çl(—k) and m~k = —«*_-£. Under spatial inversion, 
r, k, %£ and E flip sign while B does not, so Q(k) = Q(—k) and in-^ = m_^. These 
two symmetries are only compatible if Ù and m-k vanish for all k. Thus the terms 
can be omitted for many monatomic solids. However, they should not be omitted in 
crystals without inversion symmetry, such as GaAs, or in crystals with spontaneous 
magnetic moments such as iron. The existence of such terms has been known for 
a long time, since work of Karplus and Luttinger (1954) and Blount (1962), and 
the fact that they nevertheless have often been left off is due to a desire for sim-
plicity. The careful development of spintronics (Section 26.5) will however require 
these terms to provide an accurate account of how spin currents respond to external 
fields. 

Limitations of Semiclassical Dynamics. Validity of the semiclassical equations 
of motion requires four conditions: 

1. The spatial scales of all external potentials must be much larger than inter-
atomic spacing, making it possible to construct wave packets spanning many 
unit cells, but seeing the external potentials as very slowly varying. 

2. The magnitudes of the electric fields cannot be too large, or else they induce 
Zener tunneling between bands. To prevent this tunneling in a solid with band 
gap £„, one must require, according to Eq. (16.64), 

(16.86) 

Electric fields this large are impossible to obtain in metals except near points 
of degeneracy where band gaps shrink to zero. With energy gaps on the order 
of 1 eV, and \/kp on the order of 1 Â, the electric field needs to be on the 
order of 1 V/Â, or 1010V/m. The largest fields that actually can be generated 
in a metal are six orders of magnitude smaller, because electrons are quite 
effective in screening external fields out of existence. 

The magnitudes of magnetic fields cannot be too large. The characteristic 
energy of electrons in magnetic fields is derived from their orbital period 7 
and is 2TTH/7. For free electrons, as shown in Section 21.2, T = 2irmc/eB, 
which can used to obtain the estimate 2nh/7 ~ 1.16- 10_4[Z?/T]eV, measur-
ing the magnetic induction in Tesla. By analogy with Eq. (16.86), estimate 
that magnetic fields will not induce interband transitions so long as 

2irh/7<^EgJ-f-. (16.87) 
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p-

TX = 

on 
dr 
dL 

dk 

_t 

= hk-

—* 
= #%, 

eA 
c 

In magnetic fields of 10 T, electrons are therefore able to jump across band 
gaps on the order of 0. leV. 

4. As will be shown in Section 23.4, when incoming electrical fields oscillate at 
frequencies to such that Hu> = £g, they excite electrons between bands. There-
fore semiclassical electron dynamics only applies in the presence of slowly 
varying external fields. 

Hamiltonian Dynamics. Whenever classical dynamics are described by a La-
grangian £ ( ß , Q), it is possible to derive also a Hamiltonian, using the formulae 

"K = y^ QlPl — £; Pi = —— • T h e Q's h e r e a r e t h e t h r e e components of rc ( 1 6 . 8 8 ) 
I OQi and the three components of ïc. 

In the present case, dropping the subscript c from rc and ~kc, one has the canonical 
momenta p and TT 

hk = p + eA/c (16.89a) 

(16.89b) 

and from Eq. (16.88) obtains the Hamiltonian 

■X = Z-k-eV(r) + {e/2mc)B-Ll = 8,(p + eA/c) -eV(r) + {e/2mc)B-Ll. (16.90) 

The Hamiltonian is a constant of the motion, a fact that is especially useful in 
visualizing electron dynamics when the electrical potential V and L vanish. One 
simply draws contours on the energy surface £ -̂  and concludes that k travels along 
these contours. Closed orbits are those for which k is periodic in the repeated zone 
scheme, and open orbits are those for which k continually increases in the repeated 
zone scheme, as illustrated in Figure 16.8. 

16.5 Quantizing Semiclassical Dynamics 

Having gone to all the trouble of coercing quantum mechanics into a classical 
form, it is interesting to move slightly backwards and quantize the semiclassical 
dynamics. This task may be accomplished by considering the overall phase of the 
wave packet. 

A solution of Schrödinger's equation should obey 

d 
ih—\W) = H\W). (16.91) 

Because wave packets are not exact solutions of Schrödinger's equation, they do 
not exactly obey Eq. (16.91). However, they should approximately obey 

d 
ih—\W)=M\W), (16.92) 

at 
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Figure 16.8. Energy contours on the Fermi surface of copper, showing open and closed 
orbits. 

where "K is the Hamiltonian of Eq. (16.90), so that as time evolves, the wave packet 
acquires an additional phase 

g~' I . Because "K is a constant of the motion. ( 1 6 . 9 3 ) 

Consider now a case in which after some time t = T the dynamics of the wave 
packet brings it back to its location at time t = 0; the position ?(T) returns to r(0), 
and the wave number k(7) arrives at Ä:(0) + K, where K is any reciprocal lattice 
vector. If the phase factor in (16.93) differs from 1, the wave packet interferes 
destructively with its past self, but if it equals 1, the packet reinforces itself and 
can establish a resonant standing wave. The condition for this resonance to occur 
should roughly be of the form 

"KJ = 2nhj. Where ; is some integer. ( 1 6 . 9 4 ) 

More careful examination of the resonance conditions for wave packets, provided 
by Littlejohn (1986), leads instead to the Bohr-Sommerfeld quantization condition 
of the "old" quantum mechanics, a good approximation for large quantum numbers 

2Trh(j + v) = I dtJ2p'^ = fj2 dQipi- (16-95) 

The Maslov index v is a constant, frequently 1/2. This additional constant does 
not lead to any physical consequences in any of the following arguments, and it 
can be viewed as absorbed into T in all the formulae following Eq. (16.98). 

Employing the canonical momenta calculated in Eq. (16.89) gives the quanti-
zation condition 

/
- - eÄ 

dk-Jl~k + dr-[k-—} = 2irj (16.96) 
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' - - eA 
dk • ( $ £ — 7) — d? ■ — = 2-nj. Integrating by parts. (16.97) 

16.5.1 Wannier-Stark Ladders 

One way in principle to send electrons into closed orbits is to consider a system 
with uniform electric field E = —VV and no magnetic field. The wave vector 
k evolves linearly in time as k = —eEt/H. Because 7 = d8./dhk flips sign when 
k —> K — k, so long as E points in the direction of a reciprocal lattice vector, the 
electron is supposed to execute periodic motion. Defining 

T= i dk-%, Because k returns to itself by increasing by a (16.98) 
J reciprocal lattice vector, the integral is a line 

integral from 0 to K. 

Eq. (16.97) becomes 

2TTJ=6 dk-(üll-r) = r- dk-r = T-K (r) 

(7) is defined to be the time average of 7, and gives the center of the 
orbit. 

r = 
r-2nj 

K 

(16.99) 

(16.100) 

Q o> O) o> o> 
Figure 16.9. The Wannier-Stark 
ladder is a collection of electrons 
trapped in Bloch oscillations by an 
intense electric field, and spaced at 
intervals of 2TT/K, where K is a re-
ciprocal lattice vector. 

2-K/K 

In a pure metal at very low temperatures, Eq. (16.100) predicts no electrical 
conductivity. Each electron should circle around its unit cell in a closed orbit, as 
shown in Figure 16.9. The reason this result is never observed in practice is that 
electrons cannot execute even one oscillation before undergoing a scattering event 
that ruins the necessary quantum coherence, and the huge electric fields would 
produce Zener tunneling. Problem 1 is devoted to estimating orders of magnitude 
that show how difficult it would be to observe the phenomenon in a metal like 
copper. 

Wannier-Stark ladders have been observed by Mendez et al. (1988) in GaAs 
superlattices, although the experiments are difficult, and the results not entirely in 
accord with the simplest theoretical account. Cleaner results are reported in optical 
lattices by Wilkinson et al. (1996). 
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16.5.2 de Haas-van Alphen Effect 
A second and considerably more important case in which electrons execute closed 
orbits occurs when the electric field vanishes, but a uniform magnetic induction B, 
derived from vector potential 

A = — ß x ~r This gauge is not unique, but is convenient ( 1 6 . 1 0 1 ) 

2 for this calculation. 

is present. The wave vector evolves according to 

-* —cr - , - * - * —p -, 
k=^xB =>k(t)-k(0) = —[r(t)-r(0)]xB (16.102) 

ne ne 
=> B x (k(t)-k(0)) = ^[r(t)-r(0)}B2 + ^-B-[r{t)-r(0)]B. (16.103) 

ne ne 
Because A x (B x C) = B(A ■ C) - C(A ■ B). 

Some orbits in k space are pictured in Figure 16.8. De Haas and van Alphen (1930) 
measured the magnetization of bismuth in a field of 20 kG and found that magne-
tization oscillated as a function of magnetic field. The original measurements ob-
served only two periods of oscillation, but with improvements in technique, many 
due to Shoenberg (1984), hundreds of periods (including periods of one frequency 
superposed upon another) became visible, as shown in Figure 16.10. Over two 
decades separated the first observation of this effect from the realization by On-
sager (1952) and Lifshitz and Kosevich (1956) that the oscillations are sensitive 
probes of a simple geometrical property of the Fermi surface. From the period of 
oscillation one can directly determine the areas of extremal electron orbits. With 
this understanding in hand, de Haas-van Alphen oscillations become an experi-
mental tool capable of deciphering the Fermi surface of most elements and com-
pounds to surprising accuracy. 

Ill« 
74 kG 69 kG 
Figure 16.10. Sketch of de Haas-van Alphen oscillations of magnetization M in gold 
similar to those measured by Shoenberg and Vanderkooy (1970). The external magnetic 
field H points 8.5° away from (111). Large-scale oscillations are due to extremal orbits 
around the thin neck, while small-scale oscillations, barely resolved, are due to extremal 
orbits about the thick belly. 
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Origin of Oscillations in Quantization. The quantization condition (16.97) when 
only a magnetic induction B is present becomes 

Using the definition of T from 
2TTJ = T- dt y—-r-—(rxB)-r\ Eq. (16.98), and inserting (16.104) 

(16.84a) for/t. 
T 

= T+ / dt^r-r-^xB) (16.105) 
Jo 2«c 

„T <- n Use Eqs. (16.84a) and (16.103). 
= T + / J? ( - x A; ) • k C o n s t a n t o f f se t s in * o r r vanish- ( 16.106) 

Jo 2eB\B I 

= r + / ^ - 2 ^ ( ß X " ) ( 1 6 - 1 0 7 ) 

2TTJ = T+A —, dk ■ (n x k) is twice (16.108) 
^ß the area element. 

where A is the area in k space enclosed by the orbit k(t). 
The geometrical significance of Eq. (16.108) is illustrated in Figure 16.11. As 

the amplitude of the magnetic induction B increases, orbits move along the Fermi 
surface, increasing the area they enclose to keep the product AHc/eB constant. 
With each integer j there is associated not just one orbit, but a range of them; 
all satisfy (16.108) and are within the small energy range dZ = kßT of the Fermi 
surface. This range is also depicted in Figure 16.11. Another way to think of 
Eq. (16.108) is that it restricts electrons to a series of concentric cylinders in k 
space. The intersection of these cylinders with the Fermi surface shown in Fig-
ure 16.11 selects the electrons that can be active in transport measurements. The 
number of such active electrons is maximal whenever their orbits coincide with an 
extremal section Ae of the Fermi surface, where dA/dkz = 0. The current loops of 
these electrons produce peaks in the magnetization, and thus the condition to see 
these peaks is 

= 1.05-104
 r — - r = j - T / 2 i r (16.109a) 

B 2-Ke ' [fl/T] 

^ J _ Q O i n - 5 1 [A~ 2 /Tl AO/ß) ' 8 the c h a nge m'/.B 
^ s*- — 7--J4- 1U [/\ / 1J. needed to see one complete ^lo. iuyrj j 

\ I ) period of oscillation. 

16.5.3 Experimental Measurements of Fermi Surfaces 

The simplest Fermi surfaces to decipher are those of the alkali metals, Na, K, 
and Rb (lithium undergoes a martensitic transition that has prevented its Fermi 
surface from being measured at the 1 K temperature where oscillations generally 
are measured). These metals have d-bands far removed from the half-filled s-band 
at the Fermi surface. As a consequence the Fermi surface is contained entirely 
within the first Brillouin zone and is very nearly spherical, as in the upper left entry 
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Figure 16.11. Resonantly oscillating electrons sit on the Fermi surface, move perpendic-
ular to the magnetic field, and enclose an area in k space A = (2irl — T)eB/Hc. These 
electrons occupy the intersection of the Fermi surface with a set of concentric cylinders. 
The density of states satisfying these conditions is indicated by the thicknesses of the or-
bits, and is given by the number of states both obeying the quantization condition and 
lying between Ep and £F+d£., where d£. = kßT. The lower part of the figure shows cross-
sections of the surfaces in the upper part. Whenever electron orbits lie along an extremal 
point of the Fermi surface, as in (D), the density of states becomes very large. The figure 
is deceptive because the number of orbits pictured is around 20, while experimentally the 
number is around 104. 

of Figure 8.7. The experiments are so accurate that they can detect tiny deviations 
from the perfect sphere, on the scale of tenths of a percent. 

The next simplest Fermi surfaces belong to the monovalent noble metals, Cu, 
Ag, and Au. Although the nearly free electron picture applies reasonably well 
to these elements, Figure 10.7 shows that the (/-bands lie sufficiently close to the 
Fermi surface that the surface is distorted and cuts through the Brillouin zone, as 
illustrated in in Figure 16.12. Therefore a number of qualitatively different types 
of orbits is possible, and these show up as multiple frequencies in Figure 16.10. 

Figure 16.12. Fermi sur-
face of copper, as mea-
sured by the de Haas van 
Alphen effect, employing 
data of Shoenberg (1984). 
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One way to interpret the experimental data is to write down a tight-binding model 
with a number of free parameters and vary them until the extremal Fermi surface 
orbits match those seen experimentally. 

Three of the divalent metals (Ca, Sr, Ba) would be insulators if the Fermi sur-
face did not cut across the first Brillouin zone, creating isolated pockets of elec-
trons. The hexagonal divalents (Be, Mg, Zn, and Cd) have the unpleasant feature 
that important aspects of their band structure are produced by spin-orbit coupling, 
and the fields applied to measure the de Haas-van Alphen effect are sufficient to 
cause magnetic breakdown. The net effect is that the Fermi surface changes before 
one's eyes during the measurements, essentially from the second column of Figure 
8.8 to the third column of Figure 8.8, and this fact must be taken into account in 
interpreting the measurements. 

Elements with more than one or two mobile electrons per unit cell sometimes 
continue to be described by the nearly free electron picture, as in the case of alu-
minum. More commonly, however, the nearly free-electron picture breaks down 
altogether. For example, in the transition metals, the d-bands reach right up to 
the Fermi surface, and the surfaces bear no particular resemblance to free electron 
surfaces. It is difficult to interpret their de Haas-van Alphen oscillations with-
out theoretical guidance from band structure calculations about the shapes of the 
surfaces, but with the aid of sufficient trial and error, surfaces such as tungsten, 
shown in Figure 16.13, have been worked out. Landolt and Börnstein (New Series) 
vol. 13c, provides a compendium of the results. 

Figure 16.13. The Fermi surface of tungsten, 
as deciphered by Girvan et al. (1968). 

The most accurate probes of the Fermi surface are provided by oscillations in 
magnetization, but because the effect results from changes in the density of states 
at the Fermi surface, magnetization is by no means the only quantity that oscillates. 
Careful measurements of sound speeds, specific heat, ultrasonic attenuation, and 
other quantities all exhibit oscillations with the same period in 1 jB. These probes 
are discussed at greater length in Cracknell and Wong (1973). 
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Problems 

1. Bloch oscillations: Consider whether it should be possible to observe Bloch 
oscillations. 

(a) Take the relaxation time in copper to be approximately 20-10~ 1 4 s. How 
strong an electric field would be needed in order to have a Bloch oscillation 
in less than a relaxation time? 

(b) Assuming a characteristic band gap of 2 eV, how large is this field compared 
to one that could induce Zener tunneling? 

(c) Suppose the electric field of part (a) were applied, and the electrons produced 
a current according to the Drude formula rather than becoming localized. Es-
timate how much power would be dissipated per volume, and how fast the 
copper would heat up. 

(d) Consider next GaAs, where at low temperatures relaxation times can rise to 
3 ■ 1 0 - 1 0 s, and where it is possible to build artificial structures for which the 
unit cell is on the order of a = 100 Â. How large an electric field would be 
needed to see Bloch oscillations in this case? 

(e) Estimate the energy difference between two energy states in a Wannier-Stark 
ladder when such a field is applied. 

2. Damped dynamics: Suppose that a small amount of damping changes the 
semiclassical equations of motion for tightly bound electron in one dimension 
to 

2£QΦ 

H sin ka (16.110a) 

mr 
Hk = -eE . (16.110b) 

r 

Take £ 0 = 1 eV, a = 2À, E = 106 V/cm, and r = 10"1 4 s. 

(a) Put the equations into dimensionless form, measuring distance in units of a, 
and measuring time in units of r . 

(b) Integrate the equations (16.110) numerically and examine the effect of the 
damping upon the electron dynamics. 

(c) Describe the final state of the system analytically. 

3. Effective mass theorem: 

(a) Show that to second order in ôk, one has from Eqs. (16.19) and (16.20) 

h1 h2 \(il)?\ök-P\i) ,■' 

1m m2 ~-f £ 7 — £ ,-t 
n'^én nk n'k 

(16.111) 

Second order contributions come both from second order in perturbation the-
ory, as well as the fact that Eq. (16.19) contains a second order term. 
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(b) Show, therefore, that the effective mass tensor is given by Eq. (16.29). 

4. Tight-binding model: Consider the tight-binding Hamiltonian for a spinless 
particle on a square lattice: 

^i = Y^U\â}{R\ + i Y^ I^X^'I+ l#')(#!, (16.112) 
R (RR') 

where the sum in the second term is over distinct nearest-neighbor pairs. 

(a) Write down the energy eigenvalues of this Hamiltonian. 
(b) Find the effective mass tensor of a particle in one of these energy eigenstates. 

How does the effective mass vary with t? Why? 

5. Effective Lagrangian: 

(a) Writing 
d • d ~ d 
^ = rc-1-+kc--r (16.113) 
dt drc dkc 

use Eq. (16.65) to evaluate Eq. (16.82a). 
(b) Show that for any polynomial function / , 

f(P)M7) = e^ttPjiHW, (16-114) 

where 
P\ = P + hk. (16.115) 

The Bloch functions ^ and u^ are related by Eq. (7.45), and P is the momen-
tum operator. 

(c) Begin the evaluation of Eq. (16.82b). Show that the matrix element equals 

/ - £ «& ^-*™-MV) \[h' + &W-A(?c))?/2m 1 
J N Z-, kkc k^ ) ^+u(y)-eV(r) J kK ' kkc 

(16.116) 
(d) Separate off the terms independent of A and show that they produce £j — 

eV(rc). Use the approximation that V(r) = V(rc) + (r — rc) ■ dV(rc)/drc. 
(e) Discard the terms proportional to A2, and take A = — r x B/2. Show that the 

terms proportional to A can be written as 

B- / — V iu~ ut(r) 
J N t r ' kkc Arne J N t r ' kkc I dik 

kk' 

<Lei{k-k')-(rc~r) XPl,U7,(r)w7,h+C.C. 

(16.117) 
(f) Integrating by parts in k, and following the steps that lead from Eq. (16.70) 

to Eq. (16.77), verify the remainder of Eq. (16.82). 
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6. Equations of motion: 

(a) Show that if Q is a vector function of r and D is independent of r then 

D x (— x Cr) = -^{D-C?) - (D • —)C7. (16.118) 
or or or 

(b) Using this identity both for the term involving A, and the one involving 3^ , 
apply Eqs. (16.83) to Eqs. (16.82) to obtain equations of motion forkc and rc. 

7. Alternate view of Bloch states in weak electric fields: Show that if one 
begins with a true Bloch state and subjects it to a weak electric field, that it 
evolves into a new Bloch state with wave vector obeying 

Hk = -eE. (16.119) 

In order to carry out the demonstration, 

(a) Take a Bloch state and evolve it by a small amount forward in time dt, using 
the Hamiltonian 

- P2 .. , 
JC =— + U(R) + eE-R. (16.120) 

2m 

(b) Then apply the translation operator Tl, which generates translations through 
R 

Bravais lattice vectors. Interpret the result to show that one still has a Bloch 
state, but with a new k vector, to first order in dt. 

8. Houston states: 

(a) Write the Schrodinger equation for a free electron in an electric field in terms 
of a basis of Houston states. 

(b) Find the rate at which such an electron initially in a Houston state departs 
from the Houston state. 

9. Alternate view of Bloch states in weak fields: Show that if a Bloch state ip 
is subjected to a very weak magnetic induction B, then it evolves into a new 
Bloch state, and that the k vector evolves according to 

Hk=--(vxB). (16.121) 

(a) Suppose one has a wave packet \W^) that obeys 

eip-â/n\Wfk) ^ eiU\Wfk) (16.122) 

and 
(r) = (Wfk\R\Wfk). (16.123) 
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Adopt the gauge 
Â = ±Bx(r-(r)) (16.124) 

Because k depends upon time, (r) as given by Eq. (16.123) is time-dependent, 
and therefore the choice of gauge (16.124) describes a system with both mag-
netic induction B and an electric field. 
Argue therefore that in order to describe a system with magnetic induction B 
only, one must write the Hamiltonian 

Ä = -î-(P+ -Ä{t)f + U(r) -^-r-Bxv^ (16.125) 
2m c Le K 

(b) Use this Hamiltonian to evolve W^ through a small amount of time, dt. 
Before the time evolution the wave function is described approximately by 
eigenvalue k. After the evolution, the wave function is still approximately an 
eigenfunction of the operator f-J, but the eigenvalue k has shifted slightly. Use 

this fact to deduce an equation of motion for k. 
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17. Transport Phenomena and Fermi 
Liquid Theory 

17.1 Introduction 

The Boltzmann equation and Fermi liquid theory are two phenomenological de-
scriptions of how particles and energy move through condensed matter. The Boltz-
mann equation is a more general description of transport, describing any particles 
that obey Hamilton's equations. Fermi liquid theory focuses specifically upon the 
properties of interacting Fermi particles. In both cases, the theory makes it pos-
sible to describe macroscopic experiments in terms of a few well-chosen param-
eters while bypassing the microscopic information contained in principle within 
Schrödinger's equation. 

17.2 Boltzmann Equation 

It is exceedingly difficult to solve any microscopic Hamiltonian that provides a 
realistic account of the response of solids to external electromagnetic or thermal 
fields. For example, according to Eq. (16.42), the momentum of electrons in a loop 
of wire at constant voltage would increase without bound. In a real wire a variety of 
different processes prevents this increase from happening; the electrons scatter off 
impurities, or off vibrations in the lattice. To write down a Hamiltonian containing 
such processes and make substantial progress toward its solution is a challenging 
task. Fortunately, in many cases the problem can be studied through techniques 
that preceded quantum mechanics and can make detailed solutions irrelevant. 

The Boltzmann equation describes transport properties of any particles obeying 
Hamilton's equations: 

op or 
where the Hamiltonian function IK describes the particles' interactions with electric 
field E and magnetic induction B in the form 

"Kir, p) = E(p+Âe/c)-eV(r), The result derived in Eq. ( 16.90) is now being ( 1 7 . 2 ) 
postulated as a starting point. 

leading to 

r — 

Hk = 

as. _ 
dhk~ 

-eÈ-

~- v 

ev 
c 

xB. 

(17.3a) 

(17.3b) 
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where hk is defined by 
hk = p + eA/c. (17.3c) 

Electron wave packets in centrosymmetric crystals obey these equation, with all 
effects of the periodic crystal lattice disappearing into the function £^. 

The aim now is to use these equations as a tool to describe the behavior of an 
ensemble of electrons subject to external fields. An ensemble means an ideal Fermi 
gas of electrons, taken to be noninteracting, but with the effects of Fermi statistics 
and temperature taken into account. The calculations are not true equilibrium cal-
culations, because the presence of external fields is allowed to induce currents, but 
the system is supposed always to be close to thermal equilibrium. 

Take gj%(t) to be the occupation number of electrons (wave packets) at position 
r, indexed by wave vector k and at time t. It gives the probability, lying between 
zero and one, that a state will be occupied, so the actual number of electrons in a 
box of size dr, and whose wave number lies within a volume element in reciprocal 
space of size dk, is 

rfkd7 ^ ' s e x P r e s s ' o n ' s a straightforward applica-
, S-ir(t) tion of the definitioi 

( 2 7 T ) 3 rk Oj, using V = dr. 
g~t(t) d7Dtdk = 2. ï8-t{t)- ti°no''t'le definition of the density oft states, ( 1 7 . 4 ) 

The way to use g is to begin with any function Gfk that depends upon the 
location and wave number of electrons. Then the average value of G^ in a large 
volume is 

J[dk\ df gfkGfk. Integration over [dk] defined in Eq. (6.15). ( 1 7 . 5 ) 

Phenomenological Form of g. It is possible to guess the form that g should have. 
In the presence of weak applied fields, the occupation number of electrons should 
differ only slightly from its value in their absence. Therefore, 

Sfk = ffk + corrections, (17.6) 

where / is the Fermi function. 
Because under no circumstances can occupation numbers rise above unity or 

drop below zero, these corrections must all occur in an energy range of width 
kßT near the chemical potential \x. The function df/dß is nonzero only in this 
vicinity, so it is reasonable to suppose that all corrections will be proportional to 
it. Electrons with energies much less than the chemical potential /i cannot speed 
up because all states are occupied. Electrons with energies much greater than the 
chemical potential could speed up easily enough, but none are present to do it, 
leaving those in the vicinity of \x to provide all the action. Consider what should 
happen in an applied electric field E. Because of their negative charge, the electrons 
that move against the field speed up, while those that move along it slow down, 
increasing the population moving against the field, and decreasing the population 
moving with it. Therefore, one expects a correction to the occupation number 
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fk^ffk-Te^n-E. (17.7) 

for wave number k of the form — ev^ ■ Ê. Forming the product of the two terms 
mentioned so far, one has 

du 
The right side of Eq. (17.7) needs to be dimensionless; for this reason it has been 
necessary to multiply by a phenomenological constant r, representing a time for 
electrons to come to equilibrium, in order to bring the dimensions into order. These 
rough arguments exactly reproduce a more exact analysis that now follows. 

17.2.1 Boltzmann Equation 

Because the number of electrons is conserved, and positions and wave numbers 
change continuously, g obeys the continuity equation, Eq. (5.5), which in the 
present case applies to both positions and momenta and reads 

dg d • d ^ 
5 -- ' - (17.8) 

(17.9) 

dt dr rg-Jkk8 

It follows from Eqs. (17.3) that one can write 
ßp ■ d -* 9 ^ ̂ o e s n 0 ' depend upon r, and E does not de-
~jr~ = —r ■ T^g — k ■ —^ig- pend upon k. 4= -v xB = B- 4* x v vanishes 
eft ctr f)k 

w because v is the gradient of £j . 
Boltzmann added to Eq. (17.8) an additional term 

dg i d f d dg 
dt dr dk dt 

where 
dg 
dt 

coll.' 

coll. 

(17.10) 

(17.11) 

is called the collision term. The added term acknowledges that particle momenta 
change not only in simple ways due to smooth externally applied forces, but also 
because of a host of additional complications that in principle should be incorpo-
rated in the Hamiltonian, such as impurities and thermal fluctuations that cause 
large and sudden momentum transfers. In the form of (17.10), the equation of 
motion for electron distribution functions is known as the Boltzmann equation. 

There is a basic division in statistical mechanics between systems of particles 
whose motion can be understood analytically and those whose motion is consis-
tent with the laws of thermal equilibrium. Systems in which particles are scattered 
sufficiently to explore phase space and come to thermal equilibrium are precisely 
those in which the trajectories of individual particles are too complicated to follow 
in detail. Roughly speaking, when dynamics of particles are simple, dynamics of 
distribution functions can be elaborate, while when dynamics of individual parti-
cles become too complex to follow in detail, dynamics of distributions can sim-
plify. Accordingly, rather than trying to incorporate increasingly complex terms 
into the equations of motion (17.3) and solve for dynamics of individual particles, 
one hopes that the collision term can be chosen as something simple that drives 
(17.8) to be consistent with basic facts of statistical mechanics. 
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17.2.2 Including Anomalous Velocity 
In crystals that are not centrosymmetric, the semi-classical equations of motion 
include the anomalous velocity of Eqs. (16.84). Xiao et al. (2005) showed a way 
to modify the Boltzmann equation to include these dynamical effects. The reason 
one cannot just write down the Boltzmann equation with new equations for the 
evolution of 7 and k is that 7 and k no longer obey Hanultonian's equation in the 
form Eq. (17.1). However, this turns out not to be a fatal problem. Essentially, the 
result is to change the density of states. 

The calculation is exact except that terms involving products of 
ßm-* ßR(7\ mj, defined in Eq. (16.82c) is the intrinsic magnetic mo-
—=7^ t i m e s —— —>0 nient of the wave function. This expression is meant to ( 1 7 . 1 2 ) 

ßfc 07 indicate that one should neglect any product involving 
spatial derivatives of B and k derivatives of in. 

will be regarded as second order in two small quantities and neglected. 
The modification of Boltzmann's equation proceeds by rewriting the semiclas-

sical equations (16.84). First, define 

v = —h (17.13) 
dhk 

and also the magnetic flux quantum 
he 

CJ>Q = — See Eq. (25.52) to observe this quantity aris- ( 1 7 . 1 4 ) 
e ing in a historically more familiar context. 

Next, substitute Eq. (16.84a) into Eq. (16.84b), obtaining 
1 

r = v+-
h 

É + -7xB 
c xfi (17.15) 

1+ * ' )=v + -ÈxÛ+ — (v-Q)B. (17.16) 
* 0 / » $ 0 

Use the identity (A x B) x C = (A ■ C)B - (B ■ C)A and also the fact that Ï - v _1_ Û 

Similarly, substituting Eq. (16.84b) into Eq. (16.84a) gives 

i(l + ̂ ^-)=-e-È-^vxB-^(È-B)Û. (17.17) 
v $o / h he he 

Recasting the electron equations of motion in this way suggests defining 

B(,,ï,0 = (1 + ̂ L M J . („.,„ 
Employing this definition, brief calculations of Problem 3 show that 

ß . e 0 / -> \ Use Maxwell's equation Eq. (20.5a) V • B = 
— • Tyf = • ( E X ÇI 1 0. There is some dependence on 7 buried in- ( 1 7 . 1 9 ) 
Or hör ^ ' side v because of the appearance of B(r,t) in 

Eq. (16.85a). This is where the approxima-
tion (17.12) comes in. 

= ^n-(—xÉ)=--^-n-^- Use Maxwell's ( 1 7 . 2 0 ) 
h \Ô7 ) ch dt equation Eq. (20.5b). 
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Similarly, 
d -

. ]^J) = 0 No approximations needed here. ( 1 7 2 1 ) 

dl 
Assembling Eqs. (17.20) and (17.21) gives 

dT> d i d -
— \- — -1>r-\ =i ■ T>k = 0 H depends explicitly on* but not on t. ( 1 7 . 2 2 ) 
ot dr dk 

While g(r, k, t) obeys the continuity equation Eq. (17.8), it does not obey (17.9) 
when all terms are included in the semi-classical equations of motion. However, 
one can define g by 

g = Vg. (17.23) 

Multiplying Eq. (17.22) by g/T>, and subtracting it from Eq. (17.8) using Eq. (17.23), 

dg � d ~ d 
-£ = -7-^8-k--;g. (17.24) 
ot dr dk 

Therefore, Boltzmann's equation (17.10) will continue to hold so long as one re-
places g with g. 

In summary, here is how to view the consequences of anomalous velocities for 
Boltzmann's equation. In any given problem, solve Eq. (17.10) using the full semi-
classical equations of motion to obtain g. Then, when computing any observable, 
as in Eq. (17.5), write instead 

G = J[dk]drVgfkGfk. (17.25) 

Thus D(r, k, t) can be viewed as a modification of the density of states. There is 
no reason not to use the notation g for g just so long as one remembers to use the 
modified density of states D. Thus g will not appear again explicitly, but if the 
anomalous velocity cannot be neglected, that is what g should mean. 

17.2.3 Relaxation Time Approximation 

Ask what properties the collision term must have. The basic property is that it must 
cause the distribution g to relax toward thermal equilibrium. The relaxation time 
approximation consists of nothing more or less than the simplest functional form 
of the collision term with this property. It is 

dg_ 
dt coll. T- °rk ■> rk (17.26) 

where 
One might want to replace £7 by £7 — eV/. 

f- — Doing so amounts to a redefinition of ß and ( 1 7 . 2 7 ) 
rk gßr(£-i—ßf) _i_ 1 is not necessary if ßj. is defined to be the con-

stant that produces the correct density n(r). 

is the Fermi function appropriate for the density and temperature at position r. 
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The effect of the collision term is to make g rise wherever it is smaller than 
/ , and make it shrink wherever it is greater. Allowing / to depend upon position 
through \x and ß allows study of systems that are slightly out of equilibrium, such 
as bars of metal with uniform temperature gradients. The distribution g will try to 
relax everywhere to the local equilibrium distribution / . However, the dependence 
of / on position through density and temperature must be included. Otherwise 
there is no reason to expect g to be close to / even for very small external fields 
and temperature gradients, because total changes in temperature and density over 
large distances may be large. The constant out front, r, is the relaxation time. 

The relaxation time provides an approximate but effective way to incorporate 
a variety of complicated processes tending to bring condensed matter toward equi-
librium. In the simplest possible approximation, r is simply a constant, and all 
electrons decay toward zero velocity at the same rate, regardless of their energy or 
direction. This approximation is useful for simple estimates, but does not survive 
careful comparison either with experiment or calculation. For example, theoretical 
calculations in Section 18.2.1 show that above the Debye temperature, the relax-
ation time of an electron with energy £ is proportional to £ - 3 ' 2 . In general, there 
is no reason why the relaxation time of an electron with Bloch index k should not 
depend in detail upon k, but the balance between simplicity and accuracy recom-
mends allowing r to depend upon k only through £^, and r£ will generally be 
understood to depend upon £ in what follows. 

Method of Characteristics. Once the relaxation time approximation is employed, 
the Boltzmann equation has a simple formal solution. Because g depends upon t, 
k, and r, the total time derivative of g is 

dg dg ■ dg 7 dg 
dt dt dr dk 

and Boltzmann's equation (17.10) becomes 

dg g-f 
dt T £ 

dt'f(t')-
-(t-t')/TZ 

Te 

(17.28) 

(17.29) 

(17.30) 

Figure 17.1. The distribution function g re-
sults from time averages over the histories of 
electrons that at time t end up at r and k. 

In Eq. (17.30), f{t') is shorthand for/(?(?'), k(t')), in which r(t') and jfc(f') are 
solutions of the semiclassical equations of motion (17.3). They evolve in time in 



Boltzmann Equation 489 

such a way that right at t' = t they become equal to r and k. What Eq. (17.30) says 
is that to find how many electrons are at rk now, go back in time and find how many 
were destined to evolve to this point, as in Figure 17.1, obeying the semiclassical 
equations. But there is no need to go back too far, because the longer electrons have 
to travel, the more likely they are to be deflected from their trajectory by collisions. 
Integrating Eq. (17.30) by parts gives 

J — oo 

-(t-t')/TE 

dt 7/(0 (17.31) 

This form has the virtue of writing the solution of the Boltzmann equation as a sum 
of the unperturbed part of the distribution plus a correction. Recalling that / is the 
Fermi function evaluated at local temperature and chemical potential one can carry 
out the derivatives in the case where the Hamiltonian is given by Eq. (17.2) to find 

>r* : Jrk dt'e-(t-,">lT* 
d -.• d 

r,'-87 + kt> 
dk\ A'). 

Using Eq. (17.27) to write 

df df. - vr 
(e-^-Vl 

Although the indices k and f are 
being dropped, they are implicitly 
still present. 

and 

dl dS. dk du V' 

(17.32) 

(17.33) 

(17.34) 

with Eq. (17.3) for k gives the path integral expression due to Chambers (1957), 

g = f- f Jt'e-^''^vr[eE + Vß + ̂ VT] ^M. (17.35) 
Use —df/dE = df/dfi. The magnetic induction does not appear explicitly 
because v ■ v x B = 0. 

In cases where the semiclassical dynamics are slow compared to the relaxation 
time r£, one can carry out the time integral, neglecting the time dependence of 
everything but the exponential factor, giving 

,oc^v^__vrj—. g = f ~ nm. ■ \eE + V// + (17.36) 

17.2.4 Relation to Rate of Production of Entropy 

The various terms entering Eq. (17.36) appear quite complicated, but can be put in 
more elegant form when it is realized that they represent the creation of entropy. 
First write the first law of thermodynamics in the form 

,dS 
dt 

9£ 
dt H 

dN_ 
dt' 

(17.37) 



490 Chapter 17. Transport Phenomena and Fermi Liquid Theory 

Defining 

IN = Nv and J^ = £ 
N 

to be particle current and energy current, one has 

dN 
dt + V-JN = 0 

and 
9£ 
dt + VJ£ = FJN, 

(17.38) 

(17.39) 

(17.40) 

where F is the external set of forces upon particles. It follows from combining 
Eqs. (17.37), (17.39), and (17.40) that 

.dS 
T^--ßV-JN + V-Jz = F-JN dt 

so the rate S at which entropy is generated is 
JE — HJN 

(17.41) 

S . - + V- ^ - v ( f ) - / „ + v ( i ) . y £ (17.42) 

V"' 
(17.43) 

Identifying the external force F with — eË — ev/c x B, and combining terms 
from the right-hand side of Eq. (17.42). 

The right hand side of Eq. (17.43) describes heat produced per time Q, be-
cause the left-hand side of Eq. (17.42) is a continuity equation for entropy of type 
Eq. (5.5). Define 

Qa fk -eE - V/x ► vr (h-v) 
_, . £j is the energy of one particle . . . 

• V^ t ̂  - ( 1 7 . 4 4 ) 
kJ k with wave number k. 

to be heat production per wavenumber per volume. Then Eq. (17.35) may be writ-
ten as 

Sfk-ffk + j[jt'e-^')^Q{t')j-Xnm Both Q(t') and / ( / ' ) are evaluated along tra-. 
jectories 7{t'), k(t'). 

(17.45) 

17.3 Transport Symmetries 

The solution of the Boltzmann equation is now in a form that reveals the natural 
symmetries of transport phenomena. 

The question to answer is the following. Suppose one applies a weak forcing 
field to a system, perhaps an electric or magnetic field or a thermal gradient. What 
response should be associated with that force? For example, applying a heat gra-
dient will in general induce an electric current as well. Should one define "heat 
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current" to include some electric current? The answer is that one should define 
the flux induced by a force to be the derivative of heat (entropy times temperature) 
generation with respect to that force. The reason for this definition is that it leads 
to symmetries. 

In general, define the flux Xa associated with the force xa to be 

Xa = ^ - . (17.46) 
uXn 

Examples of Forces and Fluxes. Take the force x in Eq. ( 17.46) to be the electric 
field E. Going to Eq. (17.43) and taking the gradient of Q with respect to E gives 

-e%=l (17.47) 

So the flux conjugate to an applied electric field is the electrical current. Or, take 
the force to be a temperature gradient VT. Then the flux is 

-j{Z-A%- (17-48) 

The product of a flux with its force always has dimensions of energy per time per 
volume. 

17.3.1 Onsager Relations 

Suppose now that a system is subjected to several forces simultaneously. If each 
of them is sufficiently weak, then the fluxes which are induced should be linearly 
proportional to what has been applied. However, the results are not obvious. For 
example, a temperature gradient will in general induce an electrical current. There-
fore, one has to consider a general linear response of the form 

Xa = y LagXg. The coefficients Laß are arbitrary for the moment. ( 1 7 . 4 9 ) 

ß 

The Onsager relations state that 
The flux of ß in response to force a is the 

LaR (B) = Lßa (-B) . same as the flux of a in response to force/J, ( 1 7 . 5 0 ) 
provided that one also reverses the sign of the 
magnetic induction B. 

The Onsager relations can be derived by computing Laß. Starting with Eq. (17.5) 
for total heat production, evaluating the occupation number of r and k states with 
Eq. (17.45), Problem 4 shows that 

-a/3 
,dQ[f),t_t,)/TFvd ,„ „.jdQ(t' l^U'^'-'^w«1« dxß 

(17.51) 

From Eq. (17.51), one can see the origin of Onsager's symmetries, as well as 
the conditions under which they fail. The main ideas are as follows: 
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As a consequence of Liouville's theorem, one can choose to integrate either 
with respect to kt and rt or with respect to kti and 7y; the integration measures 
are the same. Therefore, if it were not for the troublesome term df(t')/d^, the 
integrand of Eq. (17.51) would be quite symmetrical. The condition for Onsager 
reciprocity is therefore that it not matter whether df/d/i is evaluated at k, r or at 
~kt', rt'-

This requirement permits Onsager's symmetries to survive large magnetic fields, 
because although magnetic fields make ktr rotate, they do it in such a way that the 
energy of the particle does not change, and 

k = k,,=>f(t) = f(t')- (17-52) 
By contrast, electric fields conserve £ — eV rather than £, so electric fields are not 
allowed to be too large. However, one only has to worry about times on the order 
of the relaxation time r£, or electron motions through a mean free path, because 
otherwise the exponential becomes small. So the condition for the symmetries 
(17.50) to hold is that all externally imposed electrical and thermal potentials must 
vary negligibly on the scale of the electron mean free path. Under these conditions, 
the integrand of Eq. (17.51) has the following symmetries. Send 

f' (17.53a) 

If one starts out with some initial condition k, r, then run-
ning it forwards in time by t — ;' is the same as reversing ( 1 7 . 5 3 b ) 
the sign of B and k, and running it backward in time by 
amount t — t'. 

Using the symmetries Eq. (17.53) and switching to an integral over kt>, rti in 
Eq. (17.51) results in the Onsager symmetry (17.50). 

17.4 Thermoelectric Phenomena 

Boltzmann's equation in the form of (17.36) provides everything needed to explore 
the response of solids to electrical, magnetic, and thermal fields. In what follows, 
all electrons are assumed to belong to some particular band n, and therefore the 
band index n will not be written explicitly. When more than one band crosses 
the Fermi surface, contributions of the several bands would need to be summed 
together. 

17.4.1 Electrical Current 

Consider first a solid immersed only in a uniform electrical field. The electrical 
current per volume j is 

t^> 
B^ 

h-
r,'~ 

t'- t' 
-B 

y-k. 
>r-t> 

7* ç This integral will find the current contributed by 
7 „ I \yft] 75-, p -, electrons in the nth band, and accordingly the in- / I T C ^ \ 
J - v - c J ^ », S7k. tegrai 

is over the first Brillouin zone, not all of k 
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The conductivity tensor a is defined by 

djoc aaß (17.55) 
<J^ß 

= e2 [dk]TEVaVß^-. Using Eq. (17.36) and differentiating (17.54) ( 1 7 . 5 6 ) 
.1 u[i with respect to Ep. Dependence of üj on k is 

not displayed explicitly. 

There are two interesting ways to develop this expression. 

1. The first emphasizes the connection with the free electron result. Assuming 
that the relaxation time r£ can be taken as constant, 

aa0 = e2T f\dk} vJ~—-*-) Differentiating / with respect to ( 1 7 . 5 7 ) 
p J L J v dhkn V1S t h e s a m e a s differentiating v ' 

P with respect to—£j, and 
vB(k) = d£l/dhkß 

/
-> dv 

[dk}f-k—-^- Using the fact that C is periodic ( 1 7 . 5 8 ) 

Öhkß in k across the first Brillouin zone 
to perform integration by parts. 

— P^T I \rlk\ f-CM~^\ a The effective mass tensor was (\ 1 ^Q\ 
- e T J [ÜK\ Jk[M ) a ß . defined jn Eq ( l6 2g) (1 I.W) 

In crystals of cubic symmetry, it is clear from Eq. (17.56) that the conductivity 
tensor is diagonal. The diagonal component is 

ne2r 
0 = -^T, (17.60) 

m* 
with 

1 1 f -> 
= \dk] f v T r ( M - ! ) . The factor of 1/3 out front ( 1 7 . 6 1 ) 

m* 3n J cancels the three terms produced 
by the trace of the matrix. 

2. On the other hand, using in Eq. (17.56) the fact that df/dfi « 6(8 — 8f) in 
metals, and using Eq. (7.73) to obtain an integral J S over the Fermi surface 
gives 

aaß = e J 4^JwTEVaVß' Use Eq. (6.15) to write out [dk]. ( 1 ? - 6 2 ) 

so the conductivity can be understood as an average of velocities and relax-
ation time over the Fermi surface. Because of the assumption that a derivative 
of the Fermi function can be replaced by a delta function, Eq. (17.62) holds in 
metals but not in semiconductors. 

Filled Bands Conduct No Current. Suppose that the Fermi energy lies above the 
highest energy in the band under consideration. Then for temperatures much less 
than the Fermi temperature, one can safely replace / by 1. In this case Eq. (17.58) 
shows that a vanishes because v^, like £^ from which it derives, is a periodic func-
tion of k. Carrying out the integral in the kß direction, Eq. (17.58) gives zero 



494 Chapter 17. Transport Phenomena and Fermi Liquid Theory 

immediately. Equation (17.62) incorporates the same lesson. The integral dT, must 
be carried out over the Fermi surface, and if there is no Fermi surface, it vanishes. 

Thus completely filled bands contribute nothing to electrical current. The rea-
son is that in order to carry current, electrons must accelerate slightly in the pres-
ence of an electric field, which means that their index k must increase slightly. 
However, in a filled band, all the k are occupied, the rate of Zener tunneling out 
of the band is tremendously low, and the Pauli principle prevents electrons from 
altering their states at all. 

17.4.2 Effective Mass and Holes 

If the Fermi energy lies somewhere in the middle of the energy band under con-
sideration, then / equals 1 up to some energy, and then zero thereafter. One can 
rewrite Eq. (17.59) as 

°aß = e2r ^ccupjed [dk] (M-])aß (17.63) 
levels 

n Because / in Eq. (17.59) can be 
= -e2T [dk] (M.-l)a0. replaced by 1 - ( 1 - / ) . The term ( 1 7 . 6 4 ) 

/unoccupied1 ' v ' p resulting from 1 vanishes, and (1 — / ) v ' 
levels is nonzero (and equal to 1 ) only for the 

unoccupied levels. 

When the Fermi level lies near the bottom of an energy band, £^ may be approxi-
mately quadratic in k. A particularly simple form £^ might take is 

h2k2 

K 2m* 

From this form of £j follows an effective mass tensor that is diagonal and whose 
diagonal elements are equal to m*. Using Eq. (17.63), and noting that the integral 
[dk] over occupied levels just gives the density of electrons n, one finds for the 
conductivity 

2 
ne T 

<r = . (17.66) 
K 

Conversely, if the Fermi level lies near to the top of an energy band, in the 
simplest isotropic case one obtains 

hV 
2m 

£ * « £ « - — • (17-67) 
p 

Equation (17.64) is the most convenient formula for computation of the conductiv-
ity in this case, and it gives 

2 
ne T 

g = p is the density of holes, defined in Eq. (17.107). ( 1 7 6 8 ) 

Energy levels that are not occupied—absences of electrons—act like particles with 
positive charge, and are called holes. Because conductivity involves the square of 
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the charge, conductivity cannot reveal the sign of the charge carrier. In a mag-
netic field, electrons and holes orbit in opposite directions, allowing experiments 
in crossed electrical and magnetic fields to distinguish between them. 

The discussion of Bloch oscillations and Wannier-Stark ladders may have left 
the impression that it is not realistic to expect electrons to travel in unexpected 
directions against applied fields. This impression is wrong. Electron mean free 
paths rarely permit them to travel far enough to complete a Bloch oscillation. But 
in solids where the Fermi level lies near the top of an energy band rather than near 
the bottom, the mobile electrons do move opposite the expected direction, leading 
to their interpretation as holes. Such solids are extremely common. 

17.4.3 Mixed Thermal and Electrical Gradients 

Solids subject to simultaneous electrical and thermal gradients often act little like 
free-electron gases. Appreciating that strong interactions with the lattice can change 
the dynamics of electrons near the Fermi surface is the key to understanding qual-
itatively why this is so. 

In accord with the Onsager symmetries (17.50), one needs to begin by defining 
pairs of fluxes and forces. There are three forces considered in Eq. (17.43), E, Viz, 
and V7\ Because E and V/x only enter in the combination eE + V/i, it is sensible 
to define the electrochemical force 

G = £ + — (17.69) 
e 

and is conventional to take —VT/T as a second force. Taking the derivative of 
Eq. (17.43) with respect to —VT/T and G gives the conventional force-flux pairs 

Force Flux 
dr G j = -efN/V =-e J -L Jldk}vfkgfk (n JQ) 

JQ = (JE - ßfN)/V = J Y / ld^\ (£* " ^fkSfk-
-VT _. ,,. ? , ,„„ r dr 

T 
Define the matrices of linear relations between these fluxes and forces to be 

7=L ] 1G + L 1 2 ( - ^ ) (17.71) 

JG = L21G + L 2 2 ( ^ ) . (17.72) 

Inserting Eq. (17.36) into Eqs. (17.54) and (17.70) gives 
i « The equality of Ln and L2' 

i l l p (0) T 12 y 21 r (') T 22 r (2) follows from the Onsager ,\n TX\ 
L - ^ , L, - L - - - ^ ' L ~ ^2 ' relations, (17.50). (U./i) 

where 
La = e1 j[dk] r£ J-vavß (£j - /x)". (17.74) 

dß 
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Defining 
o"a/?(£) = ne1 / [dk] vavß Ö(E - £^), (17.75) 

one has 
L% = j dE^-{e.-ii)vaaß{Z). (17.76) 

Using the fact that at temperatures well below the Fermi temperature in metals 

| £ « < J ( £ - £ F ) (17.77) 
O/J, 

one can evaluate L^ and find 

£% = <Taß(£>F) (17-78) 
2 To find a nonvanishing contribution, one must 

£<>> = —(kBT)2a'J8,F) taketheTaylorexpansionofaabout2F;hence ( I 7 . 7 9 ) 
aß 3 P ° —da/dt appears. The resulting integral v ' 

was evaluated in Eq. (6.67). 

7T2 

^ß = —(kBT)2aaß(8.F). The relevant integral was evaluated in Eq. (6.67). ( 1 7 . 8 0 ) 

17.4.4 Wiedemann-Franz Law 

It is now possible to analyze various physical cases in which thermal and electrical 
gradients are mixed. First, notice that a pure electrochemical gradient causes heat 
flow, and a pure thermal gradient causes current to flow. The thermal conductivity 
is given by 

JQ = K(-VT) (17.81) 

under conditions where no current flows. So 

-» — VT 
0 = L n G + L12( ) (17.82) 

^ G = ( L I 1 ) - 1 L 1 2 — - , Set 7 = 0 in Eq. (17.71). ( 1 7 . 8 3 ) 

showing that a weak field is necessary to oppose the current; in a finite sample, it 
would automatically result from charge buildup at the boundaries. So 

JQ 
1 VT 

L 2 1 ( L U ) _ 1 L 1 2 - L 2 2 ( ) Put Eq. (17.83) into Eq. (17.72). ( 1 7 . 8 4 ) 

T 22 k T 
= > K = h O ( - | — ) 2 L21 andL1 2goas(fcB77£F)2 , and the term ( 1 7 . 8 5 ) 

* ^F they produce can be neglected relative to L22. 

7T2k2T 
Araaß. Assembling Eqs. (17.80) and (17.73). ( 1 7 . 8 6 ) 3 el 

In this way, the Wiedemann-Franz law, Eq. (16.10), is recovered for Bloch 
electrons, giving for the constant of proportionality, the Lorenz number, 

Lo = — ̂ f = 2.72 • 10"13 erg cm"1 K"2 = 2.43 • 10"8 W • fi • K"2 (17.87) 
3 el 
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This simple relation between thermal and electrical conductivity applies compo-
nent by component to electrical and thermal conductivity so long as the relaxation 
time approximation is valid. As shown in Table 17.1, it describes many metals 
rather well at 300 K. The comparison of theory and experiment is considerably 
less successful at 20 K, because at low temperatures the relaxation time approxi-
mation is less reliable. 

17.4.5 Thermopower—Seebeck Effect 

It follows from Eqs. (17.71) and (17.72) that it should be possible to measure a po-
tential drop across the ends of a sample between which there exists a temperature 
gradient. Actually to measure this temperature gradient requires a clever choice 
of geometry, as shown in Figure 17.2. Two separate metals are required, because 
otherwise a temperature gradient across one's measuring device will induce addi-
tional potential drops within the voltmeter and distort the measurement. It should 
be pointed out that although the leads to which the voltmeter is attached have the 
same temperature, so there is no thermal gradient across the voltmeter, the chem-
ical potentials of different metals at the same temperature are in general different, 
and contribute to current flow. This argument explains why the electrochemical 
force in Eq. (17.69) was defined to contain both electric field and chemical po-
tential gradient. The thermopower or absolute Seebeck coefficient a is defined by 

An ideal voltmeter permits no current to flow, so one has only to 
OtSJT return to Eq. (17.71) and set y to zero. Despite being named a coef- ( 1 7 . 8 8 ) 

ficient, a is properly a tensor. 
T 12 2 u2T UsingEqs. (17.79), (17.80), and 

( L 1 1 ) - 1 — = - — ^ - o - - V Eq. (17.73) in Eq. (17.71). ( 1 7 8 9 ) V ' T 3 e 

The fact that Eq. (17.89) involves er~'er' suggests that the relaxation time might 
cancel out, just as in the ratio of electrical to thermal conductivity, and make the 
Seebeck coefficient a good testing ground for theory. In fact, it is very sensitive 
to the derivative of the relaxation time with respect to energy, a quantity that is 
very difficult to calculate with precision, so experimental values of the Seebeck 
coefficient are hard to predict or interpret. 

G = 

Figure 17.2. In order to measure thermopower, it is necessary to create a temperature 
gradient across two separate metals, so as to avoid temperature gradients across the leads 
of the voltmeter. 
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Typical measured values of the thermopower are on the order of microvolts 
per degree, and some values are listed in Table 17.1. The table does not go into 
great detail. For example, the thermopower of bismuth is highly anisotropic; ther-
mopower parallel to the main symmetry axis is —110 p\ K"1 while that perpen-
dicular to it is -54 pV K- 1 . 

17.4.6 Peltier Effect 

The Peltier effect occurs when current flows in a bimetallic circuit without temper-
ature gradients. The flow of electrical current induces a heat flow defined to have 
magnitude 

j Q = Uj. (17.90) 
One sees from Eq. (17.72) that 

IT = L ( L ) =Tct. The matrices L11 and L21 must commute to obtain ( 1 7 . 9 1 ) 
the relation to the Seebeck coefficient a. 

This result applies to a single metal. If two metals are arranged in series, then 
different heat currents will flow in each, and the junctions will either emit or absorb 
heat. This heat must be extracted or absorbed if temperature gradients are not to 
build up, so the Peltier effect can be used for heating and refrigeration. Problem 
7 shows how heat transport is related to Peltier coefficients, and it shows that the 
usefulness of a piece of material either for refrigeration or for generating electric 
current from thermal gradients is characterized by a figure of merit: 

2 The figure of merit in the problem is defined in terms of 
— two materials in a junction. The quantity here is loosely i\n çyy\ 

' incr \ i tv*H \\\r P n ( 1 *7 1 Q*7"\ QTIH i t n u n Kf> nc*»^ \n H i cnncc \ ' / 
PK inspired by Eq. (17.197), and it can be used to discuss 

the merits of a single material. 

where p is its resistivity and K is its thermal conductivity. Z has dimensions of 
inverse kelvin, and sometimes ZT is reported instead. A few materials with partic-
ularly high figures of merit are Bi2Te3 with ZT « 0.6 at room temperature (used for 
refrigerators), and SiGe with ZT ss 0.5 at 1000 K (converts heat to electric power 
in space satellites). The highest figure of merit at room temperature and pressure is 
1.14 in the alloy (Bi2Te3)o.25(Sb2Te3)o.72(Sb2Se3)o.o33Ettenberg et al. (1996), but 
an even higher figure of merit is found in superlattices. These are 5 pm thick films 
in which crystals of Bi2Te3 and Sb2Te3 alternate with a period on the order of 50 
ÂVenkatasubramanian et al. (2001), and the figure of merit reaches 2.4. 

17.4.7 Thomson Effect 

The Thomson effect is the name given to the fact that heat dissipation is different 
in a wire where electric currents flow along with a temperature gradient than it is 
in the same wire when the direction of the current is reversed. The effect is the 
subject of Problem 8. The final result is that the contribution to heat evolution 
which is influenced by a current reversal is 

dca — — -> -> 
-T—VT-j = -pVT-j, (17.93) 

dl 
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Table 17.1. Thermoelectric data for selected elements 
Element Z L/L0 L/L0 a (/^VK"1) a ( ^ V r ' ) 

300 K 20 K 300 K 100 K 
Rnnec 
300 K 

Rfinec 
100 K 

Li ] 
Na 
K 
Rb 
Cs 
Cu 
Ag 
Au 

0.90 
0.91 
0.92 

I 0.91 
0.96 

I 0.96 

0.22 
0.30 

0.31 
0.70 
0.76 

10.6 
-5.8 

-13.7 
-10.2 

-0.9 
1.9 
1.5 
1.9 

4.3 
-2.6 
-5.2 
-3.6 

1.2 
0.7 
0.8 

-1.02 
-0.54 
-0.89 
-0.86 
-0.99 
-0.72 
-0.84 
-0.69 

-0.16 
-0.50 
-0.95 
-0.91 

-0.78 
-0.84 
-0.68 

Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 
Hg 
Al 
Ga 
In 

Sn 
Pb 

Sb 
Bi 

Mn 
Fe 
Co 
Ni 

2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 

4 
4 

5 
5 

4 
2 
2 
2 

0.97 
0.97 

0.92 
0.97 
1.49 

0.89 

1.58 
1.07 

1.36 

0.83 

0.23 
0.78 

0.67 
0.65 
0.65 

0.72 

0.98 

1.7 
-1.5 
10.3 

1.1 
12.1 
2.4 
2.6 

-1.7 
1.8 
1.7 

-0.9 
-1.3 

-10.0 
16.2 

-30.8 
-19.2 

-2.5 
-2.1 

1.1 
-3.0 
-4.0 

0.7 
-0.1 

-2.2 
0.5 
0.6 

-0.0 
-0.6 

-2.5 
11.6 

-8.4 
-8.5 

-30.49 
-1.15 

3.03 
2.06 

-1.97 

-0.96 
-0.96 
-1.00 

-0.05 
0.21 

4.41 

-30.49 

3.89 
1.48 

-0.84 

-0.50 

-23.51 

The Lorenz number is compared to Sommerfeld's value LQ given in 
Eq. (17.87). The Hall coefficient is compared to the ideal value —nee given 
after Eq. (17.108). The Seebeck coefficient a does not compare well with 
free electron theory. Measurements at 300 K encompass those taken from 
290-300; those at 100 K range from 80K-100K. In some cases samples are 
single crystals, and measurements are reported parallel to c axis. Measure-
ments along other axes may differ by factors of 2, and may even have oppo-
site sign. Other samples are polycrystalline, and results depend upon grain 
size. Details should be sought in the sources, which are Burkov and Ved-
ernikov (1995) p. 390, Landolt and Börnstein (1959) p. 97, and Grigoriev and 
Meilkhov(1997)p. 692. 
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where ß is the Thomson coefficient, equal to 

T% (17.94) 

a measure of the temperature derivative of the thermopower. Thomson coefficients 
are on the order of hundredths of microvolts per degree. Wilson (1954) shows 
that the coefficients can be calculated to about 50 percent accuracy on the basis of 
free-electron theory for the alkali metals. 

17.4.8 Hall Effect 

The effect found by Hall ( 1879) determines the sign of charge carriers in metals, 
and showed that holes are as real for transport purposes as electrons. The original 
experiment was carried out in a strip of metal, with a magnetic field H of several 
kilogauss in the z direction, and an electric field pointing along x, as in Figure 17.3. 
The electric field drives a current along x, jx = aE. The magnetic field needs to be 
large enough, the samples pure enough, and the temperature low enough that the 
time required for an electron to execute an orbit around the Fermi surface is smaller 
than the relaxation time r. This high-field limit produces electron orbits such as 
those shown in Figure 17.4. What happens next depends upon the boundaries in 
the y direction. If current can flow across them, then the electric field along x 
induces a transverse current jy along y indefinitely. If current cannot flow across 
them, then charge builds up on the y boundaries, creating an electric field Ey that 
eliminates the transverse current. Hall's results can be deduced from either of these 
measurements. 

B 
A 

w 
x 

Figure 17.3. Geometry of the Hall effect. 

In the presence of crossed electric and magnetic fields, electrons obey 

hk=-e-xB-eE (17.95) 
c 

— j> — — -> V - e _ 9 Where vx is the component of v 
BxM + eBxE = -eB x ( - x B) = — v ± B z

 perpendicular to g. (17.96) 
hcBxk BxÈ 

=4> y , = c Only this component of v contributes . ( 1 7 . 9 7 ) 
e B^ B^ to current. 
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With this relation between velocity and wave vector, it is possible to evaluate 
the path integral solution (17.35) of Boltzmann's equation, giving 

where 

- / = / ' dt' g - ( ' - ' ' )A* 
J —oo 

chBxk 

dt'e-«-n/TEE*% 
B2 

e B2 

ExB 

■eE— 
d[i 

df . . . 
— (AxB)-C--
°f1 (CxA)-B. 

£(*-« ExB df 
dfj, 

l r' 
{k) = — / dt' <<-'')/ra,., AC')-

(17.98) 

(17.99) 

(17.100) 

(17.101) 

Electron 
like 

Hole 
like 

Open 
orbits 

Figure 17.4. Electron-like, hole-like, and open orbits for the Hall effect. 

There now are two cases to consider, shown in Figure 17.4, depending upon 
whether k describes a closed or open orbit. In a closed orbit, k traverses a circular 
closed path; the integral of k over one cycle vanishes, and (k) must be smaller than 
k by a typical factor of T / r , where T is the period of an orbit. So when all orbits at 
the Fermi surface are closed, one can neglect (k) and write as in Eq. (17.54) that 

r 7l ^ df he 
kdfiB2 k-(ExB) 

J[dk] df hcr ,-. s . ~^k-{ExB) 

%J[d1i]m(fUÊxS) 

(17.102) 

(17.103) 

nee ,-± Since V{AB) = AVB + BVA, 
~{EXB) |* .A=i ,and« = /[Ä]/(17.104) 

Because all orbits at the Fermi surface are closed, the Brillouin zone boundaries 
can be located in such a way that no orbits pass through the boundaries. Choosing 
the Brillouin zone in this fashion, either all states at the zone boundary are occupied 
or all are unoccupied. If all are unoccupied, / vanishes there, and the first integral 
in Eq. (17.104) vanishes, giving 

; 
nee (ExB). (17.105) 
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If on the other hand all states at the Brillouin zone edge are occupied, replace / in 
Eq. (17.103) by (/— 1) and repeat the argument, obtaining 

i = ^ ( £ x ß ) , (17.106) 

where 
J[dk](l-f~k) (17.107) 

is the density of holes. 
The Hall coefficient RH is defined to be 

RH = -^r. (17.108) 

It equals —l/nec in the case of Eq. (17.105), where transport is electron-like, and 
it equals l/pec for Eq. (17.106), where transport is hole-like. Some values of the 
Hall coefficient appear in Table 17.1. 

17.4.9 Magnetoresistance 

In the presence of open orbits, such as shown in Figure 16.8 for copper, matters 
are become complicated, because (k) can no longer be neglected in Eq. (17.100), 
and orbits must pass through the Brillouin zone boundary. Rather than trying to 
perform a calculation in this case, the section will close with a comment upon 
magnetoresistance. The resistivity tensor p is the inverse of the conductivity tensor 
a and satisfies 

E = pj (17.109) 

In strong magnetic fields with all orbits at the Fermi surface closed, the conduc-
tivity tensor relating currents and fields along in the plane perpendicular to the 
magnetic field has the form 

r£ B B 
a oc 

RH p ^ RH 
V B~ ~T~e B I 

The off-diagonal components are given by the ( 1 7 . 1 1 0 ) 
definition (17.108). The diagonal components, 
as argued after Eq. ( 17.100), are roughly 7/TE 

7~£ B / smaller; 6 is an unknown constant. 

Because k should be proportional to B for large B, T/r;. ~ 1 /B, and the diago-
nal components of the conductivity decrease as \/B2. Inverting this matrix in the 
large B limit gives the curious result that the diagonal components of the resistivity 
tensor, the magnetoresistance, become independent of B and equal BCJJRHTZ-

In the presence of open orbits, (k) cannot be neglected in Eq. (17.100), and 
the result is that both diagonal and off-diagonal components of (17.110) are of the 
same order of magnitude, going as 1 /B. The magnetoresistance therefore diverges 
as B. The noble metals have such open orbits, shown in Figure 16.8. Their mag-
netoresistance is highly anisotropic, as shown in Figure 17.5, and grows without 
bound as the magnetic field becomes stronger. 
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Figure 17.5. Magnetoresistance of crystalline silver at T = 4.2 K with a magnetic field 
of 2.35 T pointing along [001] . On the y axis is the change Ap in the resistivity divided 
by the zero-field resistivity. Peaks correspond to open orbits. [Source: Alekseevskii and 
Gaidukhov(1960), p. 673.] 

17.4.10 Anomalous Hall Effect 

In materials with spontaneous magnetic moments M, no external field is needed 
in order to produce a Hall current. An electric field along i leads to an electrical 
current pointing along y. This phenomenon is the anomalous Hall effect. 

For many years it was debated whether the effect was intrinsic and present in 
perfect crystals, as first proposed by Karplus and Luttinger (1954), or whether it 
required impurities as proposed by Smit (1955). The resolution of the debate is 
that both mechanisms appear simultaneously in practical experiments, but intrinsic 
contributions to the anomalous Hall conductivity are indeed possible. 

The intrinsic part of the anomalous Hall effect comes from the anomalous ve-
locity in Eq. (16.84). With a uniform non-zero electric field E and no magnetic 
field, the electron velocity is 

d£r eE -
— I + — X fir. 
dhk n k 

(17.111) 

The first term on the right hand side of Eq. (17.111) leads to currents parallel to Ë. 
The second term however produces a contribution 

; = h -Ex J[dk] Vï. 
Since Ë is already a small quantity, there is 
no need to keep track also of the difference 
between g?^ and / j . Sum over multiple bands 
if necessary. 

(17.112) 

and an anomalous Hall conductivity when j is along x and Ë is along y of 
„2 

&AH = 
e 
~h~ 

J[dk] Cli f-. The integrand must also be summed over all 
k k occupied bands. 

(17.113) 

It is not immediately obvious that Eq. (17.113) describes an anomalous Hall 
effect that is proportional to the strength of spontaneous magnetization M. In 
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Figure 17.6. Comparison of experimental and theoretical values for the anomalous Hall 
conductivity a AH in ferromagnetic thin films of Mn5Ge3. The variation of temperature 
from 2 to 400 K causes the spontaneous magnetic moment Mz to vary, and causes a AH to 
vary as well. Contributions from impurity scattering known as side jump scattering have 
been removed from the data. The theory appears to be a simple straight line, but in fact 
results from elaborate band structure calculations without adjustable parameters. [Source: 
Zeng et al. (2006), p. 3.] 

a centrosymmetric crystal, the anomalous velocity f̂  vanishes (Section 16.4.2); 
spontaneous magnetization breaks the symmetry and allows the Berry connection 
and anomalous velocity to develop. Demonstrating this idea in a quantitative way 
requires the full machinery of band structure calculations. 

Computation of Q^ leading to a prediction for anomalous Hall currents was 
first carried out by Jungwirth et al. (2002). Figure 17.6 shows a comparison of 
theory and experiment for the anomalous Hall effect in thin films of Mn5Ge3. The 
spontaneous magnetization Mz varies strongly as a function of temperature, and 
the spontaneous Hall coefficient varies with it nearly linearly. Additional values of 
computed and measured anomalous Hall coefficients appear in Table 17.2. 

Table 17.2. Anomalous Hall conductivity at 
low temperature for selected ferromàgnets. 

bcc Fe fee Ni hep Co 
Computation (S/cm) 753 -2203 447 
Experiment (S/cm) 1032 -646 408 

[Source: Wang et al. (2007), p. 7.] 

17.5 Fermi Liquid Theory 

17.5.1 Basic Ideas 

Fermi liquid theory was developed by Landau (1956) for the purpose of explain-
ing 3He, but it has a significance that reaches beyond this particular application. 
It explains why a system of strongly interacting particles might continue to act in 
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accord with the single-particle approximation, and it provides a way to quantify 
the changes produced by interactions. The basic idea is that one should focus on 
excitations of the strongly interacting system, without worrying about the precise 
nature of the ground state. These elementary excitations act like particles, and 
therefore are also called quasi-particles. Their energies are nearly additive, and 
one can build complicated excited states by adding together many quasi-particles. 
Quasi-particles do interact with each other, but less strongly than the original par-
ticles from which they are constructed. 

(A) (B) 

Figure 17.7. (A) An excited state of a collection of fermions, where precisely one fermion 
is given an energy above £.F. (B) In order for the fermion sitting outside the Fermi sea 
to interact with those inside it, it must create a final state in which some particle has been 
ejected from below 8.f to above Ef. 

Here is a thought experiment to show where the quasi-particles come from. 
Build a metal, or ajar of 3He with a knob on one side. When the knob is at zero, 
all of the interparticle interactions of the system are turned off. For a metal, the 
Coulomb interaction between electrons is set to zero, and for helium the short-
range repulsion between helium atoms vanishes. When the knob is at 1, the in-
teractions between particles reach full strength. Placing the knob at zero creates 
a noninteracting Fermi gas. Consider this gas in its ground state, except that one 
particle is given wave vector k at energy £] a tiny bit above the Fermi surface, as 
shown in Figure 17.7(A). All the excited states of the noninteracting system can be 
described by exciting one or more particles above the Fermi surface in this way. 

Now imagine turning the knob slowly to 1, so that all the particles below the 
Fermi surface, in the Fermi sea, begin to interact with each other and with the 
particle sitting above. According to the adiabatic theorem [see Landau and Lif-
shitz (1977), p. 148, or Schiff (1968), p. 289], if the knob turns slowly enough, 
the system evolves continuously into an eigenstate of the interacting Hamiltonian. 
However, this is not the situation of interest to Fermi liquid theory. Instead, to con-
struct Fermi liquid theory, imagine turning the knob at a rate that is rapid compared 
to the scattering time r of k states near the Fermi surface. The result of turning the 
knob will be a state that still has eigenvalue k, which means that it has eigenvalue 
expD'À: • R] when translated through R. However, it will not be an energy eigenstate, 
and will decay in time. 

The essential point is that for states lying very close to the Fermi surface, the 
scattering time r goes to infinity as (£i — £ F ) ~ 2 , which means that one can turn 
the knob arbitrarily slowly and still end up with k states after the knob reaches 1. 
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It is possible to explain the divergence of r by examining the structure of the 
electron scattering problem, without performing a detailed calculation. As shown 
in Appendix C, when particles interact with two-body interactions, the interaction 
Hamiltonian takes the form 

Û[nt = V Ih,-ret _ Â _ Cr Cr, , . ( 1 7 . 1 1 4 ) 
l m Z ^ k'qk k'-q,<r' k+q,a k,a k',a' v ' 

k'qk 

According to Fermi's Golden Rule, Eq. (13.99), the rate at which a particle leaves 
state k and goes to some other state is proportional to the number of final states 
available after the scattering process. Possible final states are determined by ask-
ing for what states (^f| the matrix element (^^f/intl*1) is nonzero. Only one 
particle, with wave number k, lies above the Fermi surface in the initial state, so k' 
in Eq. (17.114) must lie below the Fermi surface. If q = 0 or q = k' — k, the final 
state is the same as the initial state, and the wave number of the particle has not 
changed. The only other possibility is for the final state to consist of two particles 
above the Fermi surface, with wave vectors K — q and k + q, and a hole of wave 
vector k! below it, as shown in Figure 17.7(B). As the particle with wave number k 
descends closer and closer to the Fermi surface, it becomes more and more difficult 
to find acceptable final states. Equation (13.99) becomes 

T ( ^ ^ ) = / ( n ^ / 0 ( £ / ) ) Y 5 ( £ 1 + £ 2 - £ 3 - £ 4 ) | ( * f | ^ n t | * i ) | 2 . (17.115) 

Taking into account the fact that £3 and £4 must be greater than £f, while £2 < £ F , 
and taking the matrix element to be constant when all energies lie very close to the 
Fermi surface, Eq. (17.115) becomes 

y(k^k')(x [ F d£2 [ ' 2 F r f £ 3 o c ( £ i - £ f ) 2 o c r - 1 . (17.116) 
J2£.F-£.\ JEF 

As claimed, the scattering time of k states diverges near the Fermi surface. 
To summarize: There exists a set of wave functions that are in one-to-one corre-

spondence with low-lying excited states of the noninteracting Fermi gas and behave 
under translations like noninteracting particles with index k. One can also construct 
states in correspondence with low-energy holes of the noninteracting gas. These 
states are not true energy eigenfunctions, but they decay very slowly near the Fermi 
surface. 

17.5.2 Statistical Mechanics of Quasi-Particles 

Energy Functional. Landau (1956) proposed a phenomenological description of 
a quantum state inhabited by many quasi-particles. Let /^ describe the occupation 
number of state k. In the ground state all f^ below the Fermi surface are 1 ; all above 
are 0. Next, let 8f^ describe the difference between the occupation of state k and its 
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occupation in the ground state; in the ground state, all 8 fa are 0. Suppose that the 
energy of the quantum state can be expanded in terms of the occupation numbers 
8fa (the spin state a will not be shown explicitly on 8fa unless necessary): 

ka *.*'. 

The function £i0) gives the energy of noninteracting particles. For a metal, it is the 
energy of Bloch wave functions, while for helium it is h2k2/2m. The function u^, 
describes interactions between the quasi-particles. 
Zero Temperature. The energy needed to add one quasi-particle 8fa above the 
Fermi surface is 

l'a1 

If the chemical potential ji rises, the system will fill with quasi-particles until the 
cost of adding them rises above /i. Similarly, if the chemical potential drops, states 
will empty out until £^ = /z. Therefore, in equilibrium at zero temperature where 
ß = 8.F, the occupation numbers / are 

/j<o) = 0 ( £ f - £ z ) . (17.119) 

For an isotropic system the Fermi wave vector is defined by £ ^ = £f. Because 
indexing of the quasi-particles is in one-to-one correspondence with free particles, 
relationships for free particles are preserved, such as 

* = E / * = � * = ^ = 3 ^ - (17-12°) 
kcr 

Low Temperatures. The grand partition function of the Fermi liquid is 

Zgr = ] T exp { - / 3 [ £ ( £ f -ß)8nl + \ Ç 8H uVk,8n^\ (17.121) 
Srir —5rtj trr kk' 

The integers 8n^ take values 0 and 1 above the Fermi surface, and — 1 and 0 below 
it, and are distinct from the occupation probabilities 8fa, which are the thermal 
averages of the ôn's. This partition function cannot be summed exactly, but at 
low temperatures its properties can be obtained with excellent accuracy from a 
mean field approximation. To carry out the mean-field approximation, replace 8n 
everywhere by 

8n~ = S f~ + (8n of-) To learn why this approximation is called mean ( 1 7 122) 
k Jk K k Jk> field theory, see Section 24.4. 
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and keep only up to linear order in the second term of (17.122), regarded as small. 
The grand partition function becomes 

Zgr = E e 

Stir = 0 , 1 . . . 

^E*CT
 £Î -/j+E*'CT' uVk'hh'\&ni+^\ E «' v* uw5fv 

n 
ist' 

e~2ß5f-k uü,6fv En -ί[£?-p]önj 

JJ e iW; ««,*/*, TJ(j +e-ß[£i-iAhi 

(17.123) 

(17.124) 

(17.125) 
**' No-

where hj. = — 1 if state k lies below the Fermi surface, and h-k = 1 otherwise. 
The expectation value <5/j of occupying state £ is given by 

*/Ï=n gl W * "M"5/*' 

C T O " ' 

E 
<5nj = 0 , 1 . 

Snl I I e-ft£i'->4Snv/Zg,, (17.126) 
Fa ' 

and because most terms cancel between numerator and denominator it is 
1 

Vï h — fi '. fm defined in Eq. (17.119). 
'k ephl(^-ß) + l eß(ei-ß) + l n 

(17.127) 
So the quasi-particle states are occupied with a probability that is given by the 
Fermi function. However, because £^ depends upon the occupation probabilities 
through Eq. (17.118), Eq. (17.127) is a complicated implicit expression. 
17.5.3 Effective Mass 

The effective mass m* of quasi-particles is defined by 

Hkf 
VF 

m" 
(17.128) 

Because of the interactions w-g,, the effective mass and bare particle mass differ. 
The method employed to calculate the change is a generalization of the technique 
used in Section 16.2.2. The idea is to compute the total particle current of a system 
with quasi-particles in two different ways and, by comparing them, deduce the 
effective mass. 

First Calculation of Particle Current. The quasi-particle states were specially 
chosen so as to be eigenfunctions of momentum, so evaluating the total flow of 
particles 7/v is easy. For helium it is 

Ä=E(*I-I* (17.129) 

kh kh 
\ —f-, = \ — O f ? . The difference between / and Sf is spheri- ( 1 7 . 1 3 0 ) 
"tr"* m ' T - ' nt cally symmetrical. 
ko ko 
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For a metal, the matrix element (17.129) would be evaluated as following Eq. (16.24), 
and it would give an effective mass due to interactions with the lattice, rather than 
simply m. 
Second Calculation of Particle Current. However, the current carried by a col-
lection of particles can also be calculated by calculating how their energy changes 
when all their momenta change by a small amount. 

To see why, consider the operator that generates small changes in momentum 
P-

/ dpi i 

Acting on a general Hamiltonian "K with this operator gives 

[i-t£p-Rt/h] I Yl £ ; + \ E tfinttö.Rß) I [i+'Ep-RiW (17-132) 

= Ä + V f - . (17.133) 
^ m 

So particle current can be calculated by taking a collection of quasi-particles, in-
creasing all their momenta by p = hdk, finding the change in their mean energy, 
and dividing through by Hdk, just as in Eq. (16.24). 

To apply this idea to the energy function of Eq. (17.117), note that if the index k 
of all quasi-particles increases by dk, then the occupation probability fa is replaced 
by fa_di- Increasing the momenta of all quasi-particles by hdk changes their energy 
to 

EtfVi-A-f?\+\ YVi-*-f?\*&\fv-A-$\ (17-134) 
l a kk', 

era' 

d£- 1 
=<**■£ fi-w+T, £ f ^ + 2 E Hi «**/*■ <17-135) 

la OK la », 
era' 

See Eq. (17.127). Multiply out the interaction term, whenever l — dl appears, change the 
summation index sending J —> & + dk, use u^, = «J,J , and expand out to first order in dl. 
Differentiating the change in energy by hdk gives 

•̂ =Ev* ( 1 7 - 1 3 6 ) 
la 

with 
lh = Derivatives of £r give the group velocity. M 7 137) 

k dhk 
To express Eq. (17.136) in terms of of rather than / , write 

A - L ^ + E ^ - » « * <'7,38, 
ka kk 

<J<J' 
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<9£( 0 ) Ft 
: E -sA-Vi + ElVi+Zflss "r^h <17-'»> 

ka * 
OTT 

8F~ dfi0) 

= y^ èSfr — 'S^ ^ r Urr,Sfr, Regroup integrals, then integrate ( 1 7 . 1 4 0 ) 
^ Ôhk k j ^ dhk kk Jk "y parts. 
ka kk, 

era' 

ka **'. 
era 

The second term on the right of Eq. (17.141) is interpreted as a backflow, a re-
verse flow of the medium around each particle, which inevitably accompanies it 
whenever one tries to drive the particle to create a current. 

Comparing the Two Expressions. Comparing Eqs. (17.130) and (17.141) in the 
case where just one Sf^ is nonzero provides now an expression for the effective 
mass induced by interactions, 

^• + E ^ ^ ( E ^ - E F ) . (17.142) 
nk 
— =hk m " 

k'o' 

Hk hk' 
= + V Wrr, 5(£??-£F) Using definition (17.128). ( 1 7 . 1 4 3 ) 

m* ^-^ m* k 

k'a' 
* -fj ■? Take dot product of both sides with k. 

m -, . S~^ srcW c "\ Assuming the Fermi surface spherical, ,*n , A A^ 
— = 1 + / uTit—T-o(ci —tf) , u 7

 6
j 7 , , . . , ( 1 7 . 1 4 4 ) 

m Z-^i kk' fol v if r i both k and k! must have magnitude kF
 v ' 

%'ai F because Fermi liquid theory is only 
valid near the Fermi surface. 

/
„ „ 1 he angular integral di-, is 

dk'Dr, dE S(oi° - Of) UU,k ■ k' performed over the Fermi ( 1 7 . 1 4 5 ) 

* K' ' KK surface. 

/
r\i p \ The density of states normally includes the 

dZ - V - ^ «77, COS 6 *"Pu l a r intégral, and because that integral is ( 1 7 . 1 4 6 ) 
4TJ- kk' being performed separately, D( t f ) is divided v 7 

by 47T. Ö is the angle between k and k!. 
i /■ 1 u only depends on the angle 

= \+VD(£F)- / d(cOs6) «77, COS 6>. between* and*', and could be ( 1 7 . 1 4 7 ) 
2 J— 1 written as a function of 6. 

So the effective mass m* increases over the bare mass m according to a weighted 
average of the interactions u-^, over the Fermi surface. 

17.5.4 Specific Heat 

The specific heat at low temperatures is related to the density of states at the Fermi 
surface D(£.p). To calculate the specific heat, note that 

la kk' 
aa' 

E £ Ï - » F - <1 7-1 4 9 ) dT 
ka 
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Using Eq. (17.127) for 5f^ gives 

as/- h^ik-v) r kj h-k v dôfp h.k dß 
ÖT [«VM + lp jtjr21 * Mj kBT ^ Ukk' ÖT kBT ÖT 

(17.150) 
At low temperatures, the first term in curly brackets is much larger than the others 
in Eq. (17.150), so 

CV = V [dk] ~ ( £ r - / u ) 2 — ^ r Everything is even in ( 1 7 . 1 5 1 ) 
V J[ J kBT2K k *' [eß(£i-ß) + l]2 % -n, so h% goes away. 

= V / J £ D ( £ ) ^ ( £ " ^[^-,) + l]2 ( 1 7 - 1 5 2 ) 

2 
VT j , . The integral over £ is performed as in Eq. (6.67). This . _ _ 

^ Cy——kBl U[tf). equation is identical to Eq. (6.77). ( 1 / . 1 5 3 ) 

Because the density of states at the Fermi surface is also given by 

D ( £ F ) = f[dk]ö(£F-Er)= i dl ^ £ f - £ ) , = J j _ = !??!** (17.154) 

the specific heat can be used to measure the effective mass. 

17.5.5 Fermi Liquid Parameters 

Moments of U-Q, over the Fermi surface provide the most important information 
about interactions. There is a conventional notation for these moments, the Landau 
parameters. This notation takes into account the possibility that particles with the 
same spin have an interaction that differs from the interaction between particles 
with different spin, so 

"ïît'î = uhl'i = UU' + uVv (17-155> 
uM<i = uk\k<\ = uïï> ~ " 8 " (17.156) 

where the s stands for "symmetric," and the a stands for "antisymmetric." Then 
one defines 

oo 
UIk'='^2 M / ^ / ( c o s 0 ) p / i s a Legendre polynomial. ( 1 7 . 1 5 7 ) 

/=0 
oo 

uh = Y. «Wcos0 ) . (17.158) 
1=0 

The formulae may be inverted: 

"? = ^ / ' * ( « * 0)fl(cos ö ) J M l ± ^ M i (i7.i59) 
2 7-i 2 

/ d(cos 8)Pi(cos 0) " k W \ " ^ ^ (17.160) 
7-i 2 

2 /+1 
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The parameters u all have dimensions of energy. To make them dimensionless, 
multiply by the density VD(8.F) of energy states at the Fermi surface, to get 

F,a = VD(EF)uf, Ff = VD(EF) u\. (17.161) 

Example: Effective Mass Relation. The integral appearing in Eq. (17.147) is 

i r1 

VD(£F)- / d(cos9) cos6urk, (17.162) 

I) ( J ) f d(cos 9) A (cos e)VD(£F)Uïfk'î+
2

Uîfk,i (17.163) 

Ff. (17.164) 

So the effective mass relation (17.147) takes the form 

m* 1 
— = 1 + -Ff. (17.165) 
m 3 

17.5.6 Traveling Waves 

The critical observer may complain that Fermi liquid theory is vacuous. It be-
gins with some unknown quantities, such as specific heat and effective mass, and 
in attempting to improve matters it defines an infinite number of other unknown 
quantities—the interaction parameters—and then relates new unknowns to the old 
unknowns. Nothing has really been learned unless there are some cross-checks. 

Landau provided a check by calculating the speeds of two different sorts of 
traveling waves in 3He. The first of them is ordinary sound, which is a traveling 
pressure wave where the liquid remains in local thermal equilibrium as pressure 
oscillates up and down. The second is zero sound, a traveling wave moving at 
frequencies so high that thermal equilibrium has no time to establish itself. 

Ordinary First Sound. The speed of sound c in a liquid or gas is given by 

2 = dP 
dp 

c = — \s ■ (17.166) 

In liquid 3He, the interest is in temperatures below 1 K. The difference between 
isothermal and adiabatic derivatives is proportional to dS/dn\F, which vanishes 
at T = 0 because S does. Therefore one can replace the adiabatic derivative in 
Eq. (17.166) by an isothermal one and write 

PIP -V ft,, 
(17.167) 

(17.168) 

The motion of sound involves sloshing of mass back and forth; there should be no doubt that the 
mass density p = rr/N/V involves the bare helium mass, not an effective mass. This argument 
would not, however, work for a metal, where sound also involves motion of the ions. 

2 VdP 
mdN 
N dp, 
m dN 

V d dF 
^TV~~m~dN~dV~ 

Nd2F 
l v ~ mdN2' 

-Vdp 
m dV 
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Equation (17.168) provides one explanation of why Fermi liquid theory expands 
the energy out to quadratic order in quasi-particle densities; the second derivatives 
needed to find sound speeds could not be obtained correctly otherwise. 

Because fi is the natural independent variable, the easiest quantity to calculate 
in Eq. (17.168) is dN/d/i. At very low temperatures, where the sound speed is 
being computed, one obtains 

öfi = 6(ß-£.I)-9(£.F-£.i\ß=£F) (17.169) 

= » - ^ = <*(£2-M)(l- lT*) (17-170) 

jx is oscillating around some equilibrium value as the wave passes by, and the occupation numbers 
Sf are given by subtracting from / the occupation number appropriate in equilibrium. 

= * ( £ j - / i ) [ l - £ « g , ^ ] . (17.171) 
l'a' 

Now define 
x-^ dô ft, 

k'a' 

Equation (17.171) guarantees that k! lies on the Fermi surface, and because k also 
lies on the Fermi surface, while u-^, depends only on the angle between k and k', 
A is independent of k. Then using Eqs. (17.171) and (17.172), one obtains 

A = j[dk'} „ _ , £ ( £ - , - ^ ( l - A ) (17.173) 

= B(\-A), where 5 = £ "«,<*(£* "A*) = *o (17-174) 
k'a' 

B FÂ 
^A = = —2—. (17.175) 

\+B 1+F0* 
The total number of particles N in the system differentiated by ß is therefore 

*=£^ <m76) 
ka 

= C(5 (£ j - / z ) ( l -A) (17.177) 
ka 

= VD(EF)-^— (17.178) 

mD{£F) 
[l+F*) (17.179) 

/ tfl 
■■VF\ ( 1 + F n ) . Use Eqs. (17.120), (17.128), and (17.154). (17.180) 

3m 
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Zero Sound. When the frequency of oscillation is very fast compared to the 
scattering time of quasi-particles, the population of quasi-particles has no time to 
arrive locally at the equilibrium described by Eq. (17.169). To describe traveling 
waves in this limit, one can turn to the Boltzmann equation (17.10), interpreting g = 
fa as the occupation number of quasi-particle excitations and using Eq. ( 17.118) as 
the energy functional corresponding to Eq. (17.2). 

It is enough to consider cases in which deviations of the distribution function 
from equilibrium are small, and then linearize in the deviations. Letting fi0) from 
Eq. (17.119) denote the equilibrium distribution and then expanding to first order, 
one finds immediately 

0i * dfX'n at, «J di 
k 

(17.181) 
coll. 

If 6f-ï varies in space, so does £-7 through its dependence on ôf, but the variation of £-7 
with 7 is a small quantity. 

The point of focusing upon time scales short compared with the scattering time 
(near the Fermi surface), is that the scattering term becomes negligible. To proceed, 
carry out a Fourier transform in time and space, going over to variables UJ and q 
respectively, to obtain 

(uj-q-V-~k)Ôf~k-8(£,-~k-£.F)q-V-~k(Y^ UïpSfl,)=0. Because S/."" /S£T. = -<5(£j-£f). 
l'a' 

(17.182) 
All of the action is at the Fermi surface, and Of behaves as a delta function near 
there. To make this fact explicit, define 

^ 5 ( £ F - £ 2 ) = % (17.183) 

Then 
[u-q-v^-q-v^Y^ UU'(H'=0- (17.184) 

l'a' 
To simplify matters at this point, assume that D(Ep) u-g,, is spherically symmetric 
and can be replaced by FQ

S'. The assumption is not reasonable: Ff must be included 
as well, but the additional algebra is left for Problem 12. Proceeding as if FQ were 
enough, one obtains 

\u> - q ■ Vr](j>7 - q ■ VrFn / —— <f>r, = 0 . The integral is a surface ( 1 7 . 1 8 5 ) 
* K J 4-TT integral over the Fermi 

uj — q-u^J 4TT 

Equation (17.186) shows that cfyk depends only on the angle between q and v-^ 
(which points along k) and can be written as <?!>(cos 9). Let 

oo 
(/>(C0S 6) = ^2 Pl(C0fi &)4>l Legendre polynomials, again. ( 1 7 . 1 8 7 ) 

/=0 
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0(cos 6) = - [l CO 

qvp cos 9 
•l 

F°^°2 / , d{C°S e) I1 CJ 

= -Fed 

1+fi? 

l4-^ln( + 2 gu/r a; + guf 

1 + 1-^-1 n ( ^ ^ 
2 gt>/r w + qvf ' 

co — qvp cos 
to — qvf, 

0. 

(17.188) 

(17.189) 

(17.190) 

(17.191) 

If FQ > 0, there is always a solution of Eq. (17.191) for some value of co/qvp. In 
other words, there is a linear dispersion relation between co and q. Unfortunately 
Eq. (17.191) does not compare well with experiment, because F[ does not turn out 
to be small. Including Ff in the analysis gives instead (Problem 12) 

j/tf(i +!/?) + ( u 
qvF 

)2FI l + ! - ^ l n ( ^ ^ 
2 qvp co + qvp ' + 1 + 0. (17.192) 

A numerical solution of Eq. (17.192) gives the dispersion relation Co = ui/q for 
zero sound. 

17.5.7 Comparison with Experiment in 3He 

The Fermi liquid parameters that enter into Eq. (17.192) were measured in 3He 
by Greywall (1983) and are listed in Table 17.3. Abel et al. (1966) studied sound 
induced by a quartz crystal at 15.4 and 45.5 MHz, and they measured sound speed 
and attenuation as a function of temperature. Ideally the experiment would be 
conducted as a function of frequency, showing that at low frequencies sound prop-
agates with the first sound velocity of Eq. (17.180) and that at higher frequencies 
it propagates at a new velocity given by solving Eq. (17.192). In the absence of 
tunable crystals to create sound of arbitrary frequency in the tens of megahertz 
range, the experiment was conducted as a function of temperature. The reasoning 
was that at sufficiently low temperature one should see zero sound, but at higher 
temperatures additional scattering should bring about thermal equilibrium more 
rapidly, and the velocity should cross over to first sound. The scattering time for 
quasi-particles varies as T~2, and it was estimated that for T = 1 K the scattering 
time is of order 10~12 s. Therefore sound at 10 MHz should begin to travel as zero 
sound when the temperature is on the order of 10 mK. Precisely such a transition 
is demonstrated in Figure 17.8. 

Table 17.3. Fermi liquid parameters for 3He 

/'(bar) R o l no pa m*/m Vf(ms ) 
0 9.15 5.27 -0 .700 -0 .55 2.76 59.7 
3 15.83 6.40 -0 .725 - 0 . 7 3 3.13 54.3 

Source: Greywall (1983). 
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Figure 17.8. Sound propagation velocity as a function of temperature in 3He, at a pressure 
of 0.32 bar. [Source: Abel et al. (1966), p. 76.] 

The experiment was conducted at a pressure P = 0.32 bar, somewhat different 
from any for which the Fermi liquid parameters were measured directly. Using lin-
ear interpolation to estimate the values of the various parameters at this pressure, 
one finds that for ordinary sound from Eq. (17.180) c = 188 m s - 1 , while for zero 
sound, Eq. (17.192) has a solution at ui/qvp = 3.3 which predicts a zero sound ve-
locity co = 195 m s_1. These values compare well with the measurements in Figure 
17.8. The test is not trivial, because Fermi liquid theory has predicted the existence 
of a new high-frequency mode, whose properties are to be found solely on the ba-
sis of specific heat and low-frequency sound measurements. Abel et al. (1966) also 
performed another test of the theory by measuring sound attenuation. Sound atten-
uation can be calculated within the context of the relaxation time approximation to 
the Boltzmann equation, using the relaxation time r as an additional phenomeno-
logical parameter. Attenuation should increase as T2 for zero sound, then decay as 
T~2 for regular sound. This behavior is seen as well, with the crossover occurring 
at the same temperature as the crossover in sound speed. 

Problems 

1. Boltzmann statistics: Calculate the analog of Eq. (17.60), proceeding from 
Eq. (17.56), assuming that the probability / of occupying a state is given 
by Boltzmann rather than Fermi statistics, and verify that the final answer is 
unchanged. 

2. Semiclassical equations: Use Eq. (17.1) to derive Eq. (17.3b). Remember 
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that the vector potential A may be time dependent and contribute to the electric 
field. 

3. Boltzmann equation with anomalous velocity: 

(a) Demonstrate that Eq. (17.22) follows from Eqs. (17.16) and (17.17). 

(b) Verify Eq. (17.24) 

4. Onsager relations: 

(a) Derive Eq. (17.51). Use the fact that TS is linear in the forces, and also use 
the fact that v^ = — v_^. 

(b) Show that Eq. (17.51) leads to the symmetry Eq. (17.50). 

5. AC conductivity: Use the Boltzmann equation to find the response of a free 
Fermi electron gas to an electric field which oscillates in time at frequency io. 

6. Current driven by thermal gradient: Consider a metal subject to a constant 
temperature gradient dT/dx. Assume energy near the Fermi surface to be 
isotropic and of the form £^ = m*vl/2. Show that the electric current jx is 
nonzero and is proportional to 

1 
m* 

dT 
dx ' (17.193) 

where cy is the specific heat. Find the dimensionless constant of proportion-
ality. 

7. Thermoelectric figure of merit: 

Cold, T\ 

Cold, T, 

Hot, T2 

Figure 17.9. A thermoelectric refrigerator 
operates by passing current through a first 
element p with positive Peltier coefficient, 
and into a second n with negative Peltier 
coefficient, causing transport of heat from 
OtoL. 

Consider the operation of the thermoelectric refrigerator shown in Figure 17.9. 
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(a) Argue that the thermal currents JQ and JQ flowing along x in the p and n 
elements are 

Jp
0 = npj-APKP— (17.194a) 

dT 
JQ = -IinJ-A„Kn — , (17.194b) 

where J is the electrical current, KP and the thermal conductivities of 
the two elements, Up and Hn are the Peltier coefficients of the two elements, 
and Ap and An are the cross-sectional areas. 

(b) The temperature gradients are not uniform, because the current flow pro-
duces Joule heating per unit length J2RP:n/L, where Rp and Rn are the resis-
tances of the two elements. Assume that the Peltier coefficients are indepen-
dent of temperature. Solve for the temperature field in each element, and show 
that the flow of heat at x = 0 is 

Jp
Q = IipJ-ApKp

T^-J^- (17.195a) 

JnQ = -HnJ-AnKn
T^^-J-^. (17.195b) 

(c) Find for any given temperature difference T2 — T\ the value of the current Jm 

producing the greatest total heat flux JQ = JQ+JQ. 

(d) Show that the maximum temperature difference T2 — T\ that the refrigerator 
can sustain is 

f n „ - m 2 

(17.196) 
{l\p-Hn)2. 

2RK 

along the way, define R and K. It is conventional to define a figure of merit 

Z = = ( n ^ " " ) 2 ' r = ( r >+^ 2 - ( 1 7 - 1 9 7 ) 

which has dimensions of inverse kelvin. Sometimes the dimensionless ZT is 
also reported. 

8. Thomson coefficient: The Thomson effect is the name given to the fact that 
heat dissipation is different in a wire where electric currents flow with a tem-
perature gradient than it is in the same wire when the direction of the current 
is reversed. Derive the effect first by noting that the flow of entropy may be 
given by 

dS - -, -, -, 
T— = -V-J0 + G-J. (17.198) 

dt 

Use the general equations of linear transport theory to eliminate G everywhere 
in favor off. As a result, find an equation for entropy generation just in terms 
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of electron current and temperature gradients. From this expression, isolate 
the term that will change when the relative direction of heat and temperature 
flow is altered. Relate this term to the temperature derivative of the ther-
mopower, and describe an experiment that would allow one to measure this 
term. 
The simple result of Eq. (17.93) is only correct if L21 and L11 commute. 

9. Hall effect—elementary argument: A simple treatment of the Hall effect 
begins by assuming that electrons obey the equation of motion 

mv = -e lE + -xB) . (17.199) 

(a) Assume that current is not permitted to pass the y boundaries in Figure 17.3, 
so that charge builds up there and creates an electric field Ey in the y direction. 
Assume that when the electron current reaches steady state, electrons drift in 
the x direction at a constant rate. Furthermore, in steady state the y component 
of all electron velocities must vanish, or else more charge would build up 
on the boundaries, and the electric field along y would continue to change. 
Rewrite Eq. (17.199) so as to take into account these two observations. 

(b) Solve the resulting equations to find the Hall coefficient, defined to be 

RH = ^ , (17.200) 
Bjx 

where jx is the current in the x direction. 

10. Hall effect—Boltzmann equation: In order to find the Hall coefficient in 
the context of the Boltzmann equation, one may proceed in the following way: 
Begin with 

dg _ d j 9 g-f 
Qt — VV) Q-fS KpjtS~ T ' Combining Eqs. (17.9) and (17.26). 

In steady state, dg/dt vanishes, so one has 
(17.201) 

Q J, 0 a-f 
v(f)—g + k^g = -^^-. (17.202) 

or dk T 
When a magnetic induction B is present, one obtains 

hk = -e(E + vxB/c). (17.203) 

(a) Guess a solution of this equation in the form 

- - df 
g = f+[D-k-e\^-. (17.204) 

Find expressions for T> and C, assuming that E lies in the plane of the metal, 
and B is perpendicular to it. Neglect a term involving d2f/d/j?. 
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(b) Compute currents along x and y for arbitrary values of B and È, and find the 
electric field strength Ey necessary to guarantee that Jy, the current in the y 
direction vanishes. 

(c) As a result, find the Hall coefficient 

RH = ^-- (17.205) 

11. Temperature dependence of /J: In the context of Fermi liquid theory, find the 
leading temperature dependence of /x at low temperatures. Begin by writing 
the temperature derivative of the total number of particles, and by requiring it 
to be zero, find dfi/dT. 

12. Higher-order expression for zero sound: Verify that if all Fermi liquid pa-
rameters except for F( and FQ vanish, then the dispersion relation for zero 
sound is 

U (l + \rf) + (—)2Fi\ h + i— in £ ^ ) 1 + 1 + ̂ =0. [ V 3 V \qvFJ J L 2qvF u + qvF'i 3 
(17.206) 
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18. Microscopic Theories of Conduction 

18.1 Introduction 

This chapter is devoted to exploring the difference between electrical conductors 
and insulators. Electrical resistance arises from the scattering of electrons as elec-
tric fields drag them through a sample. To connect electrical resistivity with the 
underlying physics at the atomic scale, it is necessary to grapple with the scat-
tering problem directly. The simplest version of this theory treats impurities and 
thermal fluctuations as weak scattering sites, amenable to the same techniques that 
solve the problem of inelastic neutron scattering. 

As the strength and density of impurities that scatter electrons increases, it is 
natural to expect the resistance of the solid to increase as well. What might not be 
expected is that past a certain density of impurities, the solid undergoes a qualitative 
change. It no longer can support traveling waves, and it turns from a conductor 
to an insulator. This mechanism is a subtle quantum-mechanical effect, valid at 
low temperatures. It is only one in a series of ways that qualitative shifts from 
conductors to insulators can occur. The essential difference between insulators 
and conductors is more than a question of filled versus unfilled bands in perfect 
crystals, and the most general explanation has probably not yet been formulated. 

18.2 Weak Scattering Theory of Conductivity 

18.2.1 General Formula for Relaxation Time 

Although the calculation of electronic states in disordered materials is an extremely 
difficult problem, there is one fairly straightforward case, which is an extension of 
the nearly-free electron picture to the case of disordered metals or random alloys. 
Imagine that a collection of electrons sits in a weak but no longer periodic potential. 
If the effects of the potential may safely be treated to low order in perturbation 
theory, then its interactions with electrons may be solved in the same way that X-
ray scattering in amorphous structures can be solved. As first noted by Bhatia and 
Krishnan (1948), the same correlation function governs the two cases, because the 
electrons, like the X-rays, are simply waves bouncing off weak scatterers. 

The starting point is Section 10.2.1, which showed that in some cases, partic-
ularly the alkali metals, Schrodinger's equation for the conduction electrons in the 
presence of a periodic potential can be recast as a problem for plane waves in weak 
potentials. Formally, these weak potentials are nonlocal and energy-dependent, 
because the fact that they are so weak results from the cooperative screening pro-
vided by all the different electrons. All one needs to know, however, is that there 
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524 Chapter 18. Microscopic Theories of Conduction 

are cases where regarding a metal as free electrons in weak potentials has hope 
of quantitative success. Take U(R) to be an appropriate pseudopotential, centered 
at R. In the case of a liquid metal or metallic glass, the locations R label all the 
sites inhabited by atoms. In the case of a random alloy, or a metal with impuri-
ties, the locations R label all the places where the second species or impurity has 
been placed, and U(R) describes the difference between the pseudopotential of the 
original metal and the pseudopotential of the impurity. 

The Collision Term. The collision term dg/dt\co\\ is central to the Boltzmann 
equation. It has been treated so far in the relaxation time approximation. The first 
step in a microscopic theory of resistance is the attempt to calculate the relaxation 
time from an underlying picture of electron collisions. 

The relaxation time approximation is based upon the view that there are effec-
tively random processes causing electrons to alter their wave vectors. What form 
should these processes have? The question can be answered in a purely formal 
manner, using techniques to be presented in Section 20.4. The formal derivation 
can obscure the physical meaning of the various terms that arise, so the presentation 
in this section will emphasize physical arguments over formal ones. 

Consider a collection of electrons described by the distribution function gj,. 
There is no need for the index r, so it will not be displayed explicitly. If an electron 
scatters off nonmagnetic impurities, the probability CP for it to make a transition 
from state k and spin a to state k! with spin a' must have the form 

V(k^V,t)=gi [l-gp] Ôaa>WUf. (18.1) 

Because the scattering potential is nonmagnetic, the jump can only occur if the 
electron spin a does not change. The rate must be proportional to the number 
g of electrons occupying state k, proportional to the number 1 — g of vacancies 
at destination k', and finally proportional to a rate W^, that is independent of the 
occupation number g. Accounting both for electrons that jump into k by these 
processes and for those that jump out gives 

J[dk'} g%,[\ -gl}Wlrk-g%[l-gll}Wrkl. (18.2) dg =V 
dt coll. 2 

The leading 1/2 is due the fact that the spin state of the electron cannot change, effectively 
cutting the density of states in half. \dk'\ defined in Eq. (6.15). 

Equation (18.2) is equivalent to the relaxation time approximation when the 
following conditions obtain: 

1. Scattering potentials into which electrons collide are spherically symmetrical, 
and can be treated as weak. 

2. The energies of occupied electronic states £^ are isotropic, and they depend 
only upon the magnitude of k. 
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The first assumption allows one to write the potential seen by electrons as 
The functions U are spherically symmetrical scattering 

Utnt = / U(r — R). potentials, centered at sites R. They are best thought of ( 1 8 . 3 ) 
■"—̂  as pseudopotentials of impurity atoms added to a perfect 

R crystal, or else as atoms of the crystals out of place. 

Adopting this form of scattering potential, and retracing steps starting with Fermi's 
Golden Rule that led to Eq. (13.104) gives 

WM>= E THZ{-n\(*f\ÛM\V)\2 (18.4) 
final states 

= 27rS'(q,uje)\U(q)\2^. (18.5) 

Here q = k — Id is the change in wave number of the electron upon scattering, and 
huje = 8.J. — £~k, gives its change in energy. The inelastic structure factor 51 appears 
just as for neutron scattering from phonons, now depending upon the change in 
electron energy. The number of scatterers Ns may refer to a dilute impurity with 
strong scattering properties, or to every atom in a liquid metal. 

Because the potential U(r) is spherically symmetrical, U(q) is symmetric in 
k and k' and indeed only depends upon the angle 0 between them. The inelas-
tic structure factor is not in general insensitive to interchange of k and k', but if 
scattering is nearly elastic and uje is very small, then one sees from Eq. (13.104) 
Sl(q, 0) = S'(—q, 0), and assuming one can use this approximation then 

Wu, = Wn. (18.6) 

Next assume that the solution of the Boltzmann equation has the form 
_, -, Here C is a vector that either is constant, or is 

gr = fr -\-Q • k. a function of E-k; it cannot otherwise depend ( 18 .7) 
upon k or f. 

This form is general enough to encompass spatially uniform electric fields, uniform 
temperature gradients, and uniform magnetic fields. Putting Eqs. (18.6) and (18.7) 
intoEq. (18.2) gives 

dg 
dt coll. 

-e-iv J[dV](k-k?)Wu„ (18.8) 
and so j„ o — f Because W-g., depends only on the angle between k and 

k!, only the component of V parallel to k survives the ( 1 8 . 9 ) 
dt c o ' £ integration. If one takes % = kz, W depends only on ki, 

and it is easy to see that the integrals of k'x and k'v vanish 
by symmetry. Note that C-k = g — f. 

with 
— =l-yj[S!] WVk,{\-k-k'). (18.10) 1 _ 1 

Inserting Eq. (18.5) into Eq. (18.10), noting that 

[\-k-k') = 2(^-)\ (18.11) 
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Table 18.1. Mean free paths of electrons in liquid metals 
Metal: Li Na Cu Ag Au Zn Hg AI Ga Sn Pb Sb Bi Fe 
IT (A): 45 157 34 51 27 15 5 20 17 5 6 4 4 3 

Values obtained by treating the metals as free electron gases where lT = 
VfT, and the relaxation time r is obtained from the resistivity p at the 
melting point through T = m/e2np. Source: Cusack (1987) and Grigoriev 
and Meilkhov (1997) p. 555. 

and averaging over initial phonon states as discussed prior to Eq. (13.113) gives 

J[dq]S(q,oJe)\U(q)\2^. (18-12) 
T, ~ 2 V 

In this way, the relaxation time may be related to an integral over the inelastic 
structure factor and the pseudopotential U(q). 

Resistivity of Liquid Metals. A liquid metal is as disordered as a metal can 
be, yet somewhat surprisingly the weak scattering limit is often appropriate, and 
Eq. (18.12) allows quantitative description of resistivity. As evidence, one can use 
the measured resistivity of liquid metals to deduce the characteristic mean free path 
h = vpT electrons travel between scattering events. As shown in Table 18.1, this 
distance is tens of angstroms in the noble metals, although it shrinks to atomic 
dimensions in iron or bismuth. 

For liquid metals, the static structure factor is spherically symmetric. Purely 
elastic electron scattering from such a disordered array of atoms leads to nonzero 
electrical resistivity. So it is enough to consider the limit u>e = 0 where change in 
electron energy can be neglected and write from Eqs. (3.55) and (13.104), 

S{q, Lüe = 0) = S(q) H 6(EF - £{\k - q\)). (18.13) 

In writing this expression, make use of the fact that transport formulas such as 
Eq. (17.54) use k only on the Fermi surface where £^ = £/?. For elastic scattering, 
£.p must lie on the Fermi surface as well. 

To continue the evaluation of Eq. (18.12), insert Eq. (18.13). Doing the angular 
integral over q 

/_ 
6{2kF-q) 

^ </(cos 0)5(£F - E(yJ4 +q2 - 2kFq cos 6)) = g £ / Q ^ (18-14) 

gives finally an expression due to Ziman (1961), 

l l N, r2k" 1 I N ÎLKF -, -, 
— = y-: ^ dqq3S(q)\U(q)\2 /Vs is number of (18.15) 
r£ 4irh2k2

FvF V Jo HH KHn KHn scatters. 
>P=Jî- = ^2&iW r dqq'S{q)\U{q)\2. (18.16) 

neLTt eLnvF v V / Ak% Jo 
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The final expression uses free-electron relations between the electron density, the 
Fermi wave vector, and the Fermi velocity vp. So in the weak scattering limit, the 
resistivity is just given by an integral over the static scattering structure factor S 
and the pseudopotential U. 

In order to evaluate Eq. (18.16), it is necessary to know both the static structure 
function S(q) and the pseudopotential U(q). The former can be measured by X-
ray scattering, and the latter can be obtained either from the density functional 
calculations described in Section 10.2.1, from de Haas-van Alphen measurements, 
or else from optical data to be described in Section 23.4. An example of assembling 
these various ingredients to determine the resistivity of liquid aluminum is provided 
as Problem 1. The calculation outlined in the problem should not be expected to be 
accurate to more than around 50%, but the more careful evaluation of Ashcroft and 
Guild (1965) duplicated experimental values within a few percent. Other properties 
of liquid metals are reviewed by Ashcroft and Stroud (1978) and March (1990). 

Application to Phonons. 
Calculation of the resistance of crystals proceeds in a slightly different way. An 

absolutely perfect crystal has almost no electrical resistance, as Bloch first realized 
[Section 7.1]. Formally this fact emerges without the need for any calculation 
from Eq. (18.12). The leading term Eq. (13.129) in the inelastic structure function 
is a product of delta functions restricting q to the reciprocal lattice, and a delta 
function restricting k and k! to the Fermi surface. These two delta functions are 
incompatible: when k and V are on the Fermi surface there is vanishing chance 
that q = k — K is in the reciprocal lattice. 

For metallic crystals resistivity comes from phonons, which means employing 
Eq. (13.134) to take into account the creation or destruction of one phonon in each 
electron scattering event. 

To simplify matters, keep only longitudinal phonons corresponding to acoustic 
modes, for which the polarization e^\\q. This type of interaction is called normal 
scattering (N-process). The contribution of other phonon bands is not necessarily 
negligible, when they enter in this context it is called called Umklapp scattering 
[U-process; Umklapp is German for "flopping over" and was introduced by Peierls 
(1929)]. It is hard to see without detailed calculation whether normal or Umklapp 
processes should be more important, and both should be included for accurate re-
sults. In the interests of simplicity, the calculation that follows will keep only the 
contribution from acoustic phonons, which is sufficient to give a good idea of how 
the general procedure runs, but not to achieve comparison with experiment on the 
order of 1 % that is possible in the most ruthlessly correct calculations, presented 
by Bass et al. (1990). 

Returning to Eq. (13.134), there are two terms to inspect. In one of them, pro-
portional to 8{u)^ + uje), the phonon of energy %ujq steals energy from the electron. 
This requires the final electron state to have energy lower than the initial state. 
Looking now at Eq. (18.1), one sees that since k is on the Fermi surface, both 
terms on the right hand side of Eq. (18.1) vanish unless the final state is higher in 
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energy than the initial state; the electron must scatter from occupied to unoccupied 
states. Terms where the phonon takes energy from the electron must be negli-
gible at temperatures low compared with the Debye temperature. In the second 
process described by Eq. (13.134), proportional to S(LO^ — u)e), the phonon gives 
energy to the electron. This processes is allowed because the electron moves from 
occupied to unoccupied states. The main effect of keeping track of the energy as-
sociated with phonons is to decide which scattering process is allowed; otherwise 
the phonon energy is negligible in comparison with the electron energies. Thus one 
can write 

t 2 2 Keep only the phonon absorption term of 
S(fl , u) « —nqh6(£F-£(\k-q\) Eq.U 3.134); once this is done it is all ( 1 8 # 1 7 ) 

IMHLÜ nght to neglect the phonon energy inside v ' 
Q the delta function. nq is a phonon 

occupation number. 

Thus 

H t / ^ M^^-^-^0 (18-18) 
3TT /N \ 1 f2^F /j£j2 

^ = ^ ( ^ 4 4 X dqq32lt^U^ USeEq(1814) (J8-19) 

3TT W V , N 1 H ,kBT^5 rWT • i ,Il(kFzTs2 

=^(v)^2Mêy L dzz F^T| £ / (-e-) ' '(i8-2o) 

where c is the longitudinal wave speed, M is ion mass, 0 = hk^c/kß is a De-
bye temperature, and z = Oq/kpT. At temperatures T large compared with the 
0 , Eq. (18.20) is linear in T, while at much lower temperatures the resistivity is 
predicted to vanish as T5, the Bloch T5 law. 

Comparison with Experiment. The most careful comparison of these predictions 
with experiment has been carried out for the alkali metals. As shown in Figure 
18.1, the resistivity is linear to high accuracy at temperatures over 100 K, and it 
begins crossing over to a decay as T5 at temperatures on the order of 20 K. By a 
temperature of 2 K, there is yet another crossover to a decay of resistivity as T2. 
The origin of this behavior is electron-electron scattering, as described in Section 
17.5. Computing the coefficient of T2 is difficult, and it is discussed by Bass et al. 
(1990). 

18.2.2 Matthiessen's Rule 

Comparison of theory and experiment for the alkali metals relies upon extremely 
pure crystalline samples. A piece of wire pulled from the shelf follows predic-
tions of Eq. (18.20) down to around 100 K, but at lower temperatures it begins 
to differ. Grain boundaries, dislocations, and various trace elements scatter elec-
trons, and therefore all contribute additively to resistivity according to Eq. (18.16). 
Matthiessen 's rule states that separate sources of resistivity, such as phonons and 
impurities, sum linearly to produce the total resistivity of a sample just as resistors 



Weak Scattering Theory of Conductivity 529 

Figure 18.1. Resistivity of potassium from 0.1 to 300 K. At the lowest temperatures, the 
resistance varies as T2, from 2 to 20 K, it varies as T5, and from 100 K upwards, it varies 
as T1. [Source: Bass et al. (1990).] 

in a series sum linearly. In any but the purest samples, resistivity is therefore the 
sum of two pieces: a temperature-dependent part resulting from Eq. (18.16), and a 
temperature-independent part that depends exclusively upon preparation and purity 
of the sample. The size of the temperature-independent resistivity is in fact used 
to define the purity of electrical samples. A common figure of merit is the residual 
resistivity ratio (RRR) which is the ratio of resistivity at 30Q K to resistivity at 4 
K. A "typical" sample of aluminum is 99.5% pure and has RRR « 11. A "pure" 
sample of aluminum is six nines (99.9999%) pure and might have RRR = 2500. 

Matthiessen's rule is no more than a good rule of thumb. It relies upon the lin-
earity inherent in the weak scattering approximation, and when this approximation 
fails, so may Matthiessen's rule as well. 

18.2.3 Fluctuations 

At any temperature above zero, resistance is never entirely constant, but fluctuates 
in time. These fluctuations are conventionally separated into three components 

Thermal noise. Thermal noise consists of current fluctuations that are present 
whether a current is flowing or not. When the thermal noise signal is Fourier 
transformed, its root mean square amplitude is independent of frequency, and 
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the magnitude of voltage fluctuations in frequency interval dco for a wire of 
resistance R is 

(ÔV2)=4kBTRduj. (18.21) 
These noise properties were identified by Johnson (1927) and were explained 
byNyquist(1928). 

Shot noise. Shot noise is an additional source of noise that is proportional to mean 
current. The current fluctuations 5J it produces have strength per frequency 
interval duj 

(SJ2)=2eJduj. (18.22) 

1 / / or flicker noise. 1 / / noise is an additional noise source whose amplitude 
grows with decreasing frequency / roughly as l/f. It is fairly ubiquitous, 
yet the specific mechanism that produces it varies from one system to another. 
Dutta and Horn (1981) provide a general explanation of how it might arise. 

18.3 Metal-Insulator Transitions in Disordered Solids 

18.3.1 Impurities and Disorder 

No crystal produced in the laboratory is ever completely perfect. In the case of sil-
icon that has been prepared for use in electronics, the degree of perfection is very 
high. Atoms such as silver and gold whose presence would disrupt electronic cir-
cuitry are excluded to better than one part in 10 '2, and wafers of tens of centimeters 
in diameter are regularly prepared without a single dislocation or grain boundary 
disrupting the crystalline order. However, silicon binds very easily to oxygen, and 
silicon wafers used in electronics typically contain 1018 atoms/cm3 oxygen, which 
is tolerated and rarely mentioned as it does not disrupt electrical properties. Other 
materials such as aluminum or iron cannot be made nearly as pure, and in addition 
to traces of other metals and oxygen contain many dislocations. Small mixtures 
of other elements in a nearly perfect crystals are called impurities, and when one 
wants to call attention to the ways a solid differs from a perfect crystal one calls it 
disordered. 

Disorder destroys crystalline regularity, and the conditions for Bloch's theorem 
no longer apply. One must ask whether the corrections to Bloch's picture are mi-
nor, or whether they produce qualitative changes in the nature of the solid. Both 
outcomes are possible, depending on how strongly electrons interact with the dis-
order. Sufficiently strong interactions can turn metals into insulators. Much of the 
work in this area was instigated by Mott, and is reviewed in Mott (1990). 

An important class of scattering sites in solids are point defects produced either 
by vacancies, sites where atoms simply are missing, or else by substitutional atoms, 
replacing their hosts on randomly selected lattice sites. The effects of point defects 
divide into several different classes. Sometimes they have magnetic moments and 
can flip the spin of passing electrons. Discussion of this case is deferred to Section 
26.6. The nonmagnetic impurities fall into two additional groups. 
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An impurity is called compensated or isoelectronic when it comes from the 
same column of the periodic table as the host crystal. Germanium or tin dissolved 
in silicon, or silver dissolved in gold, provide examples. Adding an atom of this 
sort amounts to a very localized perturbation on the crystal. The impurity carries a 
different number of electrons with it from the host. However, the extra (or missing) 
electrons are entirely confined to core states that are tightly bound to the nucleus, 
localized in space, and largely inert. Section 18.4 will be dedicated to studying the 
properties of electrons in such random potentials. 

18.3.2 Non-Compensated Impurities and the Mott Transition 

When impurities are not compensated, the electrons they carry cannot all be swept 
into a static potential. The effect is as if one has scattered throughout the solid 
atomic-sized spots of extra charge. All the conduction electrons in the solid inter-
act strongly with these extra charges. Simple physical considerations based upon 
classical electrostatics make it possible to explain some of the main experimental 
results in a simple fashion. 

Consider adding an atom of phosphorus to silicon. Phosphorus lies just to 
the right of silicon in the periodic table, and the perturbation it produces is best 
described by adding a single proton to a silicon atom, resulting in a long-range 
potential, falling off as \/r. The phosphorus comes accompanied by an extra elec-
tron as well, but this electron must be viewed as a member of the population of 
conduction electrons, responding to the potential. Its wave function spreads over 
hundreds of adjacent lattice sites. 

Precisely because the spread is so large, the nature of the phosphorus impurity 
may be captured by a simple semiclassical argument, as shown by Kohn (1957). 
The static dielectric constant of silicon e, like that of other semiconductors, is large 
and, according to Table 19.1, equals 11.8. The phosphorus nucleus is therefore 
strongly screened. In addition, as shown in Figures 10.10 and 23.16, silicon is 
technically an insulator. The valence band is filled, and any extra electron must 
enter a superposition of states from the conduction band.. The lowest-lying states 
behave approximately like free electrons, with the provision that the mass of the 
electron be replaced by an effective mass m*, which, according to Table 19.1, is 
on the order of 0.2. A proton in empty space binds an electron at radius ao — 
H2/me2 with binding energy £^ = e2/2ao (this is a hydrogen atom). For phosphorus 
in silicon, the screening of the proton replaces e2 by e2/e, where e is the static 
dielectric constant, and the binding energy becomes instead 

eh e m* 1 
o* = =■ and £* = - — = ~-13.6eV. (18.23) 

m*ez 2ea* m e1 

Because m* jm ~ 0.1 and e ~ 10, a* is approximately 100 times larger than the 
Bohr radius, and the binding energy is approximately 1000 times smaller than the 
binding energy of hydrogen. Some comparisons of Eq. (18.23) with actual binding 
energies appear in Table 19.2, showing that it successfully captures orders of mag-
nitude despite simplifications such as assuming effective masses to be isotropic. 
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The large size of a* retroactively justifies using concepts such as dielectric con-
stant and effective mass that are only valid on scales much larger than a lattice 
spacing. Because of its small binding energy, phosphorus is called a shallow im-
purity, and because it adds an electron to the conduction band, it is called a donor. 
Elements to the left of silicon in the periodic table, such as boron or aluminum, 
come with one less electron than the host and may be treated as a weakly bound 
positronium atom, where a delocalized hole, built from states at the top of the va-
lence band, is attracted to a screened — \/r potential. These elements are called 
acceptors. Other impurities, such as gold, produce much more violent changes in 
the local electronic environment of silicon than do phosphorus or boron and cannot 
be described as hydrogen atoms. They are called deep impurities. 

Metal-Insulator Transition in Si:P. The subtleties of impurity potentials, as well 
as the difficulty of precisely defining the difference between metals and insulators, 
are both well illustrated by examining the behavior of silicon as the density of 
phosphorus impurities increases. Take phosphorus-doped silicon (Si:P) down to a 
temperature on the order of 1 K, so that the chance of thermally exciting a phos-
phorus electron out of its bound state becomes negligible. At low densities of phos-
phorus, the material is nothing but pure silicon, an excellent insulator, and bound 
phosphorus electrons, also insulating. As the density of phosphorus increases, the 
bound electron wave functions begin to interact, and at a critical density the doped 
semiconductor turns into a metal. 

This transition cannot be explained by the view that insulators are solids with 
filled Bloch bands, while metals have unfilled bands. From such a point of view, 
Si:P should always be a metal. Even at low densities, the phosphorus atoms could 
be arranged in a periodic way throughout the silicon. Bloch's theorem could then 
be brought to bear on the rather large resulting unit cell, which would produce 
bands nearly identical to those of silicon, but with the Fermi level moved upwards 
to populate the bottom of the conduction band with extra electrons provided by 
phosphorus. 

However a dilute arrangement of phosphorus in silicon is no more likely to 
produce a metal than a lattice of silver atoms, spaced one meter apart. Coulomb re-
pulsion between distant localized electrons produces an insulator that one-electron 
theory cannot explain. In fact many of the crystalline compounds predicted by one-
electron density functional theory to be metals are in fact insulators. A prototype of 
these compounds is CuO, which will be the subject of further discussion in Section 
23.6.3. 

Experimental realizations of Si:P do not actually array the phosphorus in a 
crystalline array, but the basic physics is believed to be similar whether the ar-
rangement of the phosphorus is regular or random, with a simple semiclassical 
analysis providing a simple picture of how an insulator gives way to a metal. 

Polarization Argument for Mott Transition. View Si:P as a cubic lattice of phos-
phorus, treating the silicon as a continuous dielectric medium of dielectric constant 
e. When an external electric field is applied to the sample, the phosphorus atoms 
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polarize slightly in response. Continuing to view the phosphorus as producing a 
weakly bound hydrogen-like state, its polarizability is 

9 -, 
(X = — ß See, for example, Landau and Lifshitz ( 1977) ( 1 8 2 4 ) 

2 ' pp. 286 and 290. 

The Clausius-Mossotti relation (Section 22.2.3) relates the polarizability a of the 
phosphorus to the dielectric constant of Si:P through 

e - 1 4TT 
—- = --npa (18.25) 
e + 2 3 

3 + 87T«pa 
3 — 4irnpa ' 

where np is the density of the phosphorus. 

(18.26) 

Figure 18.2. Metal-insulator transition in silicon doped with phosphorus. Enough phos-
phorus is added to bring the material to the verge of become metallic at low temperatures, 
so that application of slight uni-axial pressure, slightly increasing the density, is enough 
to push it over the edge. Dielectric susceptibility is measured on the insulating side, and 
metallic conductivity on the conducting side of the transition. [Source: Rosenbaum (1985), 
P-3.] 

Defining a dielectric constant makes it possible to discuss long-range interac-
tions in a particularly simple way. It is plain from Eq. (18.26) that when the density 
np rises to 

3 0.053 1 / 3 
nCnt = -. = — 5 - ^ » r i t f l * = °-38> (18-27> 

47ra a% Lm 

there is a polarization catastrophe in which the dielectric constant diverges. Further 
increase of the density would seem to send the dielectric constant negative, but in 
fact the whole basis of the calculation breaks down beyond this point, and the 
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Figure 18.3. A host of different systems displays metal-insulator transitions when the 
condition a*n1//3 = 0.26 obtains, as found by Edwards and Sienko (1982), p. 92. Note the 
large range of length scales covered by these data. 

system becomes a metal rather than an insulator with local dipole moments. This 
metal-insulator transition is also known as the Mott transition. 

Using a* = 48 ÜQ for silicon gives a value of a — 1.02 • 10- 1 9 cm3; Eq. (18.27) 
predicts a critical density of nCT\t = 2.33 • 1018 cm- 3 . A measurement of this transi-
tion by Rosenbaum (1985), displayed in Figure 18.2, finds that the transition actu-
ally occurs at 3.74 • 1018 cm"3, rather good agreement for such a simple argument. 

Edwards and Sienko (1982) find empirically that a whole host of metal-insulator 
transitions can be described by this simple theory, with the constant in Eq. (18.27) 
slightly altered. A summary of their results is presented in Figure 18.3. In none 
of these experiments is the impurity arrayed in a crystalline fashion, but the results 
seem insensitive to this detail. 

18.4 Compensated Impurity Scattering and Green's Functions 

18.4.1 Tight-Binding Models of Disordered Solids 

Compensated impurities can be treated as static potentials in a single-electron prob-
lem. They do not carry extra charge, and electrostatics is no longer a guide to what 
they do. Compensated impurities have a very large effect upon electronic motion 
when they are sufficiently numerous, and perturbation theory is frequently not ade-
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quate to understand their effect upon electronic states. In trying to understand such 
processes, simple models have proved particularly useful. The most basic of these 
is the tight-binding model, introduced in Section 8.4.4. 

Tight-Binding Hamiltonian. The tight-binding Hamiltonian may be dismissed 
by lovers of accuracy and realism, but it provides a simple starting point for con-
ceptual advances. Following Eq. (8.67), it can be written 

ÄTB = J2 UR\ä)fi\ + E t|Ä>(#1 +t|#>(4 (18.28) 
R {RR') 

where the sum over {RR') is over nearest-neighbor pairs only. Notice that the 
diagonal components U$ depend upon R, allowing the possibility that different 
sites have different energies. By allowing U$ to vary randomly from site to site one 
models a disordered solid. 

It is convenient to ask questions of the tight-binding Hamiltonian that are more 
difficult in a general context. For example, one can ask what happens after adding 
an impurity to one site in a crystal, altering the energy UQ at the origin. This 
problem can be solved exactly. The impurity Hamiltonian is 

;>£] = ( / o | 0 ) ( 0 | . Without loss of generality, take the disturbance ( 1 8 . 2 9 ) 
to be at the origin. 

Taking "KQ to be the tight-binding Hamiltonian (18.28) with all diagonal energies 
Uß = 0, the goal is to solve 

£|V>}= (Äo + Äi ) \i>)- (18.30) 

To solve this problem requires a certain amount of formal development, so it is 
useful to summarize the main results in advance. 

One dimension. Adding an impurity to a one-dimensional chain always produces 
precisely one bound state, localized about the impurity. 

Two dimensions. Adding an impurity to a two-dimensional net also always pro-
duces precisely one bound state. However, if the impurity potential is weak, 
the binding energy is exponentially small. 

Three dimensions. Adding an impurity to a three-dimensional crystal produces a 
bound state only if the impurity is strong enough. A weak impurity warps the 
traveling waves in its vicinity but does not change them qualitatively. 

To verify these claims, it is necessary to introduce some formalism concerning 
Green's functions. 
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18.4.2 Green's Functions 

Green's functions originate in the question, "Starting with a particle at site |0) at 
time 0, what is the amplitude for finding it at site \R) at time ??." The answer to 
this question is that the amplitude is 

(R\G(t)\0) = {R\e-iiu/n\0}. (18.31) 

It is more convenient to work with Fourier transform of this operator, so define 

1 r°° 
G(£) = - / dteiEtlhG{t) (18.32) 

in JQ 

=>G(£) = ( £ - Ä ) _ 1 . (18.33) 

Equation (18.32) can only be expected to converge if £ has a positive imaginary 
part; this fact signals that £ must be allowed to vary in the complex plane, and 
warns that the physical significance of Green's functions may depend in an im-
portant way on the complex part of the energy, even when it is very small. The 
operator defined in Eq. (18.32) obtains its information from the future of a particle, 
starting at t = 0; if instead one had chosen to look at the past history of the particle, 
then one would have defined 

G{Z)=l- [ dt eiE'/nG{t), (18.34) 
n J-oo 

which is in fact identical to Eq. (18.33) except that now £ must have a negative 
imaginary part in order for the integral to converge. So Green's function contains 
full information about the time evolution of a particle: When £ has a positive 
imaginary part, the information is about the future, and when £ has a negative 
imaginary part, the information is about the past. From Eq. (18.33), it should be 
clear that Green's function has a pole whenever "K has an eigenvalue, because if 
|£„) are the eigenstates of 3ï with energies £„, then 

|p \ / p I 
G = ( £ - J { ) ~ 1 = ^ ( £ - ? { ) - 1 | £ „ ) ( £ f ! | = ^ y ^ - ^ . (18.35) 

The poles of G identify all the energy eigenvalues of "K. Letting £ = £,. ± irj, with 
£r and r\ real, in the neighborhood of one of the poles gives 

^ !£„)(£„!(£,-£„) T ir,\£n)(En\ h ^ y j e ^ y - ^ % ) 

( £ r — £ „ ) + 7 / ( £ r — £ „ ) + 77 superscript on G tells which 
sign for 77 was chosen. 

= |£»>v5»l ( ^ T W ^ r - 2 « ) ) • If »7. i? very small and ( 1 8 . 3 7 ) 
[ t r — £ „ J positive, 

nS(x) = 71/(x2 + V
2). 
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The delta function resulting from the imaginary part of G keeps track of the 
density of states. In particular, 

T-Im[(JR|G±(£)|JR)] = ^ 5 ( £ r - £ „ ) | ( ^ ) | 2 (18.38) 
n n 

defines the local density of states at position R. This function can be employed to 
find the probability that an electron is localized at some point in space; Problem 7 
in Chapter 26 provides an example. 

Green's Function in One Dimension. Green's functions can be determined ex-
plicitly for tight-binding models when they are perfectly crystalline, and all the 
diagonal elements U^ vanish. Denoting Green's function in this case by Go, return 
to the solution of the tight-binding Hamiltonian given in Section 8.4. Making use 
of the exact eigenfunctions and eigenvalues from Eq. (8.72) gives 

(R\k) (k\R'\ 
(R\GO\R') = y ^ -— — - Assume the lattice spacing is unity. ( 1 8 3 9 ) 

~ Y N £ - 2t cos (2TT///V) "* Jo 2 ^ £ - 2 t cos(Jk)' ( 1 8 ' 4 0 ) 

Without loss of generality, let R > R'. Equation (18.40) can be transformed into a 
contour integral about the unit circle by defining 

Jk e ~ik 
z = elli^dk=^ dz (18.41) 

so that {R\GQ\R') becomes 

dz zR-R' 
2 v n z ( £ - t ( z + z-1)) 
dz zR-R' 
27i7 £z — tz2 — t 

(18.42) 

(18.43) 

The denominator has two roots: 

z= ^ =Z-orz+, (18.44) 

where z~ is the smaller of the two in absolute value, while z+ is the larger. Observ-
ing that the product of z~ and z+ equals 1, one sees that z~ always lies within the 
unit circle, while z+ lies out of it (unless both lie on it, a singular case). The result 
is that 

<#|Go(£)|tf')= £ 1 
| £ | v / £ 2 - 4 t 2 

£ £ / £ x 2 

2t |£IVV2t 

\R-R'\ 

(18.45) 
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if | £ | > 2t, and otherwise 
\R-R'\ 

(R\G0(£r±ir,)\R)^ ( ) ± l 

4t2 - £? IWHD' (18.46) 

Notice the branch cut between — 2t and 2t This branch cut represents a line of 
poles that have merged together (Problem 4 of Chapter 20). The diagonal element 
of this operator is plotted in Figure 18.4. 

Two and Three Dimensions. Pictures of (0|Go|0) for two- and three-dimensional 
square crystals appear in Figure 18.4. The computations involve elliptic integrals 
and are somewhat cumbersome, but the main feature that will be needed for the 
impurity problem is the behavior near the band edge, which is easily estimated. In 
a two-dimensional array with N sites, for £ near the band edge at —4i, 

(0|Go(£)|0) = - Y \= 7=- (18.47) 
N t^2&-2t[cos2Tr^/VN + cos27rk2/VN] 

dki / dk2 - „ r : r r (18.48) (2-7r)2 JO JO £ — 2t [cos k\ + cos k2] 
1 fdkidk2T7,— 7T-r—, r r (18.49) (2vr)2 J OS. - 4t - 2t [cos ife] + cos k2] 
1 /• 1 

~ / kdk — ~ Defining ö£ = £ + 4t, moving to polar ( 1 8 . 5 0 ) 
(27T) J O £ — t /t coordinates, and expanding the cosines 

around k\ = &2 = f to obtain the 
leading singularity. 

~ " " - ^ ' > . (,8.5,) 
4vrt 

In a three-dimensional crystal, Green's function goes to a constant near the band 
edge, as shown in Figure 18.4. 
Perturbation Theory. One of the most important properties of Green's functions 
is the way they change when a Hamiltonian is perturbed. If 

3~C = !Ko + 3~Ci, (18.52) 

then defining 
Go = ( £ - Ä o r ' (18.53) 

gives 

G = ( £ - Ä ) " 1 = ( £ - Ä o - Ä i ) ~ 1 (18.54) 
= ((£ - Ä 0 ) ( l - (£ - Ä o r ' Ä , ) ) - 1 = (1 - G o Ä i T ' G o (18.55) 

oo 

= 2^(GoÄi);Go = Go + GQ"K\GQ + GQ'KIGQ'KXGQ +. . . (18.56) 

= Go + GQO~CIG = GQ + G3{,\GQ. (18.57) 

The f matrix is defined to be the operator satisfying the equality 

G = Go + GofG0. (18.58) 
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One dimension Two dimensions Three dimensions 
4 

-2 

-4 
-2 0 2 _4 0 4 - 6 0 6 

£/t £/t £/t 

Figure 18.4. Green's functions for perfect square tight-binding lattice in one, two and 
three dimensions. The band of energies where propagating extended states are possible is 
shaded in each case. Because the imaginary part of Green's function gives the density of 
states, the singularities appearing in it are the van Hove singularities described in Section 
7.2.5. The curves were determined from equations of Economou (1983), p. 82. 

18.4.3 Single Impurity 

All the formalism now is in place to find the effect of an impurity placed at site 0. 
Equation (18.29) states that "K\ = L/n|0)(0|, so Green's function corresponding to 
the Hamiltonian of Eq. (18.30) is 

G = G 0 + G o | 0 ) C / o ( 0 | G o + G o | 0 ) f / o ( 0 | G o | 0 ) [ / o ( 0 | G o + . . . See Eq.(l8.56). ( 1 8 . 5 9 ) 
oo 

= Go + G o | 0 ) £ / 0 ( 0 | G o y ^ f î / o ( 0 | G 0 | 0 > y Only one matrix element ever ( 1 8 . 6 0 ) z—' V / appears in the sum. 
p=0 

= Go -I °^ ' ° ' J——. Recognizing the infinite sum to ( 1 8 . 6 1 ) 
1 - f / o ( 0 | G o | 0 ) ' be a Taylor expansion. 

The simplicity of Eq. (18.61) illustrates the usefulness of Green's functions. By 
carrying out perturbation theory infinitely far, the effect of a single impurity is 
determined exactly. 

Recall that the poles of (18.61) give the energy eigenvalues of "K. Do any of 
the original poles of Go remain poles of G once the perturbation is applied? No: 
Consider what happens when £ approaches £„n, some pole of Go. Then Go begins 
to diverge, and 

^ J£*o)(£,,o| ( 1862 ) 
£ — £„o 

|£«o)(£«o| |£/io) (£no|0) (0|£„o) (£«o| 
£ - £ „ 0 ( £ - £ n 0 ) ( 0 | £ „ o ) ( £ n 0 | 0 ) ' Eq. (18.61). 

Put Eq. (18.62) into ( 1 8 . 6 3 ) 
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so that the pole cancels. The only poles of (18.61) remaining are those due to the 
vanishing of 

l-£/o(0|Go(£)|0>=0. (18.64) 

Equation (18.64) determines the energy eigenvalues of the impurity Hamilto-
nian. With the energy eigenvalues £„ in hand, the eigenfunctions can be extracted 
from (18.35) by choosing £ to be near to some energy eigenvalue £„ satisfying 
(18.64). Return to Eq. (18.61) and write 

1 - t/0(0|Go(£)|0) « -t/0(0|Go(£„)|0)(£ - £„) (18.65) 
with 

dG0 

9£ ' 
!£„)(£„! Go(£„)|0)<0|Go(£„) 1 

G0 = ^ , (18.66) 

(18.67) 
£ - £ „ -(0|G0(£„)|0) £ - £ „ 

C (F )\0) 
| £ \ = ——-— This is an explicit expression for ( 1 8 6 8 ) 

/_(0|^(£„)|0>" theei8enfunction-

The term inside the square root is positive for bound states. 

Impurities in One Dimension. The effects of impurities depend upon whether 
they are added to one-, two-, or three-dimensional systems. Begin with one di-
mension. In one dimension the unperturbed Hamiltonian has a continuous band 
of states stretching in energy from —2t to 2t. Green's function Go in Eq. (18.40) 
can be viewed as a tightly grouped collection of N poles (see Problem 4 in Chapter 
20), spaced at distance on the order of 1 /N. Around each of these TV poles the 
Green function varies from —oo to oo, and somewhere in this range, for each pole, 
Eq. (18.64) must be satisfied. Therefore, after the impurity is added there is still a 
continuous band of states stretching in energy from — 2t to 2t. Although somewhat 
distorted near the impurity, these states look like plane waves far from it. They are 
extended and can carry electrical current from one end of the system to the other. 

However, a qualitatively different type of state exists as well. FromEq. (18.45), 
outside the band (0|G0|0) = l / V £ 2 - 4 t 2 , and (18.64) can be satisfied when 

£ = ± J4t2 + UZ. T h e + s ign aPPl i e s f o r uo > 0 and the - sign ( 18 .69 ) 
V applies for Uo < 0; see Figure 18.4. 

So, in one dimension, adding an impurity to a crystal always produces an en-
ergy eigenstate outside the band. If the impurity potential is attractive, there is 
a bound state below the band; even if it is repulsive, there is still a bound state, 
but now above the band. Because the energy of the bound state lies outside the 
conduction band, one finds by combining Eqs. (18.68) and (18.45) that the bound 
state is localized. It falls off in amplitude exponentially away from the location of 
the impurity at |0), because the matrix elements of Go fall off in this way. Local-
ized electrons cannot easily contribute to electrical conduction because they do not 
extend across the sample. 
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Single Impurity in Two Dimensions. The addition of a single impurity does not 
remove the band of extended states stretching from —4t to 4L As in one dimen-
sion the addition of an impurity always leads to the creation of a localized state. 
However, the binding is extraordinarily weak, because Green's function goes as a 
logarithm near the band edge. For ÖE- < 0, (18.50) is real and diverges logarithmi-
cally. Using Eq. (18.51) to solve (18.64) with t/0 < 0 gives 

E = -4t-te~47ri/m. (18.70) 

The exponentially small binding energy appearing in Eq. (18.70) ends up appear-
ing in unexpected places, such as the binding energy of Cooper pairs in supercon-
ductivity or the binding energies of magnetic impurities in the Kondo problem. 
These problems become effectively two-dimensional because they concern the in-
teractions of a collection of interactions restricted to the Fermi surface, a nearly 
two-dimensional subset of the original collection of electrons. 

Three Dimensions. In three dimensions, the unperturbed Green function is finite 
at the band edge, as shown in Figure 18.4. A sufficiently small impurity does not 
lead to the creation of a bound state because 1 — UO(0\GQ(E) |0) does not have any 
zeros. For a simple cubic lattice, the smallest value of UQ leading to a bound state 
is approximately UQ = 1.5 x 6t. If a weaker impurity is added, all the extended 
plane-wave eigenstates deform slightly, but they are not affected qualitatively. This 
special feature of three-dimensional space is one of the reasons that it is so often 
legitimate to treat scattering potentials as weak. 

Why then does a noncompensated impurity always create a bound state in three 
dimensions, no matter how weak it may be? To model a single noncompensated 
potential in the context of the tight-binding model, one would need to set an infinite 
number of energies U$ nonzero and to have them fall off in amplitude as \/R 
moving away from the origin. The long range of this potential always produces a 
bound state. 

18.4.4 Coherent Potential Approximation 

The coherent potential approximation is an elaborate approximation scheme that 
describes disordered systems in which the impurities are too numerous or too 
strong for weak scattering theory to be satisfactory, but not strong enough, in three 
dimensions, to produce large numbers of localized states. The starting point is 
the idea of an effective medium surrounding each site that is spatially uniform but 
represents the average effect of disorder. To model this situation, write 

<k = aCo + ^ ( f / m -E) | /n ) ( /n | + E, (18.71) 
m 

which for the moment is just an identity, but will be chosen later to make approxi-
mations as good as possible. The energies Um will be viewed as random variables, 
characterized by a probability distribution 7{Um). Define 

!K£ = :KO + £ , Äf = ^ ( £ / m - £ ) | m ) ( m | (18.72) 
m 
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so that 
G^(£) = G 0 ( £ - E ) . (18-73) 

In general, £ will turn out to be a function of the energy £ and will also be complex. 
An equation for the full Green function is now 

G = G% + G$TT'G%, (18.74) 

where T^ is the T-matrix appropriate to the perturbation 'Kf, as defined in 
Eq. (18.58). 

So far everything is exact. The only approximation is to put 

f E ~ E f m , (18.75) 
m 

where T^ is the T matrix that would result if the only nonzero part of Hf were at 
m. The problem of a single impurity has already been solved, and from Eq. (18.61) 
one sees immediately that the T matrix in this case is given by 

T - ' Z J \m)(Um-T,)(m\ 
T£ = ' / v ^ (18.76) 

l - ( f / m -S ) (m |Gf |m) 
There is still the task of choosing £. In order to do it effectively, write 

G = G$ + G%fsG%. (18.77) 

and average both sides over disorder potentials Um. Choose E by requiring that the 
difference between G^ and G vanish on average: 

G = Gn(£.) = Gn(£ — E ) The bar means to average all the potentials ( 1 8 7 8 ) 
v y J v n Um with probability distribution 7{Um). 

with the consequence from Eq. (18.77) that 

7^ = 0 (18.79) 

/ 
dU7{U) -—/r; ^ N J , A s ^ = 0. (18.80) (t/-s) 

l - (£ / -£)(0 |G 0 ^ |0) 
Equation (18.80) is the basic equation of the coherent potential approximation. 
From it one calculates E(£), and then the average of G from Eq. (18.78). This for-
malism replaces Eq. (18.16) when scattering is not weak; Ziman (1979) discusses 
results obtained from this approximation. 

18.5 Localization 

The study of electronic states in random lattices was initiated by Anderson (1958). 
Adding a single impurity at a single site can lead to the creation of a single localized 
state. Life would be simple, and the ultimate conclusions correct, if one could 
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only argue that adding two impurities creates two bound states, three impurities 
three, and so on. One would conclude in this way that when an impurity is added 
to every site in one dimension, all states are localized. In two dimensions, they 
should also be localized, although the binding energies and decay lengths might be 
exponentially small. In three dimensions, only if the disordering wells had a height 
on the order of 9t might one expect all states to be localized, and one would have 
to consider the possibility that some states might be localized, and others not. 

All these conclusions are correct, although the arguments are very imprecise. 
In fact, the conclusions can break down when one has added as few as two im-
purities to a system. Two impurities in a one-dimensional system do not neces-
sarily create two bound states. If they are close together, they may merge into a 
single well, leaving still a single bound state. Nevertheless, for typical samples, 
the consensus has it that the situation in one, two, and three dimensions stands as 
just mentioned. In three dimensions, the dividing line between localized and ex-
tended states is called the mobility edge, and as a function of energy £ and disorder 
strength W it looks as in Figure 18.5. 

Figure 18.5. Calculation of the mobility edge, the dividing line between extended and 
localized states for a tight-binding model on a square lattice in three dimensions, where the 
energy U varies randomly between —W/2 and W/2 as in Eq. (18.81). The calculation was 
carried out using the method of Section 18.5.2, comparing the resistance of 3 x 3 x 3 with 
4 x 4 x 4 sized systems. 

It may seem that the results on localization are rather obvious. If so, reflect 
that if an impurity of identical energy is placed at each and every site, the problem 
remains completely periodic, and there is no localization, just a shift of all the 
energy levels. If there is any periodic pattern involved in the placing of impurities, 
states will always be extended, no matter what the dimension. 
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18.5.1 Exact Results in One Dimension 
In the simplified setting of one spatial dimension, one can actually prove that all 
states are localized and can find explicit expressions for the localization length, 
which is the characteristic distance over which wave functions decay. 

Consider the Hamiltonian Eq. (18.28) again. Now, however, take all the ener-
gies Um to be random variables, distributed with some probability 7(11). When a 
specific form of 7 is needed, take 

1 /W \ /W \ 
CP ( [/ ) = — 01 U)6\ h £/ I S o t h e onsite potential adopts with equal prob- ( 1 g g \ ) 

W V 2 / V 2 / ' ability all values between -W/2 and W/2. 

Instead of treating the impurity potentials Um as small, treat the hopping matrix 
element t as small instead. Then the unperturbed Green function is 

(l\Go\m) = ^ - ; (18.82) 

the overlap between adjacent sites induced by t will be the perturbation. 

Definition of Localization Length. The localization length is defined to be 

A-1 = lim In |(0|G|m)|2, (18.83) 

where the bar means that one must average over the random potentials Um on each 
site, using the probability distribution function 7. 

In order to explain why the localization length has been defined in this manner, 
it is necessary to explain the physical significance of (0\G\m) and to explain why 
quantities that are easier to calculate from a formal point of view yield no physical 
information. 

Suppose that the eigenfunctions in the vicinity of some energy £ are localized. 
This statement means that each eigenfunction is peaked somewhere in the lattice, 
while away from the peak it falls off exponentially as exp[—m/A], where m is the 
distance from the peak. Green's function is given by Eq. (18.35), so 

<«|G(£-ntflO) = £ H ^ ! ° > . (18.84) 
n C, Cn IT] 

Because the peaks of the wave function move about randomly, only a small fraction 
of the wave functions, order 1 /N where N is the number of sites in the lattice, will 
be peaked at 0; the rest will be negligible because their overlap with site 0 is so 
small. So 

(m|G(£ - iV)\0) =V JdE' D(£'){™ j ^ ' [0) (18.85) 

VA 
Ft ö ( £ ) l 7 r ( f f l | £ ) If the wave functions have width A, then a fraction ( 1 8 . 8 6 ) 

N A//V have overlap of order unity with site 0, and all 
the rest can be neglected. 

VA 
fy Z) (£) j7re e ~~ml Because the wave functions fall off over distance A. ( 1 8 . 8 7 ) 

N 
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where <fi describes the phase of the matrix element. 
The presence of the phase in Eq. (18.87) causes difficulties. When one sets 

out to calculate some quantity such as electrical resistance in a disordered solid, 
it is not possible analytically to carry out the calculation for any particular set of 
randomly chosen energies Um. The only practical calculation averages over them. 
The problem is that (m\G\0) is guaranteed to be zero. The phase 4> is a random 
function of the potentials U, and it will send (m\G\0) to zero on average, even 
though all quantities being averaged over have the same order of magnitude. To 
eliminate the problem, the localization length is defined by Eq. (18.83); squaring 
the matrix element eliminates the phase problem, and taking the logarithm pulls 
out 1/A. 

Perturbation Theory in Terms of Paths. The perturbation series Eq. (18.56) has 
a geometrical interpretation, in which electrons hop between sites of the lattice. In 
this case, the perturbation "K\ equals 

t J2 \l')(m'l (18.88) 
(I'm') 

where /' and m' are nearest neighbors so Eq. (18.56) directs one to compute (l\G\m) 
by summing over all paths that connect sites, n and m. The expansion is 

(l\G\m) = (l\Go\m) + (l\Go £ |/i)t(mi|G0|ifi) + . . . . (18.89) 

{l\m\) 

Because Go is diagonal, a term in this expansion is only nonzero if 

/ = l\ —> ni\ — h —> nt2 ■ ■ ■ —> m (18.90) 
is a path which reaches from / to m. Each such path appears in the perturbation 
expansion exactly once. For each link between two neighboring sites one puts 
down a factor of t, and each time one reaches a site /' during the walk, one puts 
down a factor of (/'|Go|/'). 

In one dimension, these formulas are particularly useful, because the number of 
possible paths is so limited. For example, for I <m, the first nonzero contribution to 
(l\G\m), describing the amplitude for traveling from site / to site m, is the straight-
line path 

(/|Go|/)t(/ + l |Go | /+ l ) t . ..t(m\Go\m). (18.91) 

The complete expression for {l\G\m} must supplement (18.91) with higher-order 
terms that involve some wiggling forward and backward before ending up at m. 

Renormalized Perturbation Expansion. One can write the perturbation expan-
sion in a more compact way. The sum of all paths that begin at / and ends at m can 
be constructed as the product of all paths that begin at I and end at I with all paths 
that begin at / + 1 and end at m, but without ever coming back to I again. The re-
striction is necessary, or else the path would already have been included in the first 
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set of paths. Denote by G1 a Green function in which electrons are forbidden to 
visit site /. Gl is the Green function resulting from the Hamiltonian Ä + U+ \m)(m\, 
with U+ such a large energy that electrons are guaranteed to keep away from m. 
Then 

(l\G\m) = (l\G\l)t{l+ \\Gl\m). (18.92) 

However, the set of paths traveling from / + 1 to m never visiting / again is the same 
as the set that travels from / + 1 to / + 1, never visiting /, and then hops from / + 1 
to / + 2 to m, never visiting / + 1 again (a requirement that also rules out visiting / 
again.) Proceeding recursively in this way, one has 

(/|G|m) = (/ |G|/)t(/+l|G'|/ + l)t(/ + 2|G/+1|/ + 2) . . . t(m\Gm-l\m). (18.93) 

Equation (18.93) is depicted schematically in Figure 18.6. 

\ f ¥ f f f y Figure 18.6. Diagram correspond-
V il li li li M ing to Eq. (18.93). 

Inserting Eq. (18.93) into Eq. (18.83), one finds immediately that to leading 
order in 1 /m, 

The product of m terms cancels the factor of 
A - l = _ m n / / + 1 | t ( ~ / | / + l \ n ; moutfront. The first matrix element is dif-

u x * * ' u ' rerent from all the rest, but its contribution 
becomes negligible as m —» oo. 

(18.94) 

any value of / will do, because once the average is applied, all sites are equivalent. 
Thus finding the localization length reduces to finding the probability of re-

maining at some site, assuming one never visits the site to the left. To evaluate this 
quantity, note that the set of paths starting at / + 1 and ending at / + 1 without ever 
visiting / consists of the following: 

1. The path that just stays at / + 1 the whole time, plus 

2. Paths obtained by hopping to 1 + 2, times all paths that end back at / + 2 
without touching / + 1, and finally times all paths that go from / + 1 to / + 1 
without visiting /. 

In equation form, 

(/ + 1|G/|/ + 1) = (/ + 1|G0|/ + 1) + 

=*►(/ +1|G' | / + 1) 

(/ + 1|G0|/+1) 
x t ( / + 2|G,+1|/ + 2) 
x t ( / + l | G ' | / + l) 

(18.95) 

1 
Using Eq. ( 18.82); see (18 96) 

£ - [ / / + l - t 2 ( / + 2 | G / + 1 | / + 2 ) ' Figure 18.7. 

Because all sites are equivalent, take / = 0. The probability distribution of 
(1 |tG°| 1) can now be obtained from the probability distribution J5 for [//. All one 
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\w = 0 _|_ \t \y Figure 18.7. Diagram correspond-
* ^ » C V ing to Eq. (18.96). 

needs is Eq. (18.96). The probability 3 that tG° will adopt some value g is 

^(S>£)= fl[[dUmnUmMg-(\\tG0(e.)\\)) (18-97) 

= [ Y\[dUm7(Um)]S(g ; ) Use Eq. (18.96). (18.98) 
J V V ;J \ £-f/,-t2(2|G1|2)>' 

= / 4 n^(/-:P(f/'»)];P(£---t2<2l0'!2)) (18-") 
J g m+\ 8 

The only appearance of U\ is now made explicit, so one can integrate over it. 
Next, reintroduce the integral over U\ to find.... 

= 4 / Y[[dUmy{Um)} j dg' ?(£ - --ig')s(g'-t(2\Gl |2)) (18.100) 

= \ i dg' 0>(£ - - -ig') ?(g', £ ) . Thelasttermin (18.101) 
Pz J V g / Eq. (18.100) just gives the 

In general, the integral equation (18.101) must be solved numerically, but in the 
limit of weak disorder, where the standard deviation of the distribution CP is much 
smaller than t, one can obtain definite results. The details are assigned to problem 
8, and the result is that for £ = 0 

M2 

A"1 =0.1142—. (18.102) 

When the probability distribution takes the form of Eq. (18.81), 

105.045t2 

A = . W is the width of the disorder. ( 1 8 . 1 0 3 ) 
W2 

18.5.2 Scaling Theory of Localization 

The most powerful theory of localization is a scaling theory of Abrahams et al. 
(1979). It bypasses the obvious sort of calculation, such as extracting conductivities 
from some microscopic model, and instead derives advantage from a deceptively 
simple physical postulate. The resulting theory provides a framework in which to 
organize theoretical, numerical, and experimental data. 

The physical idea behind the scaling theory is very simple. Suppose one has 
a bag filled with resistors. Assume that no matter how one hooks the resistors 
together, any two with the same resistance are indistinguishable. One resistor might 
obtain its large resistance from a small density of states, another by having the 
Fermi energy sit near the band edge, another by being very highly disordered, 
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another by being very long, but no matter. The resistance is all that counts for any 
circuit of which they are a part. 

Consequences flow from this assumption as soon as one begins hooking re-
sistors together to form other resistors on larger scales. First imagine hooking / 
identical resistors of resistance r in series. The resistance of the assembly can de-
pend upon the number of resistors / and the resistance of the individual units r, but 
nothing else, so the total resistance is a function of the form / ( / , r). To simplify 
matters further, take whatever resistive material is at hand and shave it down or 
build it up until its resistance equals the basic quantum of resistance 

RH = h/e2 = 25 813 O. (18.104) 

Let the length of material needed to have this resistance be LQ. Then the resistance 
of any other length L of the same material is 

RX[1)=RX{L/LQ). (18.105) 

The hypothesis of the scaling theory is that there is only one function R\ (I), and the 
resistance of every quantum resistor changes with length according to Eq. (18.105). 
To appreciate the power of this statement, suppose one knows the function R\ (I). 
Then whatever material one takes, it is enough to measure the resistance of one 
sample, and then the resistance of a sample of any other length is known. 

The same hypothesis extends to two and three dimensions. In two dimensions, 
one hooks resistors together to form a square grid. This geometry is quite different 
from hooking them together in series, but one still guesses that the resistance of a 
square size L on the side is 

R2(l)=R2{L/Lo), (18.106) 

where R2 is a universal function appropriate to two-dimensional assemblies, but 
bears no relation to R]. Similarly, for three-dimensional cubes of material, one 
supposed the existence of a third universal function Rj,. 

The most intuitive way to form a guess about the shapes of these scaling func-
tions is to ask how resistance ought to scale for weak and strong resistors, where 
weak resistors have resistance much less than (18.104) and strong resistors have 
much greater. Very weak resistors have only occasional scattering sites and should 
obey the familiar macroscopic theory of resistivity. In the macroscopic theory, ma-
terials have a resistivity p, and the resistance is proportional to their length along 
the direction of current and is inversely proportional to their area perpendicular to 
it. Thus, the resistance of a bar of cross-sectional area A and length L is pL/A, the 
resistance of a rectangle of thickness t, length L, and height L is pL/{tL), and the 
resistance of a cube of side length L is pL/L2. In dimension d, 

R, r^ L Ordinary macroscopic scaling of resistance, ( 1 8 . 1 0 7 ) 
which applies when R is near zero. 
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must give the behavior of Rd when R is close to zero. Conversely, when R is very 
large, one should expect all states to be localized and should also expect R to rise 
exponentially with sample length as 

/^ r^j (AdL/Lo Ad j s s o m e dimensionless constant depending ( 1 8 . 1 0 8 ) 
upon dimensionality. 

In d — 1 and d = 2, there is no problem supposing that R rises monotonically with 
L. However, in d = 3, R shrinks as a function of L when it is small, and it grows 
when it is large. Rather than making guesses about the shapes of Rd, Abrahams 
et al. (1979) proposed that one focus on the functions 

a ,v. LÖR d\nR dlnRd{L/Lo) 
ßd{R) = RdL = ^ L = L dl 

(18.109) 

and guessed that ßd(R) is a smooth, monotonically increasing function. That is, the 
change of resistors with scale increases continuously as their resistance increases. 
This guess is not obvious, and it emerged in part as a compact way to sum up a 
variety of seemingly disconnected theoretical results. It is at least consistent with 
their asymptotic behavior. For resistors R near zero, 

ßd(R)~2-d, From Eq. (18.107). (18.110) 

while for large R 

ßd{R)~ — ~\n R. 
LQ 

A schematic view of ßd(R) appears in Figure 18.8. 
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Figure 18.8. (A) Sketch of qualitative behavior of the three functions ßd{R), given the 
asymptotic behavior in Eqs. (18.110) and (18.111) and assuming smooth interpolation be-
tween these two limits. (B) Three scaling functions In R versus In L/LQ resulting from 
the three functions ß. At the point where the three-dimensional ß function crosses 0, the 
resistance has a logarithmic singularity. 
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In one dimension, ß is a smooth positive function. In two dimensions, it is 
always positive, but approaches zero along the negative In R axis. In three dimen-
sions, ß must cross through zero. As a result, the scaling functions 

. r d In R The point of this expression is to view In L/LQ 
l n ( L / L ( ) j = / — as a function of In /?, and guess the shape of ( 1 8 . 1 1 2 ) 

J ßd\}n R) this function by guessing that ßd(\n R) has 
the form shown in Figure 18.8. 

have singularities in two and three dimensions. In two dimensions the singularity 
occurs for R —> 0, while in three dimensions it occurs at a finite value of R. In 
two dimensions, the prediction of Figure 18.8 is that the larger a system gets, the 
larger its resistance gets. In other words, in the macroscopic limit, all states in 
two dimensions should be localized. In three dimensions the prediction is that 
for resistance below a universal critical value, making a system larger continually 
reduces its resistance, while for any system with resistance above this critical value, 
making it larger makes the resistance grow. The scaling theory recovers in this way 
the prediction of the mobility edge, and furthermore it states that to know whether a 
system lies on the localized or extended side of the edge, it is sufficient to measure 
its resistance at any scale. 

These scaling ideas are particularly well suited to guide interpretation of nu-
merical work. It would seem easy to investigate localization numerically. All one 
has to do is to write down a Hamiltonian with randomly chosen diagonal matrix el-
ements, calculate the eigenfunctions, and classify them according to whether they 
are localized or extended. There is in fact no difficulty in carrying out such a calcu-
lation for lattices on the order of 13 x 13 x 13. However, the results are extremely 
difficult to interpret. As the degree of randomness increases, the eigenfunctions all 
become bumpier and bumpier in a continuous way. There is no sign of a transition 
at some value of randomness, and there is no simple function that can be applied 
to the randomly oscillating wave functions to indicate whether they can carry cur-
rent or not. In an infinite system, localized wave functions rise above zero only in 
the neighborhood of a limited number of lattice sites, but for the relatively small 
systems that can be solved numerically, localization is not visible. 

Using the ideas of the scaling theory produces a completely unambiguous de-
termination of localization. Rather than examining the properties of any single 
wave function or any single Hamiltonian, attention shifts to how the solutions alter 
with change of scale. 

Figure 18.9 illustrates the process for a cubic lattice in three dimensions, de-
scribed by Eq. (18.28) and with the the probability distribution of impurity poten-
tials described by Eq. (18.81). Problems 5 through 7 describe how to compute 
its resistance. Fluctuations of resistance are extremely large from one sample to 
another. Indeed, they are so large that R, the average of resistance over many re-
alizations of the disorder, cannot be computed. A criterion for determining when 
such an average has converged is that 6R2 = R2 — R should fall below some speci-
fied tolerance. When monitoring SR2, one will find that it never converges to zero. 

l2 
However, In R does converge; [In R]2 — In R can be made as small as desired by 
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Figure 18.9. Three-dimensional scaling function for square lattice with diagonal disorder. 
(A) In R/Rfj (RH = h/e2) is plotted versus In L for systems ranging from 23 to 73 in size, 
and disorder W ranging from 0 to 20. The transition from localized to extended states 
occurs around IV = 17. (B) Each curve is displaced horizontally so as to overlap with the 
other curves, forming the scaling function R^L/LQ). 

sampling enough systems. An additional reason to define the localization length as 
in Eq. (18.83) is that Green's functions fluctuate too much for their averages to be 
well-defined, but averages of logarithms converge. 

Figure 18.9(A) shows plots of In R as a function of In L. Averages over around 
105 systems are required to obtain 1% accuracy. According to the basic scaling 
hypothesis, for any given level of disorder W, In R versus In L should lie on a 
universal curve once L is appropriately scaled, meaning that each curve in Figure 
18.9(A) must be shifted horizontally until it touches the curve below. The result 
is displayed in Figure 18.9(B), which shows the universal function Rj(l). There 
is a transition between metals and insulators at a disorder W of around 17. If the 
disorder is larger than this critical value, resistance increases continually with L, 
and macroscopic samples of the material must be insulating. If the disorder is less, 
resistance decreases with sample size, and the material is a metal. The distinction 
between metals and insulators is apparent in very small systems; one can distin-
guish between them by monitoring the change in In R when passing from 2 x 2 x 2 
systems to 3 x 3 x 3 systems. Figure 18.5 shows the result of comparing In R for 
800 values of W and £, for systems of size 3 x 3 x 3 and 4 x 4 x 4 , identifying 
localized states as those where the resistance increases for the larger system, and 
identifying extended states as those where it decreases. 

18.5.3 Comparison with Experiment 

According to Figure 18.9, the resistance of an insulating solid grows exponentially 
as its size increases. Two 30 000 Ü resistors hooked in series should give much 
more than 60000 Q. These predictions are of course false. Macroscopic resistors 
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Figure 18.10. (A) Measurement of resistivity versus temperature for 10 samples of the 
conducting polymer PPV, disordered in varying degrees so as to transform from insulator to 
metal. [Source: Ahlskog et al. (1997), p. 6779.] (B) Data transformed using Eq. (18.114), 
assuming lj to be a power law. The fourth curve from the bottom in (A) is fairly straight, 
and it will remain straight on a log-log plot after multiplication by any power of T. The 
only segment of the function /?3 that is straight is the horizontal segment right at the critical 
resistance dividing conductors and insulators. Therefore the power law lj oc T~325 is 
chosen to make this line become horizontal. All the resistance curves are divided by T~325, 
all are expressed as functions of T325, and all curves are displaced horizontally until they 
overlap. The vertical scale is arbitrary up to an overall multiplicative factor. The results 
are similar to Figure 18.9. 

obey Ohm's law. The theory of localization describes effects of quantum mechan-
ics that apply only at zero temperature. At any given finite temperature, there is 
some inelastic mean free path lj above which predictions of localization theory 
fail. 

A rough theory of the effect of temperature can be obtained by considering a 
three-dimensional sample of size lj. Its resistance R is 

R Mh) (18.113) 

If the sample is made any larger, however, Ohm's law takes over. Because the 
resistance of ordinary three-dimensional resistors scales as 1/L, resistance for L > 
IT is 

R = R3 
. . Granted, this expression is a crude way to account 
lj \ lj for a transition from one sort of behavior to an-
~f~ j ~j~ ■ other. It is constructed so that resistance goes as 
^O L 1/L, but agrees with Eq. ( 18.113) when lT = L. 

(18.114) 

Because lj is an inelastic mean free path, it diminishes at high temperatures and di-
verges at low temperatures. In this sense, by changing the temperature of a sample 
from large to small, one scans from small to large extents of quantum coherence. 

Figure 18.10 shows an application of Eq. (18.114) to obtain an experimental 
measurement of the three-dimensional scaling function also shown in Figure 18.9. 
Equation (18.114) requires knowledge of the function lj. Rather than use an elab-
orate function to optimize accord with predictions, analysis in the figure proceeds 
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on the assumption that IT is a power of T. The results are in satisfactory agreement 
with theory. 

Localization in Other Systems. Localization is a phenomenon involving wave 
motion in a random medium, and it is not particular to the Schrodinger equation. 
Many of the first calculations arose from studies of phonons in disordered solids, 
as discussed by Ziman (1979) and Economou (1983). John (1991) discusses the 
localization of light in random dielectric media, and Storzer et al. (2006) have 
obtained the best evidence to date that random media can indeed cause light to 
localize. 

18.6 Luttinger Liquids 

One of the persistent questions in the study of many electrons is when the Fermi 
surface exists. Impurities and disorder can disrupt the ability of electrons to carry 
charge over long distances, but there is a more worrisome issue, which is whether 
interactions between electrons themselves, even in the perfect crystal, can cause 
the whole picture of independent electrons traveling near a Fermi surface to break 
down. 

There are few exact results available to provide guidance. The hope has long 
been for a soluble and realistic model of many electrons. One of the few candidates 
is a model due to Tomonaga (1950) and Luttinger (1963), which however can only 
be solved in one dimension. Luttinger's solution of the model was partly incorrect, 
and the right answer was found by Mattis and Lieb (1965). Recent development 
of the subject is best sought in Giamarchi (2003). 

One way to express the basic idea of the model is to look at a generic energy 
band diagram for one-dimensional electrons, Figure 18.11(A). A parabolic band 
occupied up to the Fermi surface is replaced by two linear bands, one for electrons 
moving to the left near the Fermi surface, the other for electrons moving to the 
right. This model should generically capture the low-energy behavior of electrons 
in one dimension. 

Luttinger's model features electrons of two types, living in a one dimensional 
space of length L subject to periodic boundary conditions. The two types of elec-
trons are sometimes called left-moving and right-moving electrons, but really they 
are defined by the fact that the first have an energy that increases linearly with wave 
number k, and the second have an energy that decreases linearly with wave number 
k. Thus the Hamiltonian begins with a first contribution 

!Ko = hvp V ^ k (cj.Cik — C .ark). Think of HvF = d£/dkF as coming from a ( 1 8 . 1 1 5 ) 
~d linearization of the electron energy at the Fermi 

* surface. 

Here c]k creates a left-moving electron with wave number k and c\k creates a right-
moving electron with wave number k. The linear dependence of energy on electron 
wave number was inspired by Dirac's theory for relativistic electrons, although 
in this case it can be thought of as resulting from linearizing electron energies 
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left- right-
moving moving 
electrons electrons 

(B) 

Figure 18.11. (A) A characteristic one-dimensional electron energy band on the left is 
replaced by the schematic model on the right for the purposes of the Luttinger model. One 
can view the Luttinger model as one that has generically correct features near the Fermi 
surface. (B) Illustration of the fact that in two dimensions, creating a particle-hole pair of 
momentum q need not involve a large change of energy. The particle sits just above the 
Fermi surface, the hole just below. 

near the Fermi surface. For Hamiltonian (18.115) as in Dirac's theory, there is 
a problem because in the limit L —> oo, the energy of the system can be made 
infinitely negative by populating many right-going states with k S> 0 and many 
left-going states with k <C 0. And as in Dirac's theory, there is a cure that consists 
in imagining all these negative energy states to have been filled with electrons, 
paying attention only to excitations above this state. 

The Luttinger Hamiltonian is completed with a second term that describes in-
teractions between left- and right-moving electrons. The model can be solved for a 
very general interaction function J2ij V{Ru ~ Rrj), where /?// is the operator corre-
sponding to the position of the i'th left-moving electron, and Rrj corresponds to the 
j ' t h right-moving electron. In second quantized notation one has (see Eq. (C.10)) 

^ i = E c\kc\klcrk>l,clkll(kk'\V{Rl-Rr)\k"k"') (18.116) 
kk'k"k'" 

= E à]&c*„cw, f d^e^^>^'l^^V{Rl-Rr)^All) 
kk'k"k'" 

= 7 E V{(l)c\kc\k'Cr,k>+qCl,k-q Where v(q) = j exp[-iqx]V(x) (18.118) 
L kk'q and q = k - k" = k'" - k!. 

Solution of the Luttinger model is possible because of an array of dazzling 
technical tricks, but a simple physical picture suggested by Haldane (1981) lurks 
behind them. Consider an excitation that creates a particle-hole pair, where the 
particle has momentum Hq more than the hole it leaves behind. In two or more 
dimensions, it is possible for this change in momentum to involve arbitrarily small 
amounts of energy, as shown in Figure 18.11(B). In one dimension, however, a 
small change q of momentum cannot take place perpendicular to the Fermi surface. 
It necessarily involves a change of energy equal to h2kf\q\/2m. Therefore, in one 
dimension and only in one dimension, particle-hole pairs involve a definite relation 
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between energy and momentum. In this respect they themselves are like particles. 
Because these virtual particles are made from a pair of Fermions, they are bosons. 

Thus the Luttinger model can be solved by bosonization, which means rewrit-
ing the Hamiltonian in terms of operators that correspond to creation of particle-
hole pairs. This may be accomplished by defining density operators for q > 0: 

p,(q)= V c[k+aclk- pi(-q)= T c , W + ( ? Note, <?>(). (18.119a) 
7 - 9 

E 4*+?̂ *; 

-^<k 
a 

--q 
a ^ 
/ , Cr,k+qCr,k'i 

-^<k 

pi{-q) = 

pr{-q) = 

7"<? 

~-1 
= E Cr,kCr,k+<l Pr{q)= 2^ êr,k+q

âr,k; Pr{~q) = 2 ^ ^ c r ^ + ? (18.119b) 

The subtlety lies in the choice of upper and lower limits for the sum over k. Ordi-
narily, k is viewed as periodic, and when k reached the top of the Brillouin zone, 
k + q would flip over to the bottom. With the definitions in Eq. (18.119), the top 
and bottom of the Brillouin zone are kept completely separate, and the system takes 
the form of a filled Fermi sea. 

For the sake of definiteness take q > q' and compute 

(18.120) 

[pi(-q) 
7 - 9 

E 
- 7 < * -

7 - 9 

E 
- 7 < * " 

i, piW)} 
a ^ 

~ 7 < * ' 

êlk'+q'êlk'} 

7-<?' 4 - x 
ST^ Cl,k' Clkdk+q,k'+q' 

-i<k> -Ci,k'+q'èiMqàk,k' 
a 

1 ?-(?-9')\ 
4 . l 

clkcl,k+q-q' ' 
i 

Use Eqs. (C.3) repeatedly. ( 1 8 . 1 2 1 ) 

Requires about a page of algebra. It is 
helpful to write the limits on the sums 
as products of theta functions, and then ( 1 8 . 1 2 2 ) 
use the delta function to eliminate k' in 
terms of k. 

The operators in Eq. (18.122) have canceled out completely except when k is near 
the top or the bottom of the Brillouin zone. Suppose one is interested only in low-
energy excitations; that is, q <C ir/a. One can restrict attention to the space of wave 
functions where all the k states down at — ir/a are completely filled, and all the 
states up at tr/a are completely empty. In this space the first sum in Eq. (18.122) 
can be replaced by X^=-Wa *W a n <^ t n e s e c o n d vanishes. One arrives at the same 
result, by a slightly different route, if q < q1. Thus one has finally 

- 7 + ? L 

\Pi(-q),Pi{rf)\= E V = r « V (18-123) 

Similarly 

2TT 

[pr(q),pr(-q')} = J2 V = ^ V (1 8-1 2 4) 
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while pi and pr commute. Mattis and Lieb (1965) comment about the temptation 
to think Eq. (18.122) vanishes that 

there is a large difference between very large determinants and infinite 
ones....It was first observed by Julian Schwinger... that the very fact that 
one postulates the existence of a ground state (i.e. the filled Fermi sea) 
forces certain commutators to be nonvanishing even though in first quan-
tization they automatically vanish. The "paradoxical contradictions" of 
which Schwinger speaks seem to anticipate the difficulties of the Lut-
tinger model. —Mattis and Lieb (1965), p. 304 

Comparing with Eq. (13.44), note that pi and pr obey the commutation relations 
for boson creation and annihilation operators once one rescales them as 

(18.125a) 

(18.125b) 

The goal is now to rewrite the Luttinger Hamiltonian in terms of these new op-
erators. The interaction term (18.118) is easy to rewrite. Inserting the density 
operators from Eq. (18.119) gives 

1 

L q>0 

£ £»<«> 
<?>0 

2TT 
â_„âl + â-

( 1 8 . 1 2 6 ) 

Remember assumption that v(q) is even. ( L8 .127) 

The noninteracting Hamiltonian is less straightforward to represent in terms of the 
density operators, but the task can be accomplished by computing that 

[[K0, pi{±q)} = ±q pi{±q) 
['Ko, Pr{±q)} = ^qpi{±q)i 

which means that 

[[Ko, â±q] 

qâ]
±q 

-qâ±q 

(18.128) 
(18.129) 

(18.130) 

(18.131) 

Thus [Kn has the same commutation relations as J2q>o q(âqâq + â_ â-q). Identi-
fying this quantity with [Ko, up to an additive constant which can be neglected, the 
Luttinger Hamiltonian equals 

[K = 2_\ Q ( hvF 
q>0 ^ 

âqâq + â[_qâ-q + 2TT 
â_qâq + â. (18.132) 
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This Hamiltonian can be made diagonal through the type of transformation used by 
Bogoliubov in the theories of superfluidity (Problem 15.7) and superconductivity 
(Section 27.3.4). Define new Bose operators 

â\ = b\ COSh 4>q + b-q s inh (j)q Th e inverse relations look like ( 1 8 . 1 3 3 a ) 
bq = âq coû\{<t>q) — â_ sinh(0,), assuming 
<f>q =4>-q-

an = bn COSh 4>q + b[_a Sinh (j)q
 u i s e a sy t 0 v e r i fy t h a t t h i s transformation8.133b>) 

^ preserves Bose commutation relations. 

Inserting Eqs. (18.133) into the Hamiltonian (18.132), using v(q) = v(—q), the 
Hamiltonian becomes diagonal under the condition that 

hvF sinh(20,) + ~ - cosh(20„) = 0 (18.134) 
271" 

and apart from more additive constants one has 

•K = Y, q\l*24 - (v(q)/27ry (b\bq + blqb.q), (18.135) 
q>0 

which finally puts the Hamiltonian into diagonal form. 

18.6.1 Density of States 

The Hamiltonian for the Luttinger model has now been diagonalized, and it re-
markably has turned into a quadratic Hamiltonian for non-interacting bosons, al-
though it began as a Hamiltonian for interacting electrons. Computing quantities of 
physical interest is however surprisingly difficult, since the transformations leading 
from the fermionic to the bosonic representation are complicated, and it is not clear 
given the bose operators b how one can get the fermion operators c back again. 

Luther and Peschel (1974) showed how to accomplish this task. Observe that 

\pi(q), CiA = —Ci k-q. T h i s computation is a straightforward exer- ( 1 8 . 1 3 6 ) 
' eise in anti-commuting % past the operators 

in Eq. (18.119). 

Therefore, defining the spatial destruction operator 

^/W = E f 7f^ ' (18-137) 

one finds that 

Now consider 

[pi{l),Mx)] = -eiqxMx)- (18.138) 

ü = eT,<>0fL{t*x»{-*)-e~*XM)). (18.139) 
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Using the result from Messiah (1999) p. 208 for any two operators A and B whose 
commutator is a scalar that [Â, f(B)] = f'(Ê)[Â, B], one computes that 

[M?) ,*] = £ ^ , V * * [ M ? ) , P / ( - < / ) ] (18.140) 

= _£<<?*xj/. Using Eq. (18.123). ( 1 8 . 1 4 1 ) 

Problem 9 shows that the same relation applies to commutation with pi(—q). Since 
\I/ and V>/(x) have the same commutation relation with pi(q) and pi(—q), they can 
be identified with one another up to overall constants, and 

V;/W = -7= exP fco «L V (18.142) 

Note sneaky introduction of convergence factor a; the factor in front is needed to normalize 
results later. See Haldane (1981) for a much more careful derivation, including some terms 
needed to correct the fact that the right hand side leaves the number of fermions constant, 
and the left side does not. 

It follows immediately with use of Eq. (18.125) that 

clk=\^=e >^\j^\ -d_ (18.143) 

The density of single-particle states for left-moving particles is 

nik = c\kclk. (18.144) 

The goal is to find the expectation of hik in the ground state. Following computa-
tions that are the subject of Problem 9, one has 

(nlk) = f ^e-ik*+r ^ ( [ ^ - ' ] s i n h ^ H * - * - ! ] c o s h ^ , ) ^ ( 1 8 1 4 5 ) 

J a 
The computation can now follow different paths, depending upon assumptions 

about the electron interaction v(q). The simplest assumption is that the interaction 
is very short range in space, meaning that v(q) = VQ is constant. The convergence 
factor a is now needed to control integrals that would otherwise diverge, but this is 
all right given the understanding that a is really standing in for the decay at large 
wave number of v(q). With some more manipulations, one finds 

fL e~ikx ( a2 \"° 
(nlk) = / dx —— -^-—2 (18.146) 

Jo a + ix yaz+xzJ 

=$■ (nib) (X k ° This expression for the power law in k should ( 1 8 . 1 4 7 ) 
be good so long as ka is small. 

where 
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u\ 
h2v2

F - ( V ( 2 T T ) ) 2 
(18.148) 

For noninteracting electrons vo = 0,uo = 0, and the density of states is constant 
outside the Fermi surface, where in fact it vanishes. For interacting electrons, the 
density of states vanishes approaching the Fermi surface as a power of k that is 
given by the strength of the interactions between electrons. Interactions between 
electrons have fundamentally changed electron excitations near the Fermi surface. 

Despite the host of detailed theoretical results concerning one-dimensional 
electron systems, thought to constitute a whole class of materials called Luttinger 
liquids, experimental confirmation has come very slowly. Clean one-dimensional 
systems are hard to create, and hard to connect to three-dimensional measuring 
devices. One indication of Luttinger liquid behavior comes from experiments de-
signed to allow electrons to tunnel across an insulating barrier into a carbon nan-
otube. The nanotubes are essentially one-dimensional conductors, and good can-
didates for Luttinger liquid behavior. Because the density of states vanishes as a 
power law for energies near the Fermi surface, Kane et al. (1997) show one should 
expect the current to vanish as a power law either as a function of temperature or 
of bias voltage. Figure 18.12 shows data indicating this is in fact the case. 

C/5 

io- 101 102 

V (mV) 

Figure 18.12. Differential conductance measured at various temperatures for current in-
jected into a rope of carbon nanotubes. As the temperature decreases, the data appear to 
approach a power law, as predicted by Luttinger liquid theory. [Source: Bockrath et al. 
(1999) p. 599]. 
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Problems 

1. Resistance of liquid aluminum: The structure function S(q) has been mea-
sured for molten aluminum at 700° C, and is shown below. 

2.0 

0.0 0.2 0.4 0.6 0.8 1.0 
q/2kF 

Use these data, and the pseudopotential of Eq. (10.38), with the values listed 
after it, to compute the resistivity of aluminum at 700°C, and compare with 
the experimental result of 24.7 fiQ, ■ cm. Note that the potential U(q) in 
Eq. (18.16) differs from the pseudopotential U$ in Eq. (10.38) by a factor 
of Ç}, the volume per atom. 

2. Electron in an incommensurate potential: Consider the Hamiltonian 

Ä = t 53 {^(I0(' + 1| + |/)</- 1|) +cos (2TT/T)|/)(/| j . (18.149) 

The problem becomes particularly interesting when the potential cos(27r/r) is 
incommensurate with the lattice sites |/), which happens when r is irrational. 
For example, one might take r to be the golden mean, 

v^+l 
T = (18.150) 

(a) Suppose that instead of taking r to be exactly the golden mean, one replaces 
it by rational approximants to the golden mean: 

T„ = 
Fn+\ 

Fn 

where F„ is the nth Fibonacci number, Fn = F„_i +F„_2, 

F0 = 1, Fi = l, F2 = 2, F3 = 3, F4 = 5, F5 = S. 

(18.151) 

(18.152) 

How many bands does (18.149) have when one uses T„ for r (compare with 
Problem 7 in Chapter 8). 
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(b) For r now given by Eq. (18.150), the wave functions of the Hamiltonian are 
a curious intermediate between localized and extended. Demonstrate this fact 
by assuming that there is an eigenstate at £ = 0, taking tpo = (0|V>) = 1 and 
ip\ = (1\4>) = 1. Then use Eq. (18.149) to compute i\)m — (m\ip) form on the 
order of 104 and observe how the magnitude of ipm scales with m. 
One way to do this is to plot the participation ratio 

Pim) = ÈuW- (18'153) 
In order to calculate P(m), make use of quantities calculated in order to find 
P(m — 1 ) ; do not carry out a sum starting at 0 and going up to m for each 
individual P(m). 
Compare the behavior of the participation ratio with what would be expected 
for localized states, and what would be expected for extended states. 

3. Introduction to transfer matrices: Consider a tight-binding model for a 
one-dimensional chain of atoms with random impurities scattered along it: 

& = £ | / )£//( / |+t | / )( /+l | + t|/ + l)</|. (18.154) 

Take £// to be a random variable occupying all values between —W/2 and 
W/2. 

(a) Show that a solution \X/J) of Schrödinger's equation with energy £ satisfies 

and find the 2 x 2 transfer matrix T making Eq. (18.155) true. 
(b) Suppose that V'o = 0 and ipi = I. Using Eq. (18.155) in a numerical routine, 

find how \ipi\2 behaves for large / for £ = 0, W/t = 10, and W/t = 1. Plot 
\ipj\2 versus / on a linear-log plot. 

(c) What conclusion can one draw about solutions of Schrödinger's equation? It 
is helpful to suppose that [// = £/_/. 

4. Tight-binding Hamiltonian in two dimensions: 

(a) Consider a square lattice in two dimensions. Write down the tight-binding 
Hamiltonian, with nearest-neighbor hopping t and onsite energies £//. 

(b) Prepare a numerical routine that takes a wave function ip on an 8 x 8 square 
lattice with periodic boundary conditions and computes "Kip. "K is a 64 x 64 
matrix, and ip is a 64-component vector. Set up the routine so that it is easy 
to change the size of the lattice. The components of tp must be allowed to be 
complex numbers. 
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(c) Set the onsite energy U[ to zero. Set ^(0,0) = 1 a n d a ^ other components of 
ip to zero. Set idt/h = 0.01 Compute the time evolution of ip by 

i> ( « ) _ l 
idt 
~h 

•K i> («-0 (18.156) 

Actually, this is not a good way to solve Schrödinger's equation, because it 
does not preserve normalization and is not accurate to high order , but it will 

(n) 
do for the present. Find V'o o f ° r 4096 values of n, and prepare a plot of the 
real and imaginary parts of "0(0,0) a s a function of time. 

(d) Multiply ifj(t) by exp[—0At/(h/t)}, take the fast Fourier transform of the 
result, and plot real and imaginary parts. To what function computed in this 
chapter should the result correspond? 

5. Scaling theory of localization I: 

(a) Consider a three-dimensional tight-binding model on a square lattice. Show 
that solutions ip of Schrödinger's equation must obey the equation 

( Vv+i 

where 
T = -!H/2 

0 

(18.157) 

(18.158) 

Here 'K2 is the tight-binding Hamiltonian for the two-dimensional square lat-
tice, and ipi is condensed notation for ipj,k,i- The three indices on tp label the 
three-dimensional sites of the tight-binding model, ipi is a vector (whose val-
ues can be indexed by j and k) with as many components as a two-dimensional 
tight-binding model and where the final index / is being treated separately for 
use with the transfer matrix T. 

(b) The transfer matrix for a 2 x 2 two-dimensional Hamiltonian with periodic 
boundary conditions in which all the diagonal elements vanish is 

( ° 
- 1 
- 1 
0 
1 
0 
0 

\. 0 

- 1 
0 
0 

- 1 
0 
1 
0 
0 

- 1 
0 
0 

- 1 
0 
0 
1 
0 

0 
- 1 
- 1 
0 
0 
0 
0 
1 

- 1 
0 
0 
0 
0 
0 
0 
0 

0 
- 1 
0 
0 
0 
0 
0 
0 

0 
0 

- 1 
0 
0 
0 
0 
0 

0 \ 0 
0 

- 1 
0 
0 
0 
0 / 

(18.159) 

Generate an automatic procedure to create this matrix. 
(c) Print the matrix for a 3 x 3 two-dimensional system. 
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6. Scaling theory of localization II: Let T be the transfer matrix for a tight-
binding Hamiltonian on an L x L square lattice, 

£ " 1
I K / " 0

! ) . (18.160) 

The subscript / is needed because the matrices Ä/ have random diagonal ele-
ments, chosen with equal probability to lie within [-W/2, W/2]. Let 

Q=nT'- < 1 8 - 1 6 1 ) 
i=\ 

Then according to Pichard and André (1986), the conductance G of an L x 
Lx L cube, in units of e2/h, is 

i = Tr R (18.162) 
LQQ* + (QQ*)-'+2j 

(a) Rewrite the expression for G in terms of the eigenvalues of the matrix QQ*. 
(b) Calculate the resistance of a 3 x 3 x 3 block at W = 0 and £ = 0 and find 

In R= 1.4818. 
(c) Find the resistance of a single 3 x 3 x 3 block at W — 10 and £ = 0. 
(d) The resistance found in the previous part will depend greatly upon the partic-

ular values of the random disorder. To obtain a more meaningful result, carry 
out averages over many realizations of the randomness. That is, compute In R 
for one 3 x 3 x 3 block, obtaining In R\. Without initializing the random num-
ber generator, find the resistance of a second 3 x 3 x 3 block, obtaining In Rj. 
Continue in this way, generating the series of resistances In /?/. The fluctua-
tions in resistance are so large that R is not well defined, but In R will average 
well. Let In /?/ be the average of In R after / computations. Keep computing 
until the fluctuations in In /?/ settle down to within around 4%. 

7. Scaling theory of localization III: 
Use the numerical routine of problem 6 to compute the conductance G, de-
fined in Eq. (18.162), and therefore find the scaling function for localization 
in three dimensions. That is, reproduce Figure 18.9. This figure was produced 
by using tens of thousands of cubes of size up to 7 x 7 x 7, but if systems this 
size are too time-consuming, an adequate figure can be produced with cubes 
of size up to 5 x 5 x 5. 

8. Weak localization: The goal of this problem is to carry out the calculations 
leading from Eq. (18.101) to Eq. (18.103). Specialize to the center of the 
band, £ = 0, and write 3(g, £ = 0) = 5(g). 

(a) Show that 
\~] = -J dg?(g) In \g\. (18.163) 
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(b) Show that if 5>(f/) is very narrow and centered on zero, then to leading order 
in W/i one obtains 

?(g) = \?(-l/g). (18.164) 
8 

(c) Verify that Eq. (18.164) has solution 

3"= . C , (18.165) 

where C is a constant. 
(d) Show that to normalize 3r,C = 0.2696 . . . . 
(e) Equation (18.165) is completely independent of the probability distribution 

3\ From Eq. (18.101), an approximate form for 5" that involves 03 is 

t r . , „ , t . „ C 
f ( s ) < / , v n i-lg<) . (,8,66, 

Iterating Eq. (18.101) further would produce even better approximations for 
U, but to leading order in W/i it is not necessary. 

(f) Inserting Eqs. (18.166) and (18.81) into Eq. (18.163), and working to leading 
order in W/i, verify Eq. (18.103). 

9. Luttinger Liquids: 

(a) Verify that 

[pti-q), *] = - £ ^re-V'VM-q), p,(</)] (18.167) 

= -eiqxÜ. (18.168) 

(b) Verify Eq. (18.145). Use Eq. (13.119) to treat averages of exponentials of 
Bose operators. Keep only terms that survive the expectation value in the 
ground state. 

(c) Verify Eq. (18.146). 
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19. Electronics 

19.1 Introduction 

Electronics is the art of controlling the flow of electrons. It began with the dis-
covery of the ancient Greeks that a piece of amber (rjXexxpov) could attract and 
hold small objects after being rubbed. The path leading to electrons' controlled 
removal from matter included the observation early in the eighteenth century that 
the electrical conductivity of air increases in the vicinity of a hot poker, continued 
with Franklin's kite experiment relating lightning to static electricity, and culmi-
nated in the middle of the nineteenth century with experiments of Crookes who 
passed electricity between high-voltage plates in evacuated tubes. Edison noticed 
in 1883 that if he placed a metal plate inside a light bulb, current would flow to the 
plate if it was at a positive voltage with respect to the filament, but not otherwise. 
Edison did not think this observation of rectification particularly significant, but it 
has turned out to have as many consequences as his electric lights. 

Credit for the discovery of the electron is given to J. J. Thomson, whose exper-
iments on the flow of electricity from heated filaments in evacuated tubes isolated 
it as a particle with a definite ratio of charge to mass. The name "electron" was 
proposed by G. J. Stoney in 1894 for the unit of charge equal to 10~19 coulombs, 
and this term gradually superseded Thomson's term "corpuscle" for the new par-
ticle. The first practical electronic device was built by J. A. Fleming, who built 
upon the work of Thomson and Edison to create a cathode ray tube with a heated 
filament capable of rectifying oscillating currents. He called it a "valve," but it is 
now better known as the diode, and is depicted in Figure 19.1. Commercial radio 

heated cathode 
Forward Bias 

.anode I |l|l 

Reverse Bias 
+ 

J — PII—| I——l|l|——"I 

cathode anode cathode anode 

Figure 19.1. The essential action of a diode is to send current in one direction in response 
to an applied voltage, and not the other. The origin of this asymmetry is the fact that met-
als at elevated temperatures emit electrons long before they emit positively charged ions. 
A heated cathode therefore sends off an appreciable current toward a positively charged 
anode, but almost none toward a negatively charged anode. 
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Figure 19.2. The triode serves not only to rectify current, but also to amplify small signals. 
It accomplishes this task through the interposition of a grid between cathode and anode. 
The potential between cathode and grid determines whether electrons begin the journey 
between cathode and grid at all. However, once electrons arrive at the grid, they discover 
that a much larger positive potential awaits them at the anode and accelerate toward it. 
Because only a small proportion of the electrons enters the grid, small grid currents control 
large cathode—+ anode currents. 

transmission became feasible soon after with the invention by L. De Forest of the 
triode, shown in Figure 19.2. Rectification is essential to practical radio transmis-
sion because the time average electrical field of a propagating radio wave is zero, 
and even if the amplitude of such a wave is modulated to encode sound, it cannot 
directly drive a speaker. Once the signal is passed through a rectifier, time averages 
no longer vanish, and the signal can easily be decoded. The triode was essential not 
only because it allowed amplification of weak signals, but also because by feeding 
a portion of the output back in to the control grid, it could be made into a powerful 
and stable source of radio-frequency oscillations. 

Up through the 1970s much of electronics consisted in the study of cathode ray 
tubes. They have now almost entirely been superseded by semiconductor devices, 
which are much more reliable, and have slowly managed to capture even high-
power and high-frequency applications that at first seemed out of reach. However, 
the basic concepts of controlling current, rectification, amplification, and switching 
all first developed in the context of cathode ray tubes and were then taken over and 
further developed by semiconductor descendants. Even the basic physics of the 
various devices has many points of similarity. For this reason, it is advisable to 
begin the study of electronics with the physics that made the cathode ray tubes 
possible. 

19.2 Metal Interfaces 

As sketched in Figure 19.1, the cathode ray tube diode relies upon the fact that a 
heated piece of metal emits electrons, but not positively charged ions. This effect 
becomes most clearly visible when air is evacuated from the region in which the 
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electrons are to travel, and for this reason cathode ray tubes are also known as 
vacuum tubes or electron tubes. The physical question that needs to be answered 
is how a metal surface in contact with vacuum emits electrons as a function of 
temperature and electrical potential. 

19.2.1 Work Functions 

All the calculations of electronic energy levels up until now have been carried out 
relative to one another. For example, the Fermi level was sometimes calculated 
relative to the energy of the lowest single-particle electronic level, and in the band 
structure diagrams of Section 10.4, the Fermi level was defined to be zero. None of 
these calculations answers the question of the amount of energy needed to remove 
an electron from an electrically neutral solid in vacuum. This energy is defined to 
be the work function and is often denoted by cf>. It can be measured by optical meth-
ods to be discussed in Section 23.6.1, or by properties of thermal emission to be 
discussed immediately below. To calculate it requires understanding what happens 
when an electron is dragged through the interface between metal and vacuum. 

The work function must be contrasted with the chemical potential, which is 
the energy required to take an electron from the bulk and remove it to infinity. 
Inspection of Table 23.2 shows that the experimentally measured energy required 
to pass an electron through one crystal surface typically differs by 10-20% from 
the energy required to move it through an inequi valent one. As the energy required 
for transit from bulk to infinity cannot depend upon path, it is necessary to establish 
carefully what the experiments actually determine. 

metal 

Figure 19.3. An electron at a distance x from 
a metal surface is attracted to the surface by 
an image charge of opposite sign which guar-
antees that electric field lines will be normal 
to the surface. 

The electrostatic potentials contributing to the work function operate on three 
separate length scales: 

Atomic. In passing through the surface of a crystal, an electron passes through a 
highly inhomogeneous environment where the crystal terminates. Although 
the surface is almost completely electrically neutral, there is always a strong 
dipole layer. The electron is buffeted by strong forces as it passes through this 
layer, but the range over which these forces operate is only on the order of a 
few lattice spacings, due to the effectiveness of screening in a metal. 
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Micron. After the electron exits the metal, it interacts with an image charge, 
whose presence enforces the boundary condition that the tangential electric 
field vanish on the surface, as shown in Figure 19.3. The force F at distance x 
from the surface is 

e2 

which implies that the electron has a potential energy 

e2 1 
U(x) = = —3.6-10~VmeV. (19.2) 

4x x 

Work functions are on the order of several electron volts, and therefore further 
changes due to the image charge energy become negligible by the time an 
electron has traveled a few microns from the surface. 

Macroscopic. Because different crystal faces have different dipole layers, the re-
gions outside them must be at different electrical potentials, produced by 
minute shifts in electron density near the crystal surface. The existence of 
this potential is absolutely necessary, because there is no other way to bring 
an electron out of the bulk through one surface, return it through another sur-
face, and have it return to the original bulk energy. The spatial scale for the 
variation of this potential is the size of the crystal itself. 

Figure 19.4. The work function is denned as 
the energy needed to remove an electron from 
the bulk of a metal, and bring it within about 
a micron of a particular surface. 

Therefore, as indicated in Figure 19.4 the work function is defined to be the 
energy of electrons brought out to distances on the order of microns from crys-
tals whose dimensions are larger than microns. Hölzl and Schulte (1979) describe 
many additional complications that can arise in attempting to calculate or to mea-
sure work functions, such as what happens when surfaces are rough, or contain a 
layer of adsorbate atoms. 

19.2.2 Schottky Barrier 

Equation (19.2) fails when an electron is too close to the crystal surface, because 
the potential energy U diverges, and more realistic calculations require explicit 
description of the electronic surface states of a metal. However, it is adequate for 
the purpose of estimating the effect of an externally applied electrical potential on 
the work function. Suppose that a positively charged metal plate is placed at a large 
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distance to the right of the metal surface, creating a linear electric field of strength 
—E. Now the potential energy U(x) of the electron is 

e2 

U(x) = -—-e\E\x, (19.3) 
Ax 

which creates a barrier, shown in Figure 19.5, at distance 

x0=J—^>U(x0) = -e^e\E\. (19.4) 

Therefore an externally applied electric field changes the barrier restraining an 

Positive potential 

electron within the metal by e\Je\E\. 

Ground 

i 

K 

1 ^______ No electric field 
/^~~ *o Small electric field 

Larger electric field 

Figure 19.5. An externally applied electric field, created by placing at a distance a large 
plate at an elevated voltage, lowers the barrier an electron must surpass in order to exit a 
metal. 

Having first found the effect of applied electric fields, the next goal is to exam-
ine the thermionic emission of electrons that results from heating the metal. This 
task is accomplished by considering the electrons in the metal to be in equilibrium 
with a dilute gas of electrons hovering outside it. For simplicity the electrons are 
treated within the semiclassical approximation, which makes it possible to speak 
of the probability for an electron to have wave number k at position x outside the 
metal 

f-. = : . Compare with Eq. (17.27). Here it is more ( 1 9 . 5 ) 
•** ß(£S+U(x)—n) A convenient to keep ß constant and describe 

"i" the spatial change in potential through U (?). 

The probability of finding electrons does not vanish as x travels far from the metal. 
Finding the vacuum full of electrons may seem unacceptable, but is an inevitable 
consequence of the fact that no solid or liquid can ever be in equilibrium with a vac-
uum at nonzero temperature. Entropy always favors total evaporation. However, a 
solid can exist in equilibrium with a dilute vapor of a particular concentration, and 
that is what Eq. (19.5) implies for the electrons in a metal. The properties of the 
electron vapor are fixed by the observation that because it is in equilibrium with 
the metal, the two must have the same chemical potential. Taking "far from the 
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metal" to denote distances on the order of a micron, the chemical potential must 
be replaced by the negative of the work function, 4> — ~ll > 0- Work functions 
are typically on the order of several electron volts, as shown in Table 23.2, so for 
temperatures much less than 10000 K, Eq. (19.5) can be replaced by 

/ ^ « « - ^ + t / W + 0 ) . (19.6) 

In order to find the current drawn from the metal in the presence of an applied 
electric field, one should write down the Boltzmann equation and calculate the 
nonequilibrium function g ^. However, it is adequate to consider a simple approx-
imation, which is to assume that the electron gas is in equilibrium at all points to 
the left of XQ and that all electrons that reach XQ and are traveling to the right escape 
over the barrier and run off as a current. This idea predicts a current 

hkx 

Eq. (6.15). 
j=-eexp{-ß[<j> + U(xo)]} f[dk] ^9(kx)e~^2k2/2m For [dit], see (19.7) 

J m Eq. (6.15). 

AT2 exp l - ß 4>-e^fë\Ë\ \ , From Eq. (19.4). (19.8) 

where 
A=^—rkl

B= 120.2 A c m " z r z . (19.9) em o i l jj- n n i A „™—2- v—2. 
2n^kB 

Equation (19.8) is called the Richardson-Dushman equation when used for 
E = 0, while the reduction of the work function by the square root of an applied 
field is called the Schottky effect. The current does not vanish when the electric 
field E goes away, which means that if one places a cold grounded plate at some 
distance from the heated metal and provides a path for the electrons departing from 
the metal to return to it, current will flow through the vacuum even in the absence 
of a voltage difference. The factors outside the exponential in Eq. (19.8) are not 
particularly to be trusted, but the exponential scaling with temperature and electric 
field can be verified experimentally and can be used to measure the work function 
</>. Equation (19.9) was derived by Schottky (1938), and it provided theoretical 
underpinning for the development of cathode-ray tube electronics. 

19.2.3 Contact Potentials 

Whenever two dissimilar materials are brought together, charge moves between 
them. The reason is that they have in general different work functions, and elec-
trons from the material with the smaller work function rush into the material with 
the larger one. As this process occurs, charge builds up in the second material, and 
at some point Coulomb repulsion brings the charge transfer to a halt. The effects 
of Coulomb repulsion can, however, be minimized if the electrons that flow to the 
second material are located as close as possible to the (positive) holes flowing to the 
first material. For this reason, the electrons and holes arrange themselves as surface 
charges along the interface between the two materials, the electrons on the side of 
the second material, the holes on the side of the first. Variations on this basic sce-
nario follow mainly from the widths of the regions with surface charge. When two 
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metals are brought in contact, the regions with excess charge have atomic dimen-
sions. When semiconductors are brought into contact, charge densities are much 
smaller than in metals, and the length scales over which charges build up turn out 
to be much larger, as will be shown in Section 19.4.2. 

Figure 19.6. Two metals with work func-
tions 4>\ <4>2 are arrayed as plates of a ca-
pacitor, and charge is allowed to pass be-
tween them through an ammeter. By mea-
suring the current J and from it deducing 
the total charge transferred, the difference 
between the metals' work functions is de-
termined using Eq. (19.11). 

For now, consider the case of two metals in contact. To bring an electron from 
one metal to its neighbor costs energy 4>\, but recovers energy —cj)2, where <fr\ is the 
work function of the first metal, and (j>2 is the work function of the second. Assum-
ing 4>2 > 4>\, electrons continue to flow from metal 1 to metal 2, until the Coulomb 
repulsion of the additional charges added to metal 2 cancels out the advantages of 
the difference in work function. This difference in electrical potential is called a 
contact potential. As shown in Figure 19.6, by using two different metals as two 
plates of a capacitor and then connecting them with a wire, one can measure the 
difference in their work functions. Because the metals are arrayed as a capacitor, 
the electrical potential difference V between them is 

V = Ed = 4TTad, (19.10) 

where a is the magnitude of the surface charge on each of the metals, and d is the 
spacing between them. In equilibrium, the potential energy — eV needed to bring 
an electron from one plate to another equals the difference in work functions, so 

(j)2 - < / > , = 4-Kead. (19.11) 

One way to measure the difference in work functions is simply to measure the total 
current that flows between two metals at known spacing after they are connected 
by a wire. A more accurate procedure is to find an external potential difference 
imposed between the two metals so that no current flows when the spacing be-
tween the two metals is changed slightly. This potential difference must be just the 
difference in work functions shown in Eq. (19.11). 

Double Layers and Reconstruction. Expressions (19.4) and (19.11) provide re-
lations for metals in contact with vacuum or each other by cleverly evading ques-
tions of what happens at short length scales. Equation (19.4) must break down 
when electrons come within a few angstroms of a metal surface, while Eq. (19.11) 
should fail when two metals come closer than within a few angstroms of each other. 
Qualitatively, however, each of them is correct. For angstrom-scale separations be-
tween metals, Eq. (19.11) predicts that a double layer of charge will build up, with 
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charge density on the order of 5 • 10_3electrons/Â2. Compared to the the normal 
density of electrons along any surface of a metal, this number is not particularly 
large. However, the electric fields involved are on the order of leV/Â, and they 
are enormous compared to fields normally generated in the laboratory. The double 
layer of surface charges is a dipole layer, and one can view the work function of a 
metal generally as arising from the presence of such layers at the surface. 

Band structure programs are able to calculate detailed properties of surfaces 
with a fair degree of success, and they find such quantities as work functions. Early 
work along these directions was described by Lang (1973) and Appelbaum and 
Hamann ( 1976), and a more recent review is given by Zangwill (1988). Because the 
computer programs depend upon using Bloch's theorem, they must have a periodic 
crystal in which to carry out the calculations. One solution of this difficulty is to 
carry out calculations with a unit cell such as depicted in Figure 19.7. 

Figure 19.7. Band structure programs study surfaces by creating a unit cell (left) that upon 
repetition in all directions produces an array of slabs (right). The thicker the slabs, the more 
realistic an account of surface and bulk states the program can provide. The figure does 
not show any surface reconstruction, which often occurs and whose analysis is a frequent 
aim in the calculations. 

19.3 Semiconductors 

The beginnings of modern electronics lay in the control of current rectification 
by the cathode-ray diode. However, the cathode-ray tube did not provide the first 
case in which rectification was observed. It was seen independently by Braun 
(1874) and by Schuster (1874). Braun conducted experiments in which a crystal 
such as ferrous sulfide was contacted with a very thin wire, and the resistance was 
measured as a function of the direction in which current was flowing. Such point 
junctions do rectify current, although the effect is quite small and had no immediate 
practical consequences. 

The first diodes were produced by placing a whisker of metal in contact with a 
semiconductor crystal, and are described by Henisch (1957). Early devices could 
rarely compete with cathode-ray tubes, because they were still comparatively in-
efficient and unpredictable. In order to make them work at all, it was sometimes 
necessary to slide the whisker around until a region of good contact was found at 
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random. The progress of basic research into solid-state physics in the 1930s and 
late 1940s found the cause of the apparent unpredictability of semiconductors: the 
presence of certain crucial impurities in extremely small quantities. Once the role 
of these impurities was understood, and methods developed to control them, diodes 
and triodes based upon semiconductors took part in a remarkable development that 
eventually displaced the cathode-ray tubes that had inspired them, and they led 
electronics to a level of extraordinary complexity. 

The discussion will begin with the simplest basic physics, and gradually deco-
rate it with additional effects, until the mechanisms responsible for semiconductor 
electronics emerge. The starting point is the statistical mechanics of pure semicon-
ductor crystals, followed by statistical mechanics of semiconductor crystals doped 
with small quantities of impurities, and finally the theory of conductivity in junc-
tions between differently doped semiconductors. 

19.3.1 Pure Semiconductors 

Preliminaries. Semiconductors are bad insulators. At zero temperature all elec-
trons lie within completely filled valence bands separated from conduction bands 
by an energy gap of magnitude £g. Important features of the bands of silicon, 
germanium, and gallium arsenide appear in Figure 19.8. One would expect these 
materials simply to be insulators, except that the energy gap is small, on the order 
of 2 eV or less. At room temperature the occupation of the conduction band is 
proportional to 

g - / 3 £ s / 2 ^ j Q - 9 For ß = \/kBT =40 eV"1 and £ s = 1 eV. The factor ( 1 9 12) 
of 1/2 is a bit surprising, but will emerge from analysis. ^ 

Because thermal excitation provides exponentially growing numbers of mobile 
charge carriers, the electrical conductivity of semiconductors grows exponentially 

Figure 19.8. Essential features of band structures of silicon, germanium, and gallium 
arsenide. All have band gaps on the order of 1 eV. The bottom of the conduction band for 
silicon and germanium does not lie at T, so these materials have an indirect gap. Gallium 
arsenide, by contrast, has a direct gap. These diagrams are extracted from Figures 23.15 
and 23.16, which contain information on how they were obtained. 
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with temperature, in contrast with metals where scattering generally reduces con-
ductivity as temperature goes up. As the band gap £g sinks below 1 eV, thermal ex-
citation becomes a sufficiently important source of carriers that the semiconductors 
conduct at room temperature. More important is the fact that the electrical prop-
erties of semiconductors are enormously sensitive to the presence of certain types 
of impurities, which make their presence felt even at concentrations on the order 
of one part in 1010. Before the role of impurities was understood, semiconductors 
seemed capricious and unreliable. Now that they are not only understood but can 
be controlled, the impurities are employed to give semiconductors tremendously 
interesting and variable electrical transport properties, with which the electronics 
industry has developed and grown for over four decades. The word "impurity" 
connotes something undesirable, so one stops using it in reference to elements in-
tentionally added to semiconductors and refers to "dopants" and "doping" instead. 
Band Structure of Semiconductors. Because of the great importance of the en-
ergy gap in semiconductors, a few words are in order on how it is measured and 
calculated. In fact, neither experimental measurement nor theoretical calculation is 
straightforward. The most precise experimental technique is optical absorption. 
According to a simple band-theory picture, light falling upon a semiconductor 
should pass through unimpeded until the energy of a photon is adequate to cre-
ate an excitation of energy 8.g, after which absorption should rapidly increase. The 
actual story of what happens in such experiments is sufficiently complex and in-
teresting that it is deferred to Chapters 21 and 22. Some of the effects should, 
however, be mentioned now. 

1. Any transition involving a photon must conserve not only energy but also mo-
mentum. The momentum carried by a photon turns out to be negligible com-
pared with that of typical electron states. In Figure 19.8, the lowest-energy 
spot in the conduction band of silicon lies at about 8/10 of the way toward X, 
while the highest-energy spot in the valence band lies at T. An electron oc-
cupying a state near X cannot transfer to T simply by emitting a photon. The 
transition is therefore comparatively rare, with phonons supplying the missing 
momentum. For this reason, silicon is called an indirect semiconductor, as it 
has an indirect gap. Germanium is also an indirect semiconductor, and the 
bottom of its conduction band lies at L. Many optical applications demand 
a direct semiconductor, where the lowest point of the conduction band lies 
directly above the highest point of the valence band. For these applications, 
GaAs is the most important material. 

2. Near the band edge, where optical absorption is supposed to vanish, it usually 
displays one or more thin sharp peaks. These peaks are signatures of excitons, 
which are bound electron-hole pairs whose energy can sit slightly below any 
states describable in the one-electron picture. 

3. Photons whose energy lies below the band gap and out of range of excitons 
continue to be absorbed, at a rate that decreases exponentially the farther they 
lie below the band edge. This absorption is due to impurities and fluctuations. 
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Table 19.1. Semiconductor data 
Com- £g d£,g/dT n j e ° m*n m^ n?pl JL,, Jip 

pound (eV) (eV/K) (c i r r 3 ) (m) (m) (m) (cm2 /V s) ( cm 2 /V s) 
Si 
Ge 
GaAs 
SiC 
AlAs 
AlSb 
GaN 
GaSb 
InP 
InAs 
InSb 

i 
i 
d 
i 
i 
i 
d 
d 
d 
d 
d 

1.11 
0.74 
1.43 
2.2 
2.14 
1.63 
3.44 
0.7 
1.34 
0.36 
0.18 

- 9 . 0 
- 3 . 7 
- 3 . 9 
- 5 . 8 

- 4 
- 4 

- 6 . 7 
- 3 . 7 
- 2 . 9 
- 3 . 5 
- 2 . 8 

10"5 

io-4 

IO"4 

10"4 

IO"4 

IO"4 

io-4 

IO"4 

IO"4 

io-4 

IO"4 

1.02 IO10 

2.33-IO13 

2-106 

2-101 7 

2-101 7 

IO14 

1.2-10s 

1.3- IO15 

2.0-IO16 

11.9 
16.5 
12.5 
9.7 

10.0 
12.0 
12.0 
15.7 
15.2 
15.2 
16.8 

1.18 
0.55 
0.067 
0.82 
0.5 
0.3 
0.3 
0.05 
0.073 
0.027 
0.013 

0.54 
0.3 
0.50 
1 
0.5 
1 
1 
0.3 
0.6 
0.4 
0.4 

0.15 
0.04 
0.07 

0.26 
0.5 

0.04 
0.12 
0.03 
0.02 

1350 
3900 
7900 

900 
294 
200 
440 

7700 
5400 

30 000 
77 000 

480 
1800 
450 

50 

400 

1600 
150 
450 
850 

Data on whether a compound has a direct (d) or indirect (i) gap, energy gap, static dielectric 
constant, effective masses, and mobilities, for some semiconductors. The electron effective 
massm* is the density of states effective mass defined in Eq. (19.23). The data refer to room 
temperature, and to samples with donor and acceptor impurities at densities of IO15 c m - 3 

or less. Source: Landolt and Bernstein (New Series) vol. 17 and Pierret (1996). 

Despite these experimental complications the experimental determination of 
band gaps can be made rather precisely. Not only the energy gap, but also the 
structure of the energy bands in the neighborhood of valence band maxima and 
conduction band minima, is important. One can fit the energy to a quadratic form 
and write 

H2^ _ -
P - — P -I yfc*M k For electrons in the conduction band. ( \Q 13a) k c 2 " 

h2~ 
£- = £„ k*M~]k, For holes in the valence band. ( 1 9 . 1 3 b ) 

where M is the effective mass tensor. For silicon, germanium, and gallium ar-
senide, the bands at the valence max imum would be threefold degenerate in the 
absence of spin. The spin-orbi t interaction splits off one of the bands, leaving 
two above it that still are degenerate at T. The two bands have, however, differ-
ent curvatures near T, leading to heavy holes (low curvature) and light holes (high 
curvature), both of which contribute to the transport properties of semiconductors. 
Because of the great degree of symmetry associated with T, the energy surfaces of 
these holes are spherically symmetrical , and the effective mass tensors are multi-
ples of the unit matrix. 

The conduction band minimum in gallium arsenide is nondegenerate and spher-
ical. In silicon and germanium, the conduction band minima are quite anisotropic, 
and consist in a number of symmetrically arrayed pockets of electrons, as shown 
in Figure 19.9. The effective mass tensors have been measured by the technique of 
cyclotron resonance, to be discussed in Section 21.2. 
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Figure 19.9. (A) The conduction band minima in germanium lie along (111) and strad-
dle the zone boundary, producing four inequivalent pockets of electrons with a highly 
anisotropic effective mass. (B) In silicon, the conduction band minima lie 8/10 of the way 
toward (100), producing six pockets of electrons, but only three with distinct symmetries. 

19.3.2 Semiconductor in Equilibrium 

Electron and Hole Densities. In equilibrium, the numbers of mobile charge 
carriers in a semiconductor are given by the Fermi function. The volume density 
of electrons n above the conduction band edge is given by 

n = £demeßV-») + V (19-14) 

while the density of holes p below the valence band edge is 

= / d£D{Z) 

Nondegenerate Semiconductors. These expressions simplify for a nondegenerate 
semiconductor, which is one for which the probability of occupying states near the 
band edge is exponentially small: that is, 

tLc — ß^>kßT a n d fl — £ „ 3> £ g 7 \ A practical criterion is £c - ß > 3kBT. ( 1 9 . 1 6 ) 

When these conditions hold, the semiconductor is quite different from most met-
als. Whereas in metals carrier concentrations are on the order of 1022 electrons per 
cubic centimeter, for nondegenerate semiconductors carrier concentrations are on 
the order of 1019 cm - 3 or less. Whether a semiconductor lies in the nondegener-
ate limit or not will depend upon the density of dopants (impurities) added to it. 
In semiconductor devices, dopant densities are frequently great enough to cause 
violation of inequalities (19.16). Nevertheless, the nondegenerate limit is of great 
utility because the transport properties of semiconductor devices are largely deter-
mined by the regions with light doping, while the regions with heavy doping act 
like short circuits and can often be ignored. 

(19.15a) 

(19.15b) 
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Given conditions (19.16), the Fermi functions (19.14) and (19.15) can be re-
placed by Boltzmann factors, and the equations for electron and hole concentration 
in the nondegenerate case become 

n = 'Nce-ß(-£c-'i\ p = K e - * - £ » ) (19.17) 

with 
roo 

N c = / J£ D(£)g-^ e _ £ c ) (19.18a) 
JE.C 

K = / " rf£D(£)g-^e"_e). (19.18b) 

Effective Masses. With reasonable approximations, one can calculate Nc and 
N,;. It is not sufficient to take the density of states D(£) just to be a constant. 
In Eq. (19.18) the exponential factor places heavy emphasis on states just at the 
edges of the bands where the density of states vanishes, so there is an interplay 
between the two terms in the integrand. Still, only states within a narrow strip 
near the valence maximum or conduction minimum are important, and one can 
use the quadratic approximations (19.13) to evaluate the density of states. For the 
conduction band, one has 

D(E)= [[dk]ô(£-e.c-^h2k*M-lk) For[d*],seeEq.(6.i5). (19.19) 

/

_ i 1 \ Changing to a k basis in which M 

[dk] 8(£.-£,c- -h1 ^2 ki/mi)• i s d i a s ° M l - w i t h e l e m e n t s m ' - (19.20) 
z 

Defining 
( t i / ^ W ^ . W v ^ J ) (19.21) 

gives 

\h2q2) (19.22) 

- k 3 /2 Where JYk is the number of 
Illy, 

m* = [in 

D(£) 

im2m3] 

- ' / ■ 

' / 3 and 

m*3/2 dq 
" (2vr): 

q=\ 

A8-
_ . / 2 ( £ — £ ) " 1y[ symmetrically equivalent minima in the ( 1 9 2 3 ^ 

» C fr^TT^ °' concmction band, equaling six for ^ ' ' 
silicon and eight for germanium. 

Because m* is defined so as to bring the density of states D(E) into a simple 
form, it is called the density of states effective mass; experimental values for sev-
eral semiconductors appear in Table 19.1. In the case of holes, one can repeat the 
steps leading to Eq. (19.23) for heavy and light holes separately and define m*3'2 

to be the sum (m*,)3/2 + (w*ft)3/2 of the light and heavy effective hole masses. 
Then 

^ ) 3 MC (19.24a, 
nn / 

2m*pkBT\3/2 

— i ^ - . (19.24b) 
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In order to find equilibrium densities of electrons and holes from Eq. (19.17), 
one needs to determine the chemical potential p. However, there is a convenient 
relation independent of it, the law of mass action, obtained by multiplying together 
the expressions for n and p, to find 

np = J<c'Nve~ßEz. The energy gap Eg = Ec-Ev. (19.25) 

19.3.3 Intrinsic Semiconductor 

An intrinsic semiconductor is a pure single crystal. For every electron excited into 
the conduction band, a hole must be left behind in the valence band, so the intrinsic 
electron density n, is 

m = \/H^e~ß£s/2 From Eq. (19.25), setting n = p. (19.26a) 

mtm* 3/4 r- {^L\m 
= 2.510- 1 0 ' W ( ^ j Mf- ( ^ ) e-W. (19.26b) 

Solving Eq. (19.17) for the chemical potential gives immediately the intrinsic chem-
ical potential pi 

lH = kBTln^ + £c = 8,v + ^ + ^-kBT ln{m*p/m*n) - X-kBT In Mc. (19.27) 

Table 19.2. Binding energies of common donors and acceptors in 
some semiconductors at room temperature 

Host 
Si 
Ge 

Host 
Si 
Ge 

Host 
GaAs 

Host 
GaAs 
InP 

Group V donors, £c — £</ (meV) 
Eq. (18.23) N P As Sb Bi 

113 140 45 53.7 42.7 70.6 
28 12.9 14.2 10.3 12.8 

Group III acceptors, £a — £v (meV) 
Eq. (18.23) B In Ga Al Tl 

48 45 155 74 67 25 
15 9.73 12.0 11.3 10.8 13.5 

Donors, £c — £</ (meV) 
Eq. (18.23) Pb Se Si S Ge C 

5.8 5.8 5.8 5.8 5.9 5.9 5.9 
Acceptors, £fl — £.v (meV) 

Eq. (18.23) Be Mg Zn Cd C Si 
23 28 29 31 35 27 35 
21 31 31 46 57 41 

Ge Sn Mn 
40 167 113 
210 270 

Apart from the case of donors in GaAs, the simple theory of Eq. (18.23) 
gives no more than the order of magnitude of the binding energy. Improve-
ments on the theory, more properly incorporating anisotropy of the effective 
mass, and corrections due to the strong potential in the central cell near the 
impurity are discussed by Yu and Cardona (1996), Chapter 4. Source: Lan-
dolt and Börnstein (New Series), vol. 17. 
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The logarithm in Eq. (19.27) is of order unity or even zero if holes and electrons 
have the same effective mass, so because kßT ~ 1/40 eV at room temperature and 
band gaps are around 1 eV for semiconductors, the chemical potential sits smack 
in the middle of the band gap. Thus it cooperates in enforcing (19.17), making the 
semiconductor as nondegenerate as possible by staying away from the band edges. 

Compact Expressions. Combining Eqs. (19.26) and (19.25) puts the law of mass 
action in the general compact form 

np = nj (19.28) 

and allows rewriting Eqs. (19.17) for electron and hole densities as 

n = me-ftH-rt, p = me-^-^. ( 19.29) 

19.3.4 Extrinsic Semiconductor 

Figure 19.10. The effect of adding donors to a semiconductor is to create a population of 
bound states sitting just below the conduction band, while adding acceptors creates bound 
states just above the valence band. At room temperature, almost all the bound states break 
apart; each donor gives an electron to the conduction band, while each acceptor gives a 
hole to the valence band. 

When certain sorts of impurities are used to dope a semiconductor, the physics 
changes rather dramatically. The most interesting impurities are noncompensated, 
lying one column to the right or one column to the left of a semiconductor in the 
periodic table. Examples of common dopants appear in Table 19.2. As discussed 
in Section 18.3, addition of these impurities creates a population of bound states. 
Atoms from column V added to a semiconductor of column IV create states just 
below the conduction band edge called donors, while atoms from column III added 
to a semiconductor of column IV create states just above the valence band edge 
called acceptors (Figure 19.10). However, at room temperature, these bound states 
are not occupied; they are almost completely ionized. Thus the practical effect 
of adding a donor is to add a single mobile electron, while the practical effect of 
adding an acceptor is to add a single mobile hole. 

The energies in Table 19.2 do not make it obvious that impurity states should 
be ionized completely. The thermal energy at room temperature is around 25 meV, 
which is at best comparable to the binding energies. It is entropy more than energy 
that ionizes the impurities. For the purposes of a rough estimate, let the density 



582 Chapter 19. Electronics 

of impurity sites per volume be N^, and denote by Nc the density of conduction 
states per volume into which an electron could choose to move. In a system of 
volume V, the number of different ways to arrange electrons originally bound on 
the impurities among the conduction states is roug hly (Nc/Nd)'™', leading to en-
tropy kßVJJd In N c /Nj . Therefore the temperature at which ionization occurs is 
not kgT K, £è, but kßT In Nc/Nj « £è. The fewer impurities there are, the more 
mobile their electrons become. In practice, for doping levels of lid < 1018 cm- 3, 
ionization is probably complete, but if doping rises higher the approximation must 
be checked, because Hc « 1022 cm- 3 . 

Verifying these claims requires a simple statistical calculation. Consider a crys-
tal with a valence band, a conduction band lying at energy £g = £c — £„ higher, 
and donor states with maximum binding energy £j just below the bottom of the 
conduction band. Because the impurity potential is weak, the probability of an 
electron being trapped in anything but the "ground state" of the effective hydrogen 
atom problem is negligible. In addition to occupying the conduction and valence 
bands, electrons can also occupy the donor bound states. The donor occupation 
number can be zero, and the donor can trap an electron with either spin up or spin 
down, but it cannot bind simultaneously two electrons of opposite spin. There-
fore, in the grand canonical ensemble conventionally used for the Fermi gas, the 
occupation probability fd of the donor levels is 

0 x 1 + 1 x 2 x e-P^-ti 
h=

 1 + 2 x . - ^ > ( 1 9 3 0 ) 

<^ 1. Equation (19.38) will show that fi lies typi-. ( 1 9 . 3 1 ) 
1 -)- ±gß{£-d—tJ') cally in the middle of the gap, so that at room 

2 temperature Ej — ß is much larger than kgT, 
and /rf is nearly zero. 

Similarly, if acceptor impurities are placed at an energy £a above the valence band, 
the probability that a hole, spin up or spin down, will be localized on them is 

. The factor of 1/4 appears in the denominator 
r L „ I because the valence maximum is fourfold de- , . , Q Q~N 

Ja \_ 3(u—£a)\-\ ^ generate, including spin degeneracy. Again, Eq. (19.38) l.'■"•-JA) 
4 ^ ' * shows that typically this occupation number is 

much less than 1. 

The way that entropy ionizes impurities is hidden in the value of the chemical 
potential, and the chemical potential is determined simply by the total number of 
mobile electrons. Suppose that a density of Nd donors per volume is added to the 
semiconducting crystal, which otherwise contains nt electrons per volume in the 
valence and conduction bands. The total density of electrons is then 

* + N ' = JEc
 dg D(£) i + J(e-„) +fV ^ D^ i + J(£-M) +Kdfä.(l933) 

Because the integral of D(£) over the valence band gives nt, and assuming fd is 
negligible, 

W, = £ dt D ^ ) — ^ - ^ J£ D(E)i+Jß{e_ß) (19.34) 

=> Nd = n - p = nte-P^'-A - n ^ ^ ^ . (19.35) 



Diodes and Transistors 583 

When both donors and Na acceptors per volume are present, then similarly 

n-p = Xd-Xa. (19.36) 

Using the law of mass action Eq. (19.28), one now easily solves for n and p, and 
finds 

1 1 n=-[Nd-Xa] + - pid-yiaY + Anj\ (19.37a) 
1/2 

1 1 1/2 

n s 

P-

*Xd 

~Kd 

P=^a-Xd} + ^ l(Xj~Na)2 + 4nj\''- . (19.37b) 

To check that everything is consistent, one needs to make sure that the chemical po-
tential is in fact in the middle of the gap, making fd and fa small. From Eq. (19.29) 

n-p = 2m sinh ß (jj, - fii) => fi = fii + kBT sinh'1 ([J<d -Jia]/2ni) . (19.38) 

Thus dopants must exceed by many orders of magnitude the intrinsic carrier density 
before the chemical potential departs far enough from the center of the gap to 
endanger the conditions for nondegeneracy in (19.16). 

Equation (19.37) simplifies when Jid » Na, and it becomes 

The number of mobile electrons is essentially ( ] 9 . 3 9 a ) 
the number of donors. 

Holes are the minority carrier. ( 19 .39b ) 

There is a similar result when the number of acceptors exceeds the number of 
donors; in this case, 

P ~ y^n The number of mobile holes is essentially the ( 1 9 . 4 0 a ) 
number of acceptors. 

n2 
Il ça —— Electrons are the minority carrier. ( 1 9 4 0 b ) 

19.4 Diodes and Transistors 

The first semiconductor device was the point-contact rectißer or Schottky diode, in 
which a metal whisker was placed against a semiconducting crystal. The contact of 
metal with semiconductor remains an important element in electronic design, and 
it is worth understanding the conditions under which this junction rectifies current. 

Ideal Schottky Diode. Suppose that an ideal contact between semiconductor and 
metal is possible, in which the atoms of the metal join seamlessly with those of 
the semiconductor. Such a joint is actually extremely difficult to create in practice 
for numerous reasons. Immediately after cleaving, semiconductor surfaces acquire 
oxide layers; any sort of mechanical polishing produces surfaces that are far from 
atomically flat; and even conventional molecular beam epitaxy often fails to lay 
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metal smoothly down upon a semiconductor surface, producing instead blobs and 
islands. Nevertheless, suppose that a smooth contact has been achieved. After 
examining this ideal case, the consequences of a defective interface will also be 
mentioned. 

Figure 19.11 shows the equilibrium behavior of an rc-doped semiconductor 
brought into contact with a metal. The work function of the semiconductor is 
taken to be less than the work function of the metal; if the reverse is the case, the 
junction may have little or no rectifying power, and the contact is called ohmic, as 
in Problem 2. Because of the higher chemical potential, electrons rush from the 
semiconductor to the metal, lowering the voltage of the metal until electrostatic 
forces prevent further motion of charge. The resulting potential profile is depicted 
in the lower parts of Figure 19.11. The representation of the junction in Figure 
19.11 explains why the electrostatic potential is said to cause band bending. 

When an external voltage VA is applied to raise the metal relative to the semi-
conductor, the situation changes qualitatively as in Figure 19.12(A). The barrier for 

Figure 19.11. (A) In the first instant that a metal and semiconductor are brought together, 
their chemical potentials do not coincide. (B) Very quickly, however, charge moves from 
the solid with higher chemical potential to the one with lower chemical potential—in this 
case, from the «-doped semiconductor to the metal—until the rise in voltage of the semi-
conductor compensates for the difference in chemical potential. (C) The customary rep-
resentation of the potentials experienced by the electrons and holes shows the chemical 
potential \i as constant, and it adds the electrostatic potential — eV to the conduction and 
valence band levels. The bands have been bent by the potentials which form across the 
junction. The chemical potential is often referred to as the Fermi energy £f. 
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electrons is lowered, and the electrons flow into the metal from the semiconductor 
as a current. However, if the voltage changes in the opposite fashion, as in Figure 
19.12(B), the barrier seen by electrons in the metal does not change, and therefore 
current does not increase in the opposite direction. 

Figure 19.12. (A) When the 
voltage of the metal is raised 
relative to the semiconductor 
by e\?A, electrons flow to the 
metal. (B) However, when the 
voltage of the metal is low-
ered, the barrier perceived by 
the electrons does not change, 
and little current flows. 

Quantitative Theory. The quantitative theory for rectification in the Schottky 
diode is almost identical to the theory of thermionic emission from metals. The 
electrons in the semiconductor with enough energy to travel to the metal are those 
in the conduction band whose velocity toward the metal is large enough that they 
can cross the barrier between semiconductor and metal. According to Figures 
19.11 (C), and 19.12, the height of this barrier in the presence of an applied voltage 
VA is 4>b — (£ c — /i) — eVA, so the condition is 

jz212 Using the density of states effective mass in 
—•>(!), —IF / / ) — eVi an approximation for the (anisotropic) kinetic ( 1 9 411 

9 m * c energy. ^ ' ' 

The current density j s ^ m due to this collection of electrons is 

/ _ = j[dk] É » ( | | - [& - (£ c - „) - eVA}) ^ e-ßWK+ec-ß) (19.42) 

Using the nondegenerate limit of the Fermi function and assuming the electrons 
to travel in the —x direction, with the minus canceling the sign of the charge. 
[dk] defined in Eq. (6.15). 

2 a 2m*nkBT e f°° hAk f°° d(nA\e-ß(HVx/2m*n+£c-ß) ( 1 9 4 3 ) 
(2vr)3 h2 h J4>h-£.c+ß-eVA 

Doing the integrals over ky and kz. 

= — AT2 e x p {-ß\4>b-eVAX\ ■ A=\20h K- 2 cm"2 was given ( 1 9 . 4 4 ) 
m in Eq. (19.9). 

When VA = 0, the reverse current j m ^ s flowing from metal to semiconductor 
must equal the one calculated in Eq. (19.44), and because the barrier seen from the 
metal does not change with VA, the current flowing in this reverse direction will be 
independent of applied voltage. So the total current in the junction is 

j = K AT2 [ e x p {_ßtyb_eVA\}_exp {-ßfo}] . (19.45) 
m 
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Figure 19.13. Effect of surface states on metal-semiconductor junction. (A) The elec-
trochemical potential [i + eV at the surface of the semiconductor is fixed at a particular 
location in the gap independent of doping. (B) The bands are bent so that the barrier 
between metal and semiconductor is a constant <fib that depends mainly upon properties 
of the semiconductor surface, and only slightly upon either metal or semiconductor work 
functions. 

19.4.1 Surface States 

Experimental measurements confirm Eq. (19.45), but with one troubling discrep-
ancy. The constant <pb does not equal 4>m — 4>s + (£c — fi) as it should according 
to Figure 19.11, and it is almost independent of the metal or doping level of the 
semiconductor involved in the contact. For example, n-type GaAs almost always 
appears to have <fib ~ 2£g/3 = 0.95eV, while p-type GaAs almost always appears 
to have <fib ~ £g/3 = 0.47eV. The explanation, proposed by Bardeen (1947), is that 
the surface of the semiconductor joins the metal in a rough fashion. At the inter-
face there is a high density (1015 cm- 2) of dangling bonds—that is, atoms eagerly 
expecting to join onto neighbors to form a perfect diamond lattice, but frustrated 
by the presence of the surface. It is energetically favorable to steal charge from 
the nearby bulk and to place electrons on the dangling bonds, leaving a positively 
charged region several hundred angstroms thick below the semiconductor surface. 
In addition, there is a large density of propagating surface states with energies lying 
right within the gap and localized states due to defects. A schematic representation 
of the consequences for energy bands appears in Figure 19.13. When the metal 
and semiconductor come into contact, the chemical potentials equilibrate as charge 
moves from the metal into the surface states, creating a dipole layer at the interface. 
Because the charge density needed to create this layer is often small compared to 
the density of dangling bonds, the space charge distribution within the semicon-
ductor is not much altered by the approach of the metal. 

Semiconductor electronics avoids the problem of surface states by building 
junctions out of single crystals. Instead of preparing two separately doped crystals, 
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polishing the surfaces, and gluing them together, the dopants are injected into a 
single sample at desired locations, either as an ion beam or by diffusion. 

19.4.2 Semiconductor Junctions 

Junction in Equilibrium. Consider a junction between an n-doped and a p-doped 
region. Electrons move from the «-type region to the p-type. region until charge 
buildup cancels out the advantage of populating lower energy levels. Figures 19.14 
and 19.15 help in visualizing why. 

Figure 19.14. (A) In the first instant that n- and /?-doped semiconductors are brought to-
gether, their chemical potentials do not coincide. (B) Therefore, electrons move from the 
region with higher chemical potential into the region with lower chemical potentials leav-
ing holes behind. As electrons move in and holes move out, the voltage of the p-doped 
region begins to decrease, while that of the «-doped region begins to increase, raising the 
electrostatic potential energy of the electrons and holes. When the ensemble comes to equi-
librium, the electrochemical potential (i + eV has the form depicted. (C) The customary 
representation of the potentials experienced by the electrons and holes shows the chemi-
cal potential ß as constant, and it adds the electrostatic potential — eV to the conduction 
and valence band levels. The bands have been bent by the potentials that form across the 
junction. 

To obtain a quantitative theory, observe that in the presence of an electrical 
potential V(x), the densities of electrons n and holes p in a nondegenerate semi-
conductor are given by 

Generalize Eqs. (19.29) to include spatial varia-
n(x\ = n.pß(ß+e^(x)~ßi) tions; valid if spatial gradients are small enough / i n Aßn\ 

^ ' ' that the semiconductor is locally in equilibrium. ^ ' ' 

p{x) = meß^-eV^-ri. (19.46b) 
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Figure 19.15. Illustration of the redistribution of mobile charges near a p-n junction. The 
mobile carriers abandon the region between xn and xp, leaving nonzero ionic charge density 
behind. 

Far to the left of the junction (x —> —oo), on the p-doped side, the total charge 
density must vanish, which requires p = Na. Similarly, n = N^ far to the right of 
the junction (x —> oo). Multiplying Eq. (19.46a) for x —> oo by Eq. (19.46b) for 
x —> — oo gives 

l l(00)p(-00) = W f l = njeß(eV{cc)-eV(-oc)) ( 1 9 4 ? ) 

=>eV\A = e[V(oo)-V(-oo)] (19.48) 

= &ß7 1 n — T - = E.g + kBTln[—rr], (19.49) 
« N,N„ 

where Vbi is the built-in voltage across the junction, an intrinsic potential difference 
due to the fact that the electrons of the n-doped region combine with the holes of 
the p-doped region. 

Charge Distribution. Real junctions have complicated three-dimensional forms, 
but the essential features are captured in a one-dimensional calculation, as a func-
tion of the spatial index x. The tricky part of the calculation comes from the fact 
that the potential V(x) is produced by the charge densities n(x) and p(x), so the 
problem must be solved self-consistently, using Poisson's equation. The charge 
density is the sum of a number of terms. The impurity states are fully ionized, 
leaving behind charged ions that contribute 

enioBS = e[Nd(x)-Ka{x)]. (19.50) 

In addition, one has to consider the contributions from the electrons n(x) in the 
conduction band and the holes p(x) in the valence band, so Poisson's equation 
reads 

^ = -4irepfd(x)-n(x)-Xa{x)+p(x)]/e0, (19.51) 
dx 

with e° the dielectric constant. 
For the junction depicted in Figure 19.15 there is an abrupt transition between 

an rc-type semiconductor and a p-type semiconductor, so 
Na(x) =Na9(— X) 0(x) is a Heaviside step function. (19.52a) 

Nd(x) = Nd9(x). (19.52b) 
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Junctions are not actually infinitely sharp, but they can certainly be less than 100 
Â, which is going to be the scale of the depletion regions in which charge builds 
up. 

Equation (19.46) shows that once the potential begins to deviate from its value 
at infinity, the number of carriers n or p drops below N</ or Nn like a stone. It is 
therefore reasonable to construct an approximation in which the charge density is 
zero everywhere up to xp < 0, at which point the charge density abruptly changes 
to — eNa. At x = 0 the charge density rises to eN^, and finally at some xn > 0, it 
falls abruptly back to zero. The potential produced by such a charge density is 

V(x) 

'V(-oo) forx<xp 

V( — oo)+2ire—^-(x — xp)2 for 0 > x > xp 

Xd,.. ,2 Na V(oo) —lire—^-ix — Xn)1 for0<x<jc„ 

kV(oo) forx>x„. 

(19.53) 

Equation (19.53) is obviously a solution of Eq. (19.51), and the only thing left to 
check is that the solution and its first derivative are continuous at x = 0. Continuity 
of (19.53) at 0 demands that 

V{-oo)+2Tte-^x2
p = V(oo)-2ire-txl, (19.54) 

while continuity of the derivative requires that 

ïidxn = -JSaxp. (19.55) 

Solving Eq. (19.54) and Eq. (19.55) for the lengths xn andx/; gives 

e°KVbi 

2neNd[Jia + Nd] 

e°Wbi 
27reNfl[Na + Nd] ' 

(19.56a) 

(19.56b) 

using again the built-in voltage Vbi defined in Eq. (19.48). Placing typical numerical 
values into Eq. (19.56), dopant densities on the order of 1018 cm"3, and potential 
differences eVbi on the order of 0.1 eV gives depletion layers on the order of a 
few hundred angstroms. Because the depletion region has no mobile change, its 
resistance is considerably greater than that of the doped regions to either side. 

When an external voltage VA is applied to such a junction, the net effect de-
pends greatly upon the direction in which it happens. If the potential of the left-
hand side is raised relative to the right-hand side, electrons are attracted to the left, 
and holes are attracted to the right. As a consequence, xn moves further to the 
left, and xp moves further to the right. Conversely, if the potential is lowered to 
the left, electrons are repelled from the left, and the size of the depletion region 
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increases. Quantitatively, applying a voltage corresponds to a case in which the 
system departs slightly from equilibrium, so that the chemical potential ß is no 
longer constant, but instead changes by amount eVA from one end of the sample to 
the other. Most of the voltage drop occurs in the depletion region. One does not 
need to determine the spatial profile to observe, however, that because ß is now dif-
ferent on the two sides of the sample, the potentials V(oo) and V(—oo) must also 
change accordingly so as to maintain charge neutrality, and the difference between 
them also changes by V .̂ According to Eq. (19.56), the effect of applied voltage is 
to send Vbi —> Hi — VA and thereby change the lengths of x„ and xp by a factor of 
Vl-V^/Vbi. 

The applied voltage VA is taken positive if it raises the voltage of the /7-doped 
region with respect to the «-doped region in Figure 19.15. As the size of the deple-
tion region varies, the amount of current that flows through the junction changes 
dramatically, increasing exponentially as VA increases. The reason for the expo-
nential rise is that for an electron to flow through the depletion region, it must be 
a mobile carrier on the left side of Figure 19.15 with enough thermal energy to 
surmount the potential barrier eVbi ; the number of such electrons is proportional to 
exp[—ßeVbi\ and changes in response to external voltages as exp[/3eV/i]. When the 
external voltage is zero, the number of electrons returning from the left must ex-
actly equal the number jumping over the potential barrier from the right; electrons 
in the /7-doped region are always attracted back to the «-doped region and have no 
barrier to cross. This electron current from left to right should not change much 
while external voltage rises from zero, so the total current J has the form 

J(xe0eVA-\, (19.57) 

showing the exponential dependence upon external voltage that characterizes rec-
tification. 

19.4.3 Boltzmann Equation for Semiconductors 

Once an external voltage VA is applied across a junction and current begins to flow, 
equilibrium equations such as (19.46) no longer directly apply. One must return 
to the Boltzmann equation, Section 17.2, and solve for the distribution function 
g7p The most convenient form of the Boltzmann equation for semiconductors is 
somewhat different from the most convenient form for metals because: 

1. It is valuable to write the equations in a form that emphasizes the separate 
roles of electrons and holes. 

2. It is useful to simplify the equations by averaging over wave vectors k. 

Using the Hamiltonian structure (17.1), rewrite Eq. (17.10) in the relaxation time 
approximation as 

d8 9 i 9 y f-g M û „ . 
~K7 = -^-r8--?-kg + • (19.58) 
at dr dk r 
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The density n of electrons at position ? is defined by 

II = / \dk\ Q-r The integral is over the first Brillouin zone, ( 1 9 . 5 9 ) 
J and [dk] is defined in Eq. (6.15). 

with g giving the occupation probability of states in the conduction band. Integrat-
ing dk over both sides of Eq. (19.58) gives 

Q Q _ (o) _ „ The relaxation time T should be independent 
= — • Cr)n -\ of k to pass through the averaging process; ( 1 9 . 6 0 ) 

Qt 97 Tn otherwise, use a constant r„ that gives the 
best approximation to the averaged collision 
term. 

where nm is the equilibrium density of electrons in the conduction band, and (?) is 
the velocity v^ averaged over the Brillouin zone, 

(?) = - f[dk)gf3r (19.61) rkvk 
Using Eq. (17.36), employing 

[dk] 

[dk] 

f - 9 / df 
f-TVr{eEoï + W 
-Tvr\eEßg+-^ 

7ß_ Eq. (17.34) to simplify some of no ti) 
k the terms. ^ ' ' 

_, The first term vanishes by . , . 
Vl symmetry, df/dß = ßf in the ( 19.6.3) 

nondegenerate limit. Finally, 
-. T) Bn replace / by g, because the two 

I, g 2. differ only by small quantities. (1 q f . A \ 
n dr 

with the mobility u.n, 
n —-R (TIP ) Assuming that the conductivity tensor of Eq. (17.62) ( 1 9 . 6 5 ) 

3 \ k I is diagonal. Otherwise, mobility and diffu-
sion are tensors. 

and the diffusion constant D„ giving the Einstein relation, 
'J)n = — ( TIP ) = . The factor of 1/3 appears because only the ( 1 9 . 6 6 ) 

•J 6 component of v along Ê survives the average 

in Eq. (19.63). 

Therefore currents of electrons and holes are 

Jn=e^nnE + e1)nVn Multiply Eq. (19.64) by -ne. ( 1 9 . 6 7 a ) 
j p = eflppE — eT)pVp, Working in an analogous fashion. ( 1 9 . 6 7 b ) 

and the equations of motion for the electron and hole distributions are 

dn 1 - s - nm-n 
-7T = -y-in + (19.68a) 
at e Tn 
dp 1 - - pw - p 
-£ = —V-JP + - - , (19.68b) 
ot e TP 

with the electric field determined from 

V - g =
4 7 r g ( / ? ~ ; + n i o n s ) . (19.69) 
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Recombination and Generation. Several different physical processes may be 
encompassed by the relaxation times T„ and TP. In addition to scattering off impu-
rities, electrons and holes can collide and recombine; they can also be generated 
by very energetic collision events. Therefore, the collision term in semiconductors 
is thought of as a recombination and generation current. The relaxation times TP 

and T„ are impossible to tabulate, because they depend sensitively upon sample 
purity and temperature, and can vary from 10~9 to 10~14 s. They can be measured 
in any given sample—for example, by exposing the crystal to a flash of light that 
excites electrons into the conduction band and by then measuring the decay of the 
conductivity. 

19.4.4 Detailed Theory of Rectification 

Solving Eqs. (19.67)—(19.69) poses numerous difficulties. The equations are non-
linear, because they involve products of n and p with the electric field E. Exact 
analytical solution is out of the question, even in the simplified one-dimensional 
situation upon which attention is now focused. Numerical solution is also not en-
tirely straightforward because of the wide range of scales over which the various 
quantities vary. For example, the characteristic scale of depletion layers is from 
l(T6to 1(T4 cm, while the characteristic scale for variation of n and p outside the 
depletion layers turns out to be on the order of 10~2 cm. In addition, the magni-
tudes of the charge distributions vary over many orders of magnitude. 

Ideal Diode Equation. The best approach to these difficulties is a conventional 
solution, the ideal diode equation. As in the equilibrium case, the diode is divided 
into three regions, indicated in Figure 19.16: 

Figure 19.16. Sketch of p-n junction in forward bias, with voltage of the p side raised 
by voltage VA above n side of the junction. Because the junction is out of equilibrium, the 
chemical potentials \in and ßp in the n and p regions are not equal. The depletion region is 
compressed by the voltage difference, and current increases exponentially with VA-
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A quasi-neutral «-doped region where the electric field is extremely small and 
the density of mobile electrons is close to Nj. 

A depletion region where the electric field rises rapidly to large values and where 
consequently the concentrations of charge carriers rapidly fall below their val-
ues in homogeneously doped samples. In the midst of this depletion region, 
the doping changes from n to p type. 

A quasi-neutral p-doped region where the electric field drops back to zero and 
the density of mobile holes is close to Jia. 

The vast majority of mobile charge carriers in the quasi-neutral n-doped region 
are electrons. However, there is also a small population of holes. Similarly there 
is a small population of electrons in the p-doped region. These two populations 
are called minority carriers, and the operation of the diode can be understood by 
carefully analyzing their behavior, because whichever of them is least mobile con-
stitutes the main bottleneck restraining charge flow through the diode. 

Further progress rests upon two simplifications: 

1. The boundary between the depletion region and the quasi-neutral regions is 
sharp. In the quasi-neutral regions, the electric field is very small, and the drift 
currents ep„nE (p-region) and e\ippE of the minority carriers are negligible. 
That is, in regions where carriers are unlikely, they obey the purely linear 
equations 

Jn 6Un"- Electrons, specializing to one dimension; the v ' "• ' ""■> 
prime means spatial derivative. 

j p = -eT>ppf Holes. (19.70b) 

This approximation is excellent. 

2. Recombination and generation of charge carriers is neglected in the depletion 
region. This assumption is made for mathematical convenience only. The 
faster the charges sweep through the depletion region, the more appropriate it 
will be, but for low current flow it leads to appreciable deviation from experi-
ment. 

Solution in Depletion Region. The value of the second assumption lies in the 
fact that it makes possible an analytical relation for n and p in the depletion re-
gion, allowing the behavior of the diode to be obtained in closed form. Because 
recombination and generation are neglected, the currents of electrons and holes are 
separately conserved, and both j n and j p are constant in space. Using Eqs. (19.67), 
one can quickly find a solution for n and p which according to Problem 4 is 

n ( j t ) = V [ V W _ V ( * ) 1 \ + - £ - / dx> e-ße[V(x>)-V{x„)] 
e^d^n Jx„ - jp r dx' eße[v(x')-v(X„)} 

eXaVp 

(19.71a) 

.(19.71b) 
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Under equilibrium conditions, where no current flows, the second terms on the 
right-hand side of Eqs. (19.71) vanish. Ignoring this second term is very conve-
nient, because use of the first term requires only knowledge of the total change in 
potential across the depletion region, while the second would require knowledge of 
details of the profile of V (x). Fortunately, for most cases of interest the second term 
remains negligible relative to the first, even out of equilibrium. Looking ahead to 
Eq. (19.77), one can estimate its size in the presence of applied voltage VA to be 

2 _ 
' — -e

0eVA Ki lO~lOe0eVA. Junction widths are typically 102 times smaller ( 1 9 . 7 2 ) 
KaJNfrf Ln than diffusion lengths, and n 2 / ^ ^ ~ 10 - 8 . 

Therefore, Eq. (19.71) can be replaced by the law of the junction: 

n{x) = Ndeße[v(x)-v(xn)] (19.73a) 

p{x) = J{ae~MvW-v(x^ (19.73b) 
2 SeeEq. (19.49), and use 

=> n(xD) = Nde0e[VA~V^ = ^eßeVA «yPn»imation Eq. (19.40). Note (19J3C) 
v >' ! " yj that the density ot minority earners v ' 

a on the left side of the junction is 
being set by the density DM̂  of 
donors on the right side. 

„2 
p(xn) = ■Xaef'W*-^ = ^-eßeVA. (19.73d) 

Solution in Quasi-Neutral Region. Equations (19.73) constitute a complete so-
lution for the charge carriers in the depletion region. They cannot be used alone 
to find the current flowing through the diode, because Eqs. (19.73) produce a com-
plete cancellation of diffusion and drift currents, and putting back in the tiny cor-
rections of Eqs. (19.71) to obtain nonzero current means adding back in terms 
proportional to jn and jp which are still unknown. In this sense, Eqs. (19.73) are 
compatible with a huge range of currents through the diode. However, by using 
Eqs. (19.73) to impose a boundary condition upon the solutions of Eqs. (19.68), 
the currents are rapidly determined. 

Using the expressions for current (19.70) in Eqs. (19.68) gives in steady state 
J2 n n „(o) Applies only to minority carriers, and 

Q = 2) £_ £_ £_ only in quasi-neutral regions. pm and ( 1 9 . 7 4 a ) 
dx Tp «(0' are the equilibrium minority 

carrier densities, given by Eqs. (19.39) 
or (19.40). 

£■„ n _ „(0) 
Q = tDän_n_J}_ ( 1 9 . 7 4 b ) 

dxA Tn 

which have solution 

p— n(°' = \p(xn) — n^]g~yx~x")/ P Applies where p is the minority carrier, to the ( 1 9 . 7 5 a ) 
right of x„. 

fl — fj(°) = IW;t n ) — n ' 0 ' l e ' X — X p ' ' " Applies where « is the minority carrier, to the ( J 9 7 5 b ) 
1 v p' ' left of xp. v ' ' 

where 
Ln = V^Tn and LP = JVPTP (19.76) 
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are the diffusion lengths of electrons in the /j-doped region, and of holes in the 
«-doped region, respectively. The currents due to these minority carriers are, from 
Eqs. (19.67), 

T> 
jn=e—[n(xp)-ni0)] Evaluate Eq. (19.75a) at x„. ( 1 9 . 7 7 a ) 

Ln 

T> n2 

= e——!-\eßeVA-\} Use Eqs. (19.73c) and (19.40b). ( 1 9 7 7 b ) 

L„ JSa 

jp = e^[p(xn)-pw}, (19.77c) 
T> n2 

= e—E. _ !_ \ßfieVA - 1 ] , Use Eqs. (19.73d) and (19.39b). (19.77d) 
Lp Nrf 

producing a total current per volume given by the ideal diode or Shockley equation, 

j = en][e^-\] T>„ D r 

LnJia LdNd 

Doping must be heavy enough ( 1 9 7 8 ) 
that Eqs. (19.39) and (19.40) 
hold. 

One of the most important features of Eq. (19.78) is that because Na
 ar>d N</ appear 

in denominators, current flow is set by the side of the diode that is most lightly 
doped. The heavily doped side acts like a short circuit. This fact is particularly 
important for the design of the transistor. 

19.4.5 Transistor 

By the 1920s numerous scientists realized that because electronics was based upon 
the diode and the triode, and because semiconductor diodes could be created (al-
though unreliably), it would be valuable to create a semiconductor analog of the 
triode. Twenty-five years elapsed between the first ideas, and the first practical 
implementation, called the transistor by Bardeen and Brattain (1948). The first 
working transistor involved contact between thin metal whiskers and semiconduc-
tors, rather like the Schottky diodes. It was unable to carry large currents and never 
developed into a commercial device, but the research project in which the point-
contact transistor was created uncovered much of the basic physics of semiconduc-
tor junctions, particularly the fact that transport in diodes is dominated by minority 
carriers. The bipolar junction transistor followed not longer after and served as the 
foundation for the first developments of semiconductor electronics. 

The basic idea of the bipolar junction transistor is to take advantage of the 
large disparity between electron and hole currents in a diode where one side is 
much more heavily doped than the other. Consider, for example, a p+n junction, 
where the superscript + indicates heavy doping, on the order of 1018 cm - 3 , so 
that the assumption the semiconductor is nondegenerate breaks down. For steady 
current flow under forward bias, a tiny electron current flows into the n region, and 
a large hole current flows in to the p+ region. In a diode, the hole current would be 
drawn to the n region and out of the semiconductor, but in the transistor the hole 
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current is diverted by making the n region much narrower than the diffusion length 
Lp of the minority carriers and placing it in contact with a second pn junction, 
which is under reverse bias. The reverse bias means that in the depletion region 
electric fields propel holes toward the p region and repel electrons. Whenever a 
hole diffusing about in the n region wanders into this second depletion region, 
it is trapped and sent off to the collector. The net effect is to split the current 
traveling into the emitter into its constituent components, with almost all the holes 
going out the collector and almost all the electrons coming in from the base. The 
large ratio between these two currents, along with the fact that they are linearly 
related according to Eqs. (19.77), means that the transistor can function as a linear 
amplifier. On the other hand, if the current to the base is reversed, the current out 
the collector does not follow it linearly but drops to very low values. Thus the 
transistor also rectifies current and can be used as a binary switch. 

The mathematical analysis of the binary junction transistor involves no ideas or 
assumptions not already present in the case of the ideal diode. The only difficulty 
is that there is now a large number of different regions, so the notation becomes 
confusing. Once again the basic idea is to assume steady-state conditions and 

1. Separate the device into quasi-neutral and depletion regions. 

2. Ignore recombination-generation in depletion regions. 

Also as before, the strategy is to focus upon the minority carriers in each region. 
The fields that need to be found are HE{X), the electron concentration in the emitter, 
PB(X), the hole concentration in the base, and nc(x), the electron concentration in 
the collector, regions labeled in Figure 19.17. 

The concentrations of the minority carriers at the edges of each depletion re-
gion are determined by precisely the considerations that produced the ideal diode 
equation. So, in analogy with Eqs. (19.73c) and (19.73d), 

J4E is the acceptor concentration in the emit- ( 1 9 . 7 9 a ) 
ter region, VEB > 0 (for active bias) is the 
voltage of emitter over base. 

nE{xa) = 

Pn{xb) = 

PB{XC) = 

nc{xd) = 

. Hi JieVEB 
"N£ 

f7 2 

. "■' eßeVEB 

"Nß 

. ni pßeVcB 

"N/ 

. ni pßeVcB 
"Ne 

~HB is the donor concentration in the base region. ( 1 9 . 7 9 b ) 

VÇB < 0 (for active bias) is the voltage of ( 1 9 . 7 9 c ) 
the collector relative to the base; when VQB is 
negative, collector voltage is below base. 

"HQ is the acceptor concentration in the col- ( 1 9 . 7 9 d ) 
lector region. 

These boundary equations are coupled to the diffusion equations in the three quasi-
neutral regions, which are unchanged from Eqs. (19.70). The currents of electrons 
and holes in the emitter and collector can then be calculated from 

jEn= eDEriE(xa) (19.80a) 
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Figure 19.17. The binary junction transistor can be made from two back-to-back p-n 
junctions. When actively biased, the voltage of the emitter is raised by VEB over the voltage 
of the base, and the voltage of the base is raised by \VQB\ = —VCB over the voltage of the 
collector. The chemical potential of electrons in the three regions is indicated by dotted 
lines. The left-hand depletion region shrinks relative to equilibrium while the right-hand 
one grows. The currents J are positive. 

JEP = -eT>Bp'B(xb) (19.80b) 

j C p = -eVBp'B(xc) (19.80c) 

jCn= eVcn'c(xd). (19.80d) 

Solving the diffusion equations analogous to (19.74) in the three quasi-neutral 
regions subject to the boundary conditions (19.79) results in total currents JE and 
Jc to the emitter and from the collector 

JE = JFo(eßeVEB - 1) - aRJRO(e0eVc» - 1) (19.81a) 

Jc = a¥JFO(eßeVEB ~ l)-JRO(eßeVcB - 1) (19.81b) 
with 

( T)r n2 T ) D M2 v _ r , \ A is the area perpendicular to 

— - £ - + — - f coth(^—^) cu";en'.flowin **TsiT'hLB (19-81c) T T, TvJV T „ T\[„ v T r, ' I is the diffusion length in the base; v ' L.E JN£ LB J\B LB J s e e E q ( 1 9 7 6 ) 
/ A (^cn2 T>B n2

 t,,Xc-xb\ , . „ „ . , JKO = eA\-—— + ——colh(— ) (19.81d) 
\̂  Lc N c LB JJB LB J 

aFJFO = ÖR^RO = M — - j - c o s e c h ( - ^ - ). (19.81e) 
LB NB LB ' 

Equations (19.81) are the Ebers-MoU equations; they form one of the bases for 
practical circuit design, and their detailed derivation is the subject of Problem 5. 
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Note that the diffusion length of the base LB must be comparable to or greater than 
xc —Xb,or else control of the collector current by the base is lost. 

19.5 Inversion Layers 

19.5.1 Heterostructures 

The earliest electronic devices depended upon the contact between metal and vac-
uum, the next generation depended upon contact between metal and semiconduc-
tor, and the next industry depended upon junctions between regions of different 
doping, as well as junctions between semiconductors and insulators. A new gen-
eration of semiconductor devices is now evolving that depends upon junctions be-
tween different semiconductor alloys. The advantage of these is that they make 
possible the creation of heterostructures where the band gap varies in ways that 
would never occur spontaneously in nature. 

A widely employed example is GaAlAs. Aluminum replaces gallium substi-
tutionally in the alloy, lying right above it in column IIIA of the periodic table. 
The lattice constant of GaAs is 5.63 Â, that of AlAs, 5.62 Â, both adopting the 
zincblende structure, so there is no appreciable lattice distortion incurred by plac-
ing, say, a layer of Ga.7Al.3As upon GaAs. However, the band gap of Ga.7Al.3As 
is 1.82 eV, compared to 1.42 eV for GaAs. The technique of molecular beam epi-
taxy, described in Section 4.3, makes it possible to alternate layers of one alloy 
with another with atomic scale precision. 

Figure 19.18. (A) Schematic picture of junction between two semiconductors with differ-
ent band gaps, illustrated with numbers appropriate to Ga.7Al.3As. Calculating the band 
offsets is difficult and is discussed by Yu et al. (1992). (B) Same as (A), but drawing differ-
ent quantities to illustrate band bending. (C) In case of heavy enough doping, the chemical 
potential can rise above the conduction band edge in a small notch-like region. (D) En-
largement of the conduction band region that would remain occupied even at temperature 
T = 0, with a sketch of a bound-state wave function trapped in the potential. 
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The formulas describing the profiles of charge around heterostructure junctions 
are not dramatically different from those of Section 19.4.2, and the main physical 
results can be deduced from diagrams in the spirit of Figs. 19.11 and 19.14, as 
displayed in Figure 19.18. The electron bands are discontinuous in the vicinity of 
the junction, which permits some interesting possibilities. A notch in the bands, 
such as shown in Figure 19.18(C), creates a small region that is occupied even at 
zero temperature, called an inversion layer. 

Metal-Oxide-Silicon Junctions. 
A similar notched potential can be created in a layered structure with a thin in-

sulating coating separating metal and semiconductor, as illustrated in Figure 19.19. 
When the semiconductor is silicon and the insulator is silicon oxide, the junction 
is known by the acronym MOS. This combination can be used to create very com-
pact, fast transistors, with low power dissipation, and has therefore become the 
most important technology in the creation of integrated circuits. The acronym 
CMOS refers to complementary metal-oxide-silicon, which means that both p-
and n-type structures are built on the same chip. These structures are discussed in 
texts on semiconductor devices, such as Sze (1981) and Sze (1998). 

Figure 19.19. Metal-insulator-semiconductor (MIS), and, more particularly, metal-
oxide-silicon (MOS) junctions provide an alternative to heterojunctions in forming in-
version layers. By raising the voltage of the metal by VA above the silicon, electrons are 
pulled over to the interface with the insulator, and the Fermi level /x can be pulled above 
the conduction band edge. 

Two-Dimensional Electron Gas. Some of the most interesting physical dis-
coveries in heterostructures have been built upon the two-dimensional electron gas 
(2DEG), the principle behind which was illustrated in Figures 19.18 and 19.19. By 
doping both sides of a heteroj unction sufficiently, the chemical potential can be 
made to rise until it intersects a small corner of the conduction band, as shown in 
Figures 19.18(C) and 19.18(D). Even at the very lowest temperatures, electronic 
states must be populated in the vicinity of the corner. One way to view Figure 
19.18(D) is that it sets up a one-dimensional problem of elementary quantum me-
chanics, which is to find the eigenstates of a particle in a triangular potential. As 
shown in Section 18.4.3, a one-dimensional attractive potential always has at least 
one bound state, no matter how shallow and small it may be. The potential barriers 
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in the vicinity of the heterojunction are on the order of 0.1 eV. At room tempera-
ture, electrons would escape the restraining potential, and in fact the region to the 
right of the junction in Figure 19.18 would constitute an «-doped semiconductor in 
the degenerate limit. However, at temperatures of a few kelvin or less where ex-
periments are characteristically performed, only the ground state has measurable 
occupation. This restriction to low temperatures is clearly a disadvantage. To over-
come this restriction, it is not sufficient to find materials so that the energy scale of 
Figure 19.18 is multiplied by 100. The great mobility of electrons at low tempera-
tures and the great purity achievable in semiconductors are equally important. 

Figure 19.18 may lead to a mental picture in which electrons are trapped in one-
dimensional potentials. The trapping is only in the z direction, as shown in Figure 
19.20. Along x and y the electrons are free to move; the atomic sharpness of the 
heterojunction, the extreme purity of the samples, and the subkelvin temperatures 
all conspire to give electrons exceptionally high mobilities in the remaining two 
dimensions. For a GaAs-Alo.29Gao.71 As interface, the electron mobility reaches 
105 cm2 V - 1 s _ 1 , while the relaxation time r can reach 4• 10~12 s. This relaxation 
time is two orders of magnitude larger than the characteristic values emerging from 
Eq. (16.7). 
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Figure 19.20. (A) Geometry of quantum point contact. Electrons can only pass through 
the region between the gates, which is shaped more like a blunted arrow than a long narrow 
channel. By raising and lowering the gate voltage Vg, the effective width of the constriction 
can be controlled. (B) Quantized conductance across the constriction, using Eq. (19.90) to 
process the raw data, observed by van Wees et al. (1988), p. 849. 

The two-dimensional electron gas is the setting for many remarkable experi-
ments, including the quantum Hall effect to be discussed in Section 25.5. In the 
context of electronic devices, it constitutes the starting point for building more 
elaborate structures. 

19.5.2 Quantum Point Contact 

To create a quantum point contact, two metal layers are deposited on top of a two-
dimensional electron gas, as shown in Figure 19.20. By applying a negative voltage 
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of around —0.5 V to the strips of metal, the Fermi level underneath them is driven 
downwards, and the electron gas completely depleted. The only path the electrons 
can follow is through the narrow channel left behind. As discussed by Beenakker 
(1997) and van Houten and Beenakker (1996), conductance through a channel of 
this type is quantized in units of 2e2/h. 

Demonstrating this claim requires a fairly careful consideration of what electri-
cal conductance really means. The quantum point contact is just a static quantum 
mechanical potential, through which wave functions travel or from which they re-
flect. Wave propagation conserves energy. Yet any wire with resistivity greater than 
zero must dissipate energy. How are these two views compatible? Landauer (1957) 
gave a conceptual resolution. He pointed out that experiments measuring conduc-
tivity contain the ingredients shown in Figure 19.21. Saying that there is a voltage 
difference between two points in a circuit really means that there are two reservoirs 
of electrons independently in thermal equilibrium, and with different chemical po-
tentials, and that they have been connected by the channel whose conductance is to 
be measured. Any electron transmitted across the channel must give up energy, on 
average, once it arrives at the second reservoir, because the second reservoir is at 
lower potential than the first, and the arriving electron comes to equilibrium with 
its fellow electrons. All dissipation occurs in the reservoirs, not in the channel, but 
the dissipation is inevitable because of the way that voltage differences are defined. 

Figure 19.21. Two reservoirs at electrochemical potential /xi = ß + 5ß and ß2 = ß are 
connected by a channel so narrow that quantization of waves in the y direction becomes 
important. 

The channel depicted in Figure 19.21 is so narrow that quantization in the y 
direction becomes important; when this experiment is performed, channel widths 
are on the order of tens to hundreds of nanometers. The energy levels in the channel 
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therefore have the form 
f - 2 j 2 ' ' s a discrete index. In fact, one does not even have to 

P cy _i_ x assume the free-electron form along x, just that energies ('10 89^ 
t'lkx ^l H ^ • in the two directions are additive. 1. ' " • °A) 

For 5ji > 0, reservoir 1 will populate quantum levels in the channel that cause 
electrons to move down the channel along x, with no corresponding current coming 
back because those levels are empty in reservoir 2. The net current flowing through 
the channel is therefore 

J= 7 E - ^ / Ü / i ( £ / Ü - /2 (£*ü] (19.83) 
L Ik, 

vikx is the velocity of an electron along the channel, and /] and fi are 
the Fermi functions of the two reservoirs. Summing over k counts 
all the particles in the channel, so multiply by v/L to get the flux. 

JdkxDkx^[O(ii + 6ii-£.lkll)-0(tJL-£lkx)] (19.84) 
/ 

Specialize to low temperatures, and change the sum over kx to an 
integral using the one-dimensional density of states D^. 
2 

2TTH 

POO 

y dl [e{fi + Sfi-E)-6(fi-E)] (19.85) 
, Je: 

2 
—e Ou y ^ 9(u — £?) Ignore the rare values of ß where H + S/J,> (19.86) 

2-Kh ^ ^ ^ U £> 'and A i <£; . 

2Ne2 

V Where N = J ] ; 9(p - £j) is the number of ( 1 9 . 8 7 ) 
occupied quantum states along y, and V = 
—Sn/e is the voltage. 

h 

2Ne2 
=> Goc

 = • ^P0 ' s ^ e conductance of the quantum point ( 1 9 . 8 8 ) 
^ fl contact. 

Thus each quantum level / and each spin degree of freedom contribute e2/h 
to the conductance. The form of the energy £/^ is irrelevant, just so long as it is 
a sum of contributions from x and y directions. This quantized conductance has 
been observed, as shown in Figure 19.20. The quantization of conductance was 
first predicted by Imry (1987), but the subject remained controversial until matters 
were settled by experiment. 

To explain the experimental observations, it is necessary also to observe that 
the quantum point contact is always in series with other resistors R in a circuit. The 
complete relation between current J and voltage V is 

y = J ( R -\ ] Conductance is the inverse of resistance. ( 1 9 . 8 9 ) 
^ Gpc' 

=>GK = — — . ( 1 9 . 9 0 ) 
p V-JR 

The resistance R can be treated as a single free parameter to make the steps in Gpc 

of equal height. 
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19.5.3 Quantum Dot 

Figure 19.22. The quantum dot is a puddle of charge trapped between two quantum point 
contacts. Because of the micron-scale dimensions of the trapping region, the number of 
trapped electrons can be very small. One side of the trap is a plunger whose voltage can 
be raised and lowered to alter the electrostatic properties of the dot. The current J flowing 
from source to drain is the main experimental observable. 

The quantum dot, as shown in Figure 19.22, is a structure one level more com-
plex than the quantum point contact. It mainly consists of two quantum point 
contacts in series, but there is an additional interesting twist. The region between 
the point contacts is rather small, an area on the order of 0.5/i mx0.5 /jm. In rough 
analogy with the gate region of a transistor, there is also a metallic contact called 
the plunger whose voltage can be raised and lowered in order to affect the number 
of electrons in the central region. 

Although named the quantum dot, the basic operation of this device is in large 
part curiously classical. The kinetic energies of electrons, so decisive in metals, 
are relatively small in this case. Consider, for example, placing N electrons into a 
quantum dot with area d2. The single-electron quantum states would have energies 
approximately 

H2k2
 fi eV 

^ r = 1 5 1 0 rfvüH5' (19'91) 

This energy should be compared with the Coulomb repulsion of two electrons at 
distance d, which is 

e2 , eV - = 1 . 4 - 1 0 - 3 — r - . (19.92) 
d dj l/tmj 

The difference in scale between the two energies is overstated by Eq. (19.92), be-
cause the Coulomb repulsion is diminished by screening effects to be discussed 
next, but it is still correct to start with Coulomb repulsion as the main physical 
effect and then add kinetic energy later as a small perturbation. The energy of 
electrons in the quantum dot can be treated as a purely classical problem of adding 
particles to a box, because no matter what the shape of their wave functions, only 
the Coulomb integral has much importance. 
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Screening and Capacitance. To begin, suppose that the quantum point contacts 
to the left and right of the dot are impenetrable barriers, and investigate how the 
energy of the dot would vary as a function of the number of electrons placed in it. 
The electrons in the dot cannot be taken independent of the rest of the universe. 
They are in close proximity to the various metal gates, and charge must flow in 
and out of these gates so as to maintain them at externally applied voltages when-
ever electrons enter or leave the dot. Classical electrostatics handles this screening 
problem by defining a capacitance matrix Caß which posits that the charge Qaß on 
any of the gates, or in the dot, is a linear function of the electrostatic potentials Va 

of the gates and the dot. To make things simple, suppose that the charge on the 
dot ßd depends only upon the potential within the dot, V^, and the potential of the 
plunger, Vp. Write the charge on the dot and plunger as 

ö d = Q V d — CdpVp, The minus sign in front ofCdp is conventional, ( 1 9 . 9 3 ) 
and it ensures that Q p will be positive. 

ß p = - C p d V d + C p Vp. ( 1 9 . 9 4 ) 

Because the possibility of electron motion through the junctions is being neglected 
for the moment, the only feature of the outside world with which electrons in the 
dot interact is the plunger. Therefore the charge on the dot must be a function of 
Va — Vp, which means that 

The capacitance matrix must be symmetric, be-
Q C (~> cause it is given by second derivatives of the en- / i n Q C \ 

<-dp <-pd- ergy (/ in Eq. (19.96) with respect to potential, yiy.yj) 
and therefore Cpd = Cap. 

The plunger is not similarly isolated. It is connected to a large reservoir of electrons 
at potential Vp that enables it to remain at potential Vp no matter what happens on 
the dot. The electrostatic energy of the system is therefore 

£/electrostat,c = ^ [ôd^d + ôpVp] + [ôreservoir - ßp] Vp. (19.96) 

_ ß j v n The remaining terms depend only upon Vp, 
— T~^ r Vptid + • • • • are independent of Qd, and so can be dropped, \iy-yl) 

^A Make use of Eqs. (19.93), ( 19.94), and ( 19.95). 

The number of electrons preferred on the dot in equilibrium is given by minimizing 
Eq. (19.97) with respect to ßd and is 

^ ^ ö d = Q V ^ ( ] 9 9 g ) 

—e e 

If Cd were a capacitance on the order of 1 farad, this equilibrium number would be 
immense. The point of the quantum dot is to generate capacitances Cd so small that 
the equilibrium occupation is of order unity—that is, capacitances on the order of 
aF= 10~18 F (attofarad). In terms of this unit, Eq. (19.98) can be rewritten as 

"'^iiiiFv1 <l9'99) 
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showing that voltages on the order of millivolts applied to the plunger should pro-
duce changes of order unity in the number of electrons sitting on the dot. For such 
small numbers of electrons, one must take into account the fact that N is an inte-
ger. What Eqs. (19.98) and (19.99) in fact predict is that the number of electrons 
N increases in steps, with a transition occurring whenever states with N and N + 1 
electrons have the same energy, at a voltage 

Vn = \N+ 1 / 2 1 — Set Eq. (19.97) equal to itself evaluated at ( 1 9 100) 
P Q -Qd/e = N and N+l, using Eq. (19.98), 

and solve for Vp. 

Having established the energetics of the problem in a simple classical fashion, 
quantum features begin to creep into the interpretation of the results. The theory 
based upon Eq. (19.98) is the theory of the Coulomb blockade, and it makes three 
main predictions. 

1. If a very small voltage is applied across the quantum dot, from source to drain, 
the current from source to drain should show sharp narrow peaks as a function 
of the plunger voltage Vp, with the peaks spaced in voltage by a distance e /Q. 

2. For fixed plunger voltage Vp, current from source to drain should be relatively 
tiny until the voltage from source to drain exceeds a critical threshold, either 
positive or negative. The gap in voltage between the negative and positive 
thresholds is e/C^. 

3. The characteristic energy scale on which temperature fluctuations should de-
stroy these effects is kßT ~ e2/2Cd, which works out to be a few kelvin. 

The logic behind these predictions has to do with imagining physically how 
electrons will manage to traverse the quantum dot in the presence of a voltage 
between source and drain. In order to do so, an electron must tunnel across the first 
quantum point contact, dwell for some time on the dot, and then tunnel across the 
second quantum point contact. If according to Eq. (19.98) the electrostatic energy 
of the dot goes up when an extra electron hops on, tunneling will be made difficult. 
There are three ways around. First, whenever the plunger voltage sits at one of 
the values indicated by Eq. (19.100), the energies of having N and N +1 electrons 
on the dot are degenerate. There is no energy penalty preventing an electron from 
flowing in and out of the dot, so for these special plunger voltages the dot has a high 
conductivity, leading to prediction 1. Second, for an arbitrary plunger voltage, the 
voltage between source and drain can be made large enough that it supplies the 
energy needed to hop on and off the dot. Hence a prediction that current through 
the dot will rapidly increase after a critical threshold no matter what the plunger 
voltage. Third, thermal fluctuations may be large enough to supply the missing 
energy, leading to the final prediction of a temperature scale on which the quantum 
effects disappear. 

All three of these predictions are beautifully verified by experiment. Figure 
19.23 shows both (A) the periodic current peaks as a function of plunger voltage, 
and (B) the very nonlinear relation between current and source-drain voltage. 
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(A) Plunger voltage Vp (V) (B) Drain-source voltage Vds (V) 

Figure 19.23. (A) Conductance as a function of plunger voltage displaying sharp, equally 
spaced peaks. (B) Current across a quantum dot plotter versus the voltage Vds across the 
dot. [Source: Meirav and Foxman (1996), p. 257.] 

Problems 

1. Chemical potential in intrinsic semiconductor: Consider a crystal of sil-
icon, with a very low level of doping, but a slight excess of acceptors over 
donors. 

(a) At sufficiently low temperatures, the chemical potential moves far away from 
the center of the gap. At what temperature does this happen, and why? 

(b) Next, consider the same situation, but with a slight excess of donors over 
acceptors, and answer the same questions. 

2. Ohmic junction: Diagrams of electronic circuits frequently show wires con-
nected to portions of semiconductors. These connections are supposed to be 
ohmic, to conduct current with equal ease in either direction, and in linear 
proportion to applied voltage. Because metal-semiconductor junctions have 
intrinsic rectifying properties, ohmic response cannot be taken for granted. 

(a) To have a sense of ways to obtain such junctions, copy the three parts of 
Figure 19.11, but assuming that the work function of the semiconductor is 
greater than the work function of the metal. 

(b) Argue from the graphical construction that the rectifying powers of the junc-
tion are plausibly diminished, by considering as in Figure 19.12 how the band 
bending is affected by an applied voltage. 

3. Thermopower of semiconductors: 

(a) Consider an «-doped semiconductor, where transport is dominated by elec-
trons in the conduction band. Measure all energies £ relative to the bottom of 
the conduction band, so £c = 0. Assume that £ = m*v2/2, that D(£) oc \ /£, 
that r£ = a£~s, and that the matrices of Eq. (17.73) are all diagonal. Equation 
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(17.74) is still valid, but for semiconductors the approximation in Eq. (17.77) 
cannot be used. Show that the thermopower a is given by 

a 
kB 
e 

"5 
2~ -s- ß 

'kBT The identity T{\+x) =xT(x) is helpful. (19.101) 

(b) Now consider a p-doped semiconductor, where transport is dominated by 
holes. How does Eq. (19.101) change in this case? 

4. Carriers in depletion region: Using Eqs. (19.67), verify Eqs. (19.71). Notice 
that because (19.71) is obtained from expressions for the current, it cannot be 
used directly to predict it. 

5. Ebers-Moll equations: 

(a) Write down the three equations analogous to Eqs. (19.74) for minority carri-
ers in the three quasi-neutral regions of the transistor. 

(b) Write down the solutions of these equations; in the collector and emitter 
regions, the solutions are immediately determined up to an overall constant, 
while in the base region, there are two unknown constants to calculate. 

(c) Find the unknown constants by imposing boundary conditions (19.79), and 
show that the currents described by (19.80) can be put in the form (19.81). 
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20. Phenomenological Theory 

20.1 Introduction 

Experiments with light provide unexpected ways to illuminate the inner workings 
of solids. Oscillating electrical and magnetic fields can explore the immense range 
of length and time scales sketched out in Figure 20.1, a range so large that the 
interaction of light with matter is impossible to treat thoroughly inside any single 
framework. The theoretical starting point that is appropriate for infrared radiation 
falling on an ionic insulator has nothing to say about soft X-rays knocking core 
electrons out of a metal. The underlying equations, Schrödinger's equation for 
the solid coupled to the quantized radiation field, are too complicated to be of 
much use. However, there is a collection of simple ideas that makes it possible 
to understand most experiments. The main effect of incoming light is to make 
electrons oscillate. Their response depends upon interactions with the atomic solid 
in which they live and with each other. Fortunately, the interaction of an electron 
with a lattice can often be modeled by a simple idea—the effective mass—and the 
interaction of electrons with each other can often be explained with the classical 
idea of a dielectric function. 

Drude's model, Section 16.1.1, provides a simple initial description for the 
optical response of metals. Rewriting Eq. (16.1) with B = 0 as 

A - v 
mv = — eE — m—, (20.1) 

r 
and supposing that E and v have time dependence of the form exp[—iuit] gives 

• p ^ 
—loomv = — et — m— 

T 
_ ne2T/m -> 

=4> j = —nev = E 
1 — iuiT 

. , ne2T/m 
=>^M = i——� 

1 — ILÜT 

Therefore for frequencies much smaller than the relaxation rate 2TT/T, current is 
in phase with applied electric fields, and the conductivity is given by the low-
frequency form, Eq. (16.6). At higher frequencies, current and field fall out of 
phase, and the low-frequency relation no longer applies. Many features of the 
optical response of metals can be explained in this way. 

However, there are types of optical response that Eq. (20.4) does not capture. 
The photoelectric effect was discovered by Hertz (1887) and Thomson (1897). 
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Light impinges upon a piece of metal, and a current of electrons emerges in ex-
change. The intensity of the current is proportional to the intensity of the incoming 
light, but there is a cutoff frequency below which no electrons emerge, no matter 
what the intensity. Einstein (1905) explained this experiment by supposing that 
light could be viewed as a stream of particles carrying quanta of energy, an idea 
that marks the origin of quantum mechanics. 

Two sets of ideas come together to make an enlightened study of matter possi-
ble. The first is the study of how electrons in a solid respond to external electrical 
and magnetic fields, dealt with in Chapter 16. The second is the phenomenologi-
cal description of matter immersed in electromagnetic fields known as Maxwell's 
equations. 
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Figure 20.1. Overview of length and energy scales important for the interaction of light 
with condensed matter. 
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20.2 Maxwell's Equations 

Maxwell's equations are classical, and therefore they describe a quantum-mechan-
ical bath of photons in the limit where the number of photons is very large. For a 
diamond in sunlight or a semiconductor sample in a beamline, this limit is sensible. 
The main failure of this semiclassical approximation is its inability to predict the 
spontaneous emission of photons. Even for lasers, spontaneous emission is of rela-
tively minor importance, and it can fully be taken into account without resorting to 
the full machinery of quantized photon fields, as will be demonstrated in Section 
21.5.2. 

There are really two versions of Maxwell's equations in common use. One 
of them describes the fundamental interactions of charged particles and propagat-
ing waves. The other is phenomenological, and it sweeps complicated long-range 
interactions between vast numbers of particles into continuous functions such as 
index of refraction or conductivity. This second form of Maxwell's equations is of 
much greater value in condensed matter physics than the first. It provides not only 
the best way to account for the interaction of light with solids, but also the best 
way to find the effective interactions of electrons and phonons with one another 
and themselves. 

Maxwell's equations for electromagnetic waves interacting with a density n of 
electrons were obtained by Heaviside (1892) and are 

V • Ê = -Alien V • B = 0 (20.5a) 
A - 1 dB - - 4TT/ 1ÔÈ 
V x £ = — — V x ß = — + - — . (20.5b) 

c ot c c ot 
These equations are microscopic in the sense that response of all charged matter 
to the fields is treated explicitly. Maxwell had developed alongside the original 
equations a phenomenological counterpart where microscopic field and material 
response are bundled together. The easiest way to find the phenomenological equa-
tions proceeds in three steps. 
First, distinguish charges outside the system next from those inside nmt. In what 

follows, charges and currents will usually not carry a subscript and should be 
understood to be the internal charges and currents, nmt = n, j m = j . The ex-
ternal charges control or drive the system, while the internal charges respond. 

Second, define the polarization P by 

P = fdt'jiat(t'). (20.6) 

Employ the continuity equation 

- * ^ ? = -V7int (20.7) 
at 

=>• en . = V • P The arbitrary constant of integration in Eq. (20.6) ( 2 0 8 ) 
' can be used to eliminate the arbitrary constant 

here. But see Section 22.2— at a microscopic 
level, P is not well-defined. 
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so one can define 

D = E + A-nP. (20.9) 

When one uses Eqs. (20.6) and (20.9), Maxwell's equations become 

V-D = -47Té>«ext V ß = 0 (20.10a) 
V x i ? = - ! f V x ß = ^ + i f . (20.10b) 

c ot c c at 
So long as attention is restricted to the interior of a sample, the external charge 
densities vanish. However, the external charges cannot be neglected com-
pletely because they establish boundary conditions for material within the in-
terior. Often all fields would vanish were it not for the driving influence of 
external charges. 

Third, find a relationship between current j and electric field E. Suppose that the 
material is homogeneous and that current is a linear functional of the field. 
The most general possible relation is then 

/

a is in general a 3 x 3 tensor. 
dt'dff(r(r-rf,t-t')È(rf, t') " " o ^ n e i t y " means that the ( 2 0 . l l a ) 

v ' ' v ' ' relation between ; and E is 
unchanged if both j and E are 

p/— \ displaced by a constant vector, ,~„ 1 . , . 
= a*h(r,t). S e e A p p e n d i x A5 implying air, ?') = <r(r-r'). U U . 111>) 

One interpretation of the conductivity tensor is that it describes the current j 
that would flow in a sample following a delta-function pulse of electric field 
E at t = 0. The assumption of homogeneity means that one can only employ 
Eq. (20.11) on length scales much larger than a lattice spacing, or other mi-
crostructure if it is present. Given this restriction, there is no need to define 
spatial averages of E and B as is often conventionally done. 

Equation (20.11) simplifies in form if one takes a Fourier transform with re-
spect to / drdt exp[/cctf — iq ■ r] to find 

j(q,Lj) = <T{q,u;)È(q,Lj). See Appendix A.5. ( 2 0 . 1 2 ) 

Once the conductivity has been defined, other quantities follow. The dielectric 
tensor e is defined by 

D(7, t) = €*E(j, t) => D(q, U>) = e(q, Uj)É(q, Oj). I n general e is a 3 X 3tensor. 

(20.13) 
Combining Eqs. (20.6), (20.9), (20.12), and (20.13) gives 

47TI 
e(q,(j) = l + a(q,u). (20.14) 

Relation (20.14) is surprisingly powerful. Calculating currents is a favorite ac-
tivity of theorists, who theoretically follow how all charges respond to electrical 
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fields and thereby obtain conductivities. Experimentalists have trouble following 
the motion of charge in detail, particularly at optical frequencies. However, the 
dielectric tensor is a classic experimental quantity, governing dispersion and ab-
sorption of waves. Connecting conductivity and dielectric constant with (20.14) 
constitutes a connection between theoretical and experimental viewpoints. 

Arbitrary Divisions. Maxwell's equations conventionally are presented in an-
other way. Charge is divided into two groups, bound and free. The bound charges 
produce dielectric behavior, while the free charges participate in conductivity. In 
addition, materials have a magnetic permeability ß that relates the microscopic 
field B to a macroscopic field H. 

Il'inskii and Keldysh (1994) emphasize that all these different phenomena are 
in fact hidden within Eq. (20.11). The divisions between bound and free charge are 
not fundamental. There is more than one possible way to define the polarization, 
conductivity, and dielectric constant. Sometimes it may seem natural to divide 
electrons into more than one group, bundling some in with the polarization and 
dielectric constant and leaving others free. For example, the currents j c o r e due to 
core electrons might be written as P = J dt'abound 

(t') but currents due to conduction 
electrons left as jfree. There is nothing necessary about such a division between free 
and bound charges, although in a given experimental context it may seem natural. 

For example, such a point of view was adopted to discuss impurities in semi-
conductors in Section 18.3.1. The impurities, whether localized or conducting, 
were placed in a medium with dielectric constant e° = 11.8. This dielectric con-
stant is actually due to the polarization of the valence electrons of silicon, but it 
is very convenient to treat these valence electrons separately from the impurity 
electrons and refer only to a dielectric constant. 

Magnetic permeability seems to be missing. Where has it gone? The question 
will arise again in Chapter 24. Magnetic permeability consists in the tendency of 
incoming fields to excite current traveling in closed loops. The conductivity tensor 
of (20.11) can describe such response, but only when the conductivity is nonlocal. 
In Fourier space, the magnetic parts of the conductivity tensor will vary as q2, while 
the dielectric parts are independent of q. 
20.2.1 Traveling Waves 

The quantities actually measured in experiment are closely related to the dielectric 
function e. From Eqs. (20.10b) and (20.13) one finds that 

- - p 19 A s 1 d2e*È 
V x V x £ = — — V x ß = — T ~— 

c dt c2 dt2 

=> q E — q{q ■ E) = e(3. Lü) —=-£. T a k e t h e Fourier transform, and •* fV* } vi> ; c2 USeidentity 
qXqxÂ= q(q -A) — q2A. 

In the general case where e is a tensor, Eq. (20.16) becomes a 3 x 3 matrix equa-
tion that must be diagonalized. Frequently, however, the dielectric medium can be 

(20.15) 

(20.16) 
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treated as isotropic, which means that e is a multiple of the unit matrix and can 
be treated as a scalar. Not only fluids and polycrystals are isotropic, but all cubic 
crystals as well, because the only 3 x 3 matrix able to survive the cubic symmetry 
operations is a multiple of the unit matrix (Problem 3). In this case, the medium 
supports precisely two sorts of waves, transverse and longitudinal. 

Transverse. For transverse waves, E is perpendicular to q, and so Eq. (20.16) 
becomes 

q2Ê = e(q,U))~Ë e is now a scalar. (20.17) 

^>q = uih/c; n(q, ui) = Je(q, CJ), (20.18) 

and the amplitude of light traveling in the sample varies in space and time as 

£ 0 g ' a J [ " J t : / c _ f ] . For a wave traveling along x. ( 2 0 . 1 9 ) 

The real part of the dielectric constant is customarily denoted e\, and the imag-
inary part €2, while the real part of n is the index of refraction h, which gives the 
phase velocity of the electromagnetic waves as c/n, and the imaginary part of h is 
called the extinction coefficient K. These quantities are related by 

ei=n2-K2 (20.20a) 
e2 = 4TrRe[a}/iü = Ihn. (20.20b) 

An experimental quantity that can be measured directly is the rate at which the 
intensity of light decays as it passes through a sample; intensity goes as the square 
of amplitude, so the absorption coefficient a is defined by 

lui UJtl 
Oi = K = . a gives the rate of spatial decay, and has units ( 2 0 . 2 1 ) 

C he of inverse length. 

Longitudinal. For longitudinal waves, E is parallel to q, and Eq. (20.16) becomes 

ÜJ2 

e{q,Lü)^E = 0 (20.22) 
cl 

=> e(q, U)) = 0 . Assuming e is a scalar. ( 2 0 . 2 3 ) 

20.2.2 Mechanical Oscillators as Dielectric Function 

Before proceeding to more elaborate calculations, it will be helpful to present a 
simple mechanical model for dielectric functions in insulators and metals. Note 
that a typical wavelength of light passing through a solid is 100 Â or more, while 
all microscopic dimensions such as unit cell dimensions, or mean free paths of 
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electrons, tend to be substantially less. Therefore, one can safely take applied 
electric fields to be of the form 

È(r,t)=Êe-iuJt, (20.24) 

set q = 0 in dielectric and conductivity tensors, and then drop reference to q alto-
gether. For this reason, in the ensuing discussion the various response functions 
will depend upon to alone. 

In an insulator, charges cannot flow indefinitely in response to a static electric 
field. A simple model consistent with this fact regards the insulator as composed 
of a collection of charged particles bound to particular sites in a solid, with the 
particles oscillating about the sites in response to external fields. Oscillators of 
type /, with mass mi, charge —e, oscillatory frequency u>i, and damping time 77 
obey 

m{f= —miLui? — mfr/Ti — eE(r, t) (20.25) 
» F Assuming that E has the form 

=>7(LÜ) = —= 5 - given in Eq. (20.24). ( 2 0 . 2 6 ) 
nti(iüf — iuj/Ti — to ) 

If the density of charges of this type is «/, the current associated with this motion 
is 

"=V ^ -iunie2E ,nn™ 
J\u) = —r-2—~i 2V (20.27) 

mi{üjf — ILU/Tl — U)A) so the conductivity is 

-iumie2 

ffH = f 2 � I 2T • ( 2 0 - 2 8 > 

Making use of Eq. (20.14), the dielectric constant of a material with many different 
types of oscillators is 

e(w) = 1 + 2 ^ — 2 — ^ 1 ~ - (20.29) 

In the subsequent discussion, dielectric functions of the form Eq. (20.29) will ap-
pear frequently. Sometimes the oscillators will be isolated impurity atoms, other 
times they will be phonons, and they may also be electrons jumping between bands. 

From the vantage point of dielectric constants, a conductor is actually just 
a special type of insulator, one where charges are free to move large distances, 
and one of the oscillation frequencies a;/ equals zero. Focusing upon this term in 
Eq. (20.28), dropping the index /, gives for the conductivity and dielectric constant 

2 
ne T 

a(u) = — The same as Eq. (20.4). ( 2 0 . 3 0 ) 
m{\ —iuiT) 

e(u) = l - p (20.31) 
LU{LO + I/T) 

where the plasma frequency cop is defined by 
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IA-ïïiie2 

m 
(20.32) 

The dielectric function Eq. (20.29) has both real and imaginary parts, which 

are 

e2(o;) = Im[eM] = 5Z 

4nnie2(ujf — w2)/m; 

l (iof-io^ + icu/ny 
47rnie2Lü/(Timi) 

(20.33a) 

(20.33b) 

and individual terms in the sum have the characteristic shapes depicted in Figure 
20.2. 

Frequency ui 

Figure 20.2. Characteristic shapes of the real and imaginary parts of the dielectric function 
described in Eq. (20.33). Only one term in the sum over / is depicted. 

20.3 Kramers-Kronig Relations 
Causality. The expression for the dielectric function in Eq. (20.33) was obtained 
from a simplified mechanical model of solids, but it is a rather general expression 
of the forms that dielectric constants are allowed to have. There is a constraint 
upon dielectric constants, not considered until now, that of causality. 

The electric displacement D is related to the electric field by 

D(co) = e(iü)E(io) ^ D(t) = f dt' e{t')E{t-t'). (20.34) 

The electric displacement is produced in response to external fields, so one can be 
certain that if the electric field vanishes up until t = 0, the displacement D(t) must 



Krame rs-Kwnig Relations 619 

do so as well. In particular, suppose that E(t) = toEo5(t) is a brief intense pulse of 
electric field at t = 0, where to is a constant with dimensions of time characterizing 
the duration of the pulse. Then Eq. (20.34) becomes 

D(t) = e{t)t0E0. (20.35) 

Because D(t) must vanish for all t < 0, it follows that 

e{t\ = 0 for t < 0 . This requirement continues to hold if e is a ( 2 0 . 3 6 ) 
tensor, or if the dependence of e on wave num-
ber q is retained. 

The only property of e needed in order to obtain Eq. (20.36) is that it linearly 
relates two quantities that must be causally connected. A host of other functions 
have the same property. Some examples are the electric conductivity, which relates 
current to electric field, the complex reflectivity, which relates light bouncing off a 
sample to the light coming in, the flow of a fluid being stirred in a rheometer, the 
vibration of a solid being pulled in a tensile testing apparatus, or the temperature 
rise of a glass being injected with periodic pulses of heat. Somewhat surprising 
consequences will flow from Eq. (20.36), and similar consequences should be un-
derstood to apply to all these other cases as well. 

From Eq. (20.36) it follows that 

roo roo 
/ dt eiu3'e(t). (20.37) 

Jo 
Allow u) to range over the complex plane. So long as the imaginary part of u is 

greater than zero, the exponential function multiplying e(t) decays as t becomes 
large, and the integral must be finite; this conclusion follows both because e van-
ishes for t < 0 and because as a response to an impulse at t = 0, one cannot expect 
it to grow exponentially in time thereafter. Therefore e(u) cannot have any poles 
when UJ lies in the upper half of the complex plane. From Cauchy's theorem, one 
might write 

[ dJ e(u') 
e(uj) = (b . Close the contour in the upper half-plane. The ( 2 0 . 3 8 ) 

J 271"/ LO1 — (jj — if] only P° ' e is at a; + ir\, where 77 is very small, 
and the contribution of this residue gives the 
result. 

However, Eq. (20.38) is not quite right, because in order for Cauchy's theorem to 
be valid, the function inside the integral must drop off faster than a/ for large u/. 
To get the proper result, it is necessary to have some idea of the form of e(o>); all 
the approximate expressions derived so far behave as e°° + G(l/u/)2 . The correct 
version of Eq. (20.38) is therefore 

/
du)' e(uj;) — e°° 

^ 1 . e°° is the value of e as ui -» 00. ( 2 0 . 3 9 ) 
2717 LÜ1 — LÜ — IT] 

The Kramers-Kronig relations are completely contained in Eq. (20.39), but to 
appreciate them, one must separate the equation into real and imaginary parts. The 
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pole,u; = u/ \ = / P°le-

Omitted in Eq. (20.40) 

Figure 20.3. The integral at distance r\ above the real axis can be deformed into a contour 
integral on the real axis, with a contribution from a half-circuit around the pole at LO = LÜ'. 

easiest way to accomplish this task is to rewrite Eq. (20.39) so that all the terms in 
the integrand multiplying e(o/) are purely imaginary. Figure 20.3 shows a change 
in integration contour which makes it possible to send r\ to zero and which gives 

To take the principal part 3> of the integral, 

/

rit y *=!/ i l /r°° *o iaK.e uic piincipai pan jr ui nie niiegiai, 
v ' keep w' on the real axis, but integrate on the /of) 4 0 ) 

Tj-j Qy to domain (—00, ui — rj\ [ui + r/, 00), finally al- ^ ' ' 
lowing T] —> 0. The factor of 2 relative to 
Eq. (20.39) is needed because the small lower 
half-circle in Figure 20.3 is omitted. 

One can now take the real and imaginary parts of Eq. (20.40) immediately, finding 

R e l . M - n ^ / v ' 1 " ' ^ : ' 0 0 1 C0.41a) 

J 7T Lü' — üJ 

Because e(t) is real, one must have e(uj) = e*(—uj), which implies that the real 
part of e{uj) is even and that the imaginary part is odd. Therefore, using e\ for the 
real and €2 for the imaginary part of e it is conventional to rewrite Eq. (20.41) as 

«,(„)_«- = , r 5 ^ ! ^ L (20.42a) 
J O 7T OJ' - LO1 

m f°° 2üJdco' ei(w')-e°° 
e2(u)) = -y V 9 • (20-42b) 

JO 7T UJ' - LU1 

Equations (20.42) constitute the Kramers-Kronig relation. 

20.3.1 Application to Optical Experiments 

The Kramers-Kronig relation has important application to the optical behavior of 
solids, because it means that measurements of the imaginary part of the dielec-
tric constant—absorption—can be used to find the real part—dispersion—or vice 
versa. Suppose, for example, that one wishes to find the absorption of light in 
metals or semiconductors at photon energies lying above the band gap. At these 
frequencies, the absorption coefficient a is on the order of 106 cm- 1, and light 
penetrates only around 100 Â into the sample. Exceedingly thin samples would be 
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needed to measure absorption. An alternative is to measure light reflection from a 
thick sample. If the penetration depth is very small, the sample's surface will have 
to be exceedingly flat and free of impurities to provide meaningful results, but such 
surface preparation may well be easier than creating a 100-Â-fhick slice. 

Reflection. Reflection from surfaces has its own Kramers-Kronig relation. The 
amplitude and phase of light bouncing in normal incidence off a flat surface is 
obtained by multiplying the incoming wave by the complex reflectivity 

h — I 
= pe . The amplitude of reflected wave is p; Ö con- ( 2 0 . 4 3 ) Yl -\- 1 tains phase information. See Jackson ( 1999). 

Eq. (7.42). 

The amplitude p is what is measured in experiment. Instead of applying Eqs. (20.42) 
to the dielectric constant e, one can apply it instead to the logarithm of the reflec-
tivity: H"M)=Hp{uj)/pm+muj) -ö(o))' (2°-44) 

obtaining 

0(LJ)-O(O) = - - 7 [dJ In 
7T J 

This intermediate form is 
1 r r o ( u / ) l 1 1 recorded to make clear that 

rn / J , .' i „ i - i — i [ ] the integrand vanishes ( 2 0 . 4 5 ) 
■ p(0) J Lü' — Lü Lü' quickly enough as 

u/ —> oo to legitimize the 
changes in the contour of 
integration. 

9, ; /"oo I« fit, J\ Because p(w) is even, and Z.UJ r°° In nlLü I because p(Lü) is even, anu 
Q(u) = 7 / rf^' ' l ^ ^ . e ( u ) ) as an odd continuous ( 2 0 . 4 6 ) 

K ' ' K i n LÜ — up- r u n c t l 0 n m u s t vanish at the 

In this way, absorption can be determined by measuring reflection. 

Ellipsometry. In general, linearly polarized light reflected from a surface at an an-
gle other than 0° or 90° leaves with elliptical polarization. Using polarized light in 
this way to measure optical constants is called ellipsometry, and the basic formulae 
are described by Yu and Cardona (1996), p. 239. 

Sum Rules. A benefit of the Kramers-Kronig relations is that they permit con-
clusions about physical properties in one frequency range to be drawn from mea-
surements in an entirely different frequency range. As an example of how such 
information is to be extracted, it is helpful to present two sum rules. The first 
follows from Eq. (20.42a) simply by setting to to zero, and it reads 

e i (0) - 1 = - [°° du' ^ ß , (20.47) 
7T JO ü/ 

So the static dielectric constant is related to an integral over all dissipative pro-
cesses. 
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Figure 20.4. Schematic view of dielectric constant resulting from two groups (A) and 
(B) of modes, widely separated in frequency. In the vicinity of tum the imaginary part 
of the dielectric constant nearly vanishes, and the real part goes to a constant e°°, but 
e°° T̂  1 because of the additional structure above u>m. The left panel shows the complete 
dielectric function, while the right panel focuses upon a low-frequency region that would 
be described as a resonant band embedded in dielectric medium of constant e°°. 

As a second example, set w « wm in Eq. (20.42a) and refer to Figure 20.4. 
Because to ;» ui' whenever ei is nonzero in region (A) and to -C u/ whenever e2 is 
nonzero in region (B), Eq. (20.42a) becomes 

2 r , ,w^o 2 f u i " 2 f°° FllQJ 
Re[e{u)] = 1 - - A , / dJ u/e2(ü/) + - / dJ - ^ 

KU1 h 7T JUJm Lü' 
(20.48) 

,2 

where 

and 

= e ° ° Ü Using Eq. (20.47), extending the integration ( 2 0 . 4 9 ) 
Up- ' past region (B). 

eoo = l+2 [°° d j ^ l (20.50) 

/I 2 o /-a; ^ake t'1's e x P r e s s i ° n t 0 define the 
2 47T/?e 1 1 ™ . i / i\ optical mass mopt. which will be , 1 f . . . . 
p = — — / dUJ LU €2{UJ ) calculated from a microscopic ( A I . M ) 

Wopt VT J o viewpoint in Eq. (23.26). 
k-'r, = 

Jo 
2n2ne2 

dJ uj'e2(u') = . (20.52) 
Wîopt 
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The frequency wp is the plasma frequency, and it generalizes the quantity de-
fined by Eqs. (20.31) and (20.32). The optical mass mopt is defined by Eq. (20.52). 
Thus general lessons to learn from Eq. (20.49) are as follows: 

1. A collection of absorbing modes whose frequency lies well below the probe 
frequency wm acts like a collection of unbound electrons, and its influence 
falls off as l/io1. 

2. A collection of absorbing modes whose frequency lies well above the probe 
frequency Lum acts like a high-frequency dielectric constant e°°. 

20.4 The Kubo-Greenwood Formula 

One of the most important quantum-mechanical calculations in the theory of solids 
concerns the linear response of a collection of electrons to an externally applied 
electromagnetic field. Not only does this calculation permit one to find the electri-
cal conductivity of solids, it describes their interaction with light and also permits 
a self-consistent description of the interaction of electrons with one another. The 
strength of the calculation is that it starts from quantum-mechanical principles, 
introducing few phenomenological assumptions. This feature is also its greatest 
weakness, and for the purposes of studying thermoelectric properties of solids the 
Boltzmann equation is more powerful. 

The setting of this calculation is quite general. Consider a collection of elec-
trons occupying states of energy 

£.l=hcüi The calculation is within the independent elec- ( 2 0 . 5 3 ) 
tron approximation. 

with probability //. Usually // will be a Fermi factor, which means essentially 
that states up to the Fermi energy are occupied, while those above are unoccupied. 
However, the calculation continues to function when // has other forms, a fact of 
particular importance for lasers. Apply an external electromagnetic field, and ask 
for the expectation value of the current that results in response. The calculation 
has two steps. First, one has to work out the response to first order of an arbitrary 
quantum-mechanical state to a potential U(t) with time dependence cos uit. Next, 
one finds the expectation value of the current in this state. 

20.4.1 Born Approximation 

Begin with the Born approximation, which states that an eigenstate |/) of "K that 
comes in contact with a weak time-dependent potential U(t) evolves into 

/>)) « ttfe-'** |/> + / dt'e-^^r1 Wile-™!; \l) (20.54) 
oo 

The eigenstates of 'K are denoted by ]/), while the time-dependent state evolving from |/) 
under the combined action of 3-fand Û is called |/(/)). Nis a normalization constant. 
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= N e-l0J" \l) + J2 f dt'liy-^^'-^^^-e-^'-^"'] (20.55) 
Take U(t') to have time dependence exp(—iuit'); to must have a small positive imaginary 
part 77 for the time integral converge, or else take üjti to have an imaginary part —yti. 

f \ l \ < \ ^ \ l ' \ V I ^ I O e lUJ' \ -iuj.t Excluding / from the sum takes 
= » t / J ' / w ; 7 (e ■ care of the normalization. (2U.56) 

L ,Y/ Δ(w,-o;//+a;)J 
If, on the other hand, the time dependent potential were to have the form 
U* exp[ico*t], then one would have instead 

< « - ^ (l'\Û*\l)eiu}*' 1 

i'('>Hi'>+gi^-!^.)Rw <2°-57> 
Imaginary Frequencies. For purely formal reasons, so that the integrals in (20.56) 
converge, it is necessary to take the frequencies to or UJ/I to have imaginary parts; 
u) needs a small positive imaginary part r], while U[i needs an imaginary part —7//. 
The constant r\ does not have much physical interest. It corresponds to turning on 
the interaction potential U very slowly, a long time in the past, so that the interact-
ing system can adiabatically adjust itself to the new potential and reach a steady 
state. The constants 7// are more important. By making them nonzero, one is able 
to describe transitions into metastable states. The initial state of a system is usu-
ally very stable; the system has been there for a long time, and it would remain if 
not perturbed by U. However, the intermediate states indexed by /' are usually not 
true eigenstates. In a formally exact description of a quantum system, the eigen-
values and frequencies should all be real. The common situation is, however, that 
the quantum states /' used in describing excited states of a system are not exact, 
both because one has only an approximate solution of the Hamiltonian and be-
cause the Hamiltonian actually has many more degrees of freedom than one is able 
to describe. Not being exact eigenstates, these states decay, and the decay can be 
modeled by giving them complex energies. All Bloch states ipn-^ should really be 
described in this way; they decay because electron-electron interactions have not 
been treated exactly, because the real wave functions involve many electrons not 
one, because the crystal in which they live has impurities, or because of interac-
tions with phonons. Localized states, described for example by Wannier functions, 
should be taken to decay for the same sorts of reasons. The important point is that 
many different types of ignorance and error can be accommodated with a few con-
stants 7/', and only in this way does detailed comparison with experiment become 
possible. The initial states |/) usually do not decay. They are, after all, states the 
system chose to go to itself in the absence of outside interference. 

Interaction with Electromagnetic Field. The next step is to use Eq. (20.56) to 
describe a situation in which a collection of electrons interacts with an electromag-
netic field. As in Section 16.3 the sensible way for an electrical field to coexist with 
periodic boundary conditions is to introduce it through a vector potential. Special-
izing to the case described by Eq. (20.24) where the wavelength of light is much 
greater than unit cell dimensions or electron mean free paths, one can treat the light 
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as a spatially uniform oscillating field with 

cÈ _ 
A = e~,iU>-\-C.C.. c.c. means "complex conjugate." ( 2 0 . 5 8 ) 

The next task is to find the expectation value of the current in such a state /. 
When an electromagnetic field is described classically by a vector potential A, P 
must be understood as the canonical momentum, where classically p = mv — eAjc. 
So the current operator is 

j = — — [ p + - A ] , See Goldstein (1980), pp. 341-342. ( 2 0 . 5 9 ) 

m c 

and the Hamiltonian changes also because 

P-*P+-A, (20.60) 
c 

so the kinetic energy becomes 

{P+-AY c 
2m 

P2 e ^ 

(20.61) 

H [A-P + P-A]+ . . . Terms of order/I2 are irrelevant in a theory of ( 2 0 . 6 2 ) 
2m 2mc linear response. 

P 2 e r - ~n 
= 1 \A ■ P\ -\- . . . . " >s conventional to specialize to the trans- ( 2 0 . 6 3 ) 

2m mc verse gauge V ■ A = 0 so as to obtain this 
simplification. 

To linear order in applied fields, the Hamiltonian is changed by addition of a term 

Û(t) = —\È-P]e-iu}'--^[Ë-P]e^'. (20.64) 
v ; micul J miu*L J 

The contribution to the current of state |/) is therefore . 

~t Using Eq. (20.58) for the the vector potential 
J = Vj = (I\P-\ \!) and using Eq. (20.56) for the state |/~). ( 2 0 . 6 5 ) 

m c 
2p This term comes from the expectation value 

= ( / | P | / ) — f e~lwt +C.C.1 ClilO- The next two lines result from the 
m imtü terms proportional to E in |/) acting on left 

and right-hand sides. 

e2 * - , -, - r e~iw' eiu)*' i 

- 4 ^ Y(l\P\l'){l'\E-P\l){-r-^ T r-1 A 
ihm2 ff/1 ' M ! ' ' ^ÜJ(UI-U,>+UJ) UJ*(UJI-LÜI>-U;*)} 
e2 

(/lE-Pl/'X/'l/5!/)!— — -1.(20.66) 

The conductivity tensor a{oj) is defined as the coefficient of e~'w' that relates the 
current j to the applied electric field. Assuming that state |/) is occupied with 
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probability // , assuming that the ground state had no net current, and summing 
over all states / gives the Kubo-Greenwood formula 

°aß(u) 

imuV E // f{i\pa\i')(i'\pß\i) { {i\pß\i')(i'\pa\i) 
*-rf nm i- u>i — u>[' + u) uij — u)J, — ui 

. (20.67) 

This expression simplifies if all the w/ are real. Then exchanging / and /' in the 
second term gives 

craß(uj) 
imcoV E fiö»ß + E fl-fy(l\Pa\l')(l'\Pß\l) 

Hm LÜI—LÜI'+(JJ + irj 
i v 

Adding a small imaginary part i-q to LO explicitly. 

(20.68) 

Absorption of incoming energy is given by the real part of the conductivity 
tensor, and is worth writing out separately. When all the decay rates 7/' = —Im uif 
are zero, the real part is entirely induced by the small imaginary term r\ in the 
denominator of Eq. (20.68), and is 

Re [aaß{oj)} = - I m 
musV E ft-fv{i\pa\i'){i'\h\i)' 

Hm WI—U)[I+UJ + ir\ 

TÏ £(//-//'WI —1/')</'|̂ |/><5(£,' 
w m m 

£; —Hui). 

Recall Im[l/(jc- ir))] =-K5(X). 

(20.69) 

(20.70) 

More generally, if decay rates 7/ = — Im LUI are not zero, 

Re [(Jaß(uj)} 
2 e IT 

hu)m2V E ( / ' -fi>)(l\Pa\l')(l'\Pß\l)Fu>(u), (20.71) 

where FU>(UJ) = (7/' — ji)/(TV[(LJ — UJI> +w; ) 2 + 7/'2]) is the Hneshape, a Lorentzian 
of width 7// — 7/ centered at CJ; — uii>. 

Expression (20.71) can be simplified slightly with some additional assump-
tions. First assume that the occupation numbers // are either 1 for occupied states 
or 0 for unoccupied states. Then the only terms contributing to the conductivity are 
those where / or /' is occupied, but not both. Since the occupied states are stable, 
take 7/ = 0 for occupied states. Finally, choose to > 0 and suppose that Fut is neg-
ligibly small whenever /' is an occupied state and / is not. Under these conditions 
one can write 

Re [aaß(u)} 
htum2V E IV 

! occupied 
/ ' unoccupied 

(l\Pa\l')(l'\Pß\l) 
[u;-(ujr-uji)}2 + 'yj, 

(20.72) 
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Equation (20.67) has a dual interpretation. For sufficiently small values of u> it 
reduces to Eq. (16.29), and it describes the motion of electrons within a single band 
with an effective mass. However, as ui rises toward optical frequencies, the effec-
tive mass picture breaks down, and Eq. (20.67) now describes transitions between 
levels that become possible whenever there is a resonance such that w/< —UJI=UJ. 
For a material in equilibrium, only low-lying states are occupied, higher-lying 
states are empty, and the real part of the conductivity tensor (20.71) describes the 
absorption of energy from incoming waves. However, if a material can be pre-
pared out of equilibrium, with higher-lying states occupied and low-lying states 
empty, the sign of energy absorption reverses, and Eq. (20.71) describes stimulated 
emission. Therefore, this equation describes the basic operation of the laser. 

20.4.2 Susceptibility 

A slight variant on the preceding calculation is valuable in order to produce es-
timates of the interactions of electrons with one another. The calculation differs 
from the previous one in several respects. First and most important, electrical po-
tentials created by electrons in solids have wavelengths on the order of interatomic 
spacings. The q —> 0 limit employed until now is not legitimate, and the perturbing 
potential U must be taken to behave as 

U{q,uj)e^7'iwt+c.c. (20.73) 

In compensation for the difficulties introduced by the extra spatial dependence of 
U, it is customary to take the unperturbed electron states |/) simply to be plane 
waves, not so much because the approximation is carefully justified as because 
otherwise the expressions become unwieldy. The calculation is also simplified by 
focusing upon the expectation value of the charge density rather than upon the 
current, making expressions somewhat more compact. 

The electron density n is defined to be 

n(r, 0 = X) fl(Kt)\r)(m))- (20.74) 

If one uses the simplification that \l) is a plane wave, takes the potential U to be an 
electrical potential 

U(q, to) = ~eV(q, u), (20.75) 

and proceeds in just the fashion that leads to Eq. (20.68), Problem 5 shows that 

-en(q, u>) = xdq, v)V(q, u) (20.76) 

with 

xM") = e2Y.^ ^ " ^ ■ (20.77) 
rr" nv toy . ^ — to-; — u) 
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Xc is not the dielectric susceptibility. It relates charge density to applied field, 
rather than dipole moments to field. Its relation to the dielectric constant e is deter-
mined by writing 

V2V = V2Vext + 47re« = 47renext + 47ren SeeEq.(20.i0). (20.78) 
^ V 2 V = - V - D + 47T(?n (20.79) 

=>• -q2V(q, to) = -iq-D + 47ren(q, u) (20.80) 
=* ~q2V{q, u) = -iq-b-4TTXc{q, w)V(q, w) (20.81) 

=► (4vrXc-^2)^(^, w) = -iq-D (20.82) 
=>• {q2 - ATTXC)E = q(q ■ D) Because £ = -iV^V. ( 2 0 . 8 3 ) 

For longitudinal vibrations, where q-D — qD, one therefore has 

e(& w) = 1 - ^ ^ (20.84) 

In this form, e(q, LO) is called the dynamic Lindhard dielectric function. 

20.4.3 Many-Body Green Functions 

The Born approximation is only the first step in formal schemes that track the 
effects of perturbations. The most powerful formal methods employ Green's func-
tions similar to those in Section 18.4.2, but generalized to describe many interact-
ing electrons. These methods make it possible to obtain a variety of results, includ-
ing expressions for electrons interacting with light and with each other. Many of 
the results can also be obtained by more elementary means, although the elemen-
tary derivations are not as systematic and are sometimes less convincing. Some of 
the many books describing many-body Green functions are Kadanoff and Baym 
(1962), Abrikosov et al. (1965), and Fetter and Walecka (1971). 

Problems 

1. Numerical evaluation of Kramers-Kronig relations: While the Kramers-
Kronig relations in the form (20.39) are valuable for analytical work, they are 
almost useless for practical evaluation of response functions. The integrals 
are very singular and are hard to evaluate accurately. 
One practical way to employ these relations is by returning to the arguments 
from which they originally were derived. To illustrate the process, suppose 
that the imaginary part of a dielectric constant has been measured and that the 
experimental data give 

I m e H = e 2 M « - ^ - « " A " ) 2 - 1 ) 2 / * + 1 0 e-((-M)2-02/5] (20.85) 

with 
u}\ = 4 Hz and w2 = 13 Hz. (20.86) 

The goal is to find Re[e(a;)] = e\ (a;). 
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(a) Recall that e(t) is real. Show that e\ (UJ) is an even function of LO and that 
62(0;) is an odd function of u. 

(b) Show that the inverse Fourier transform of e\{u) is an even function of t, and 
that the inverse Fourier transform of 62(0;) is an odd function of t. 

(c) Given 

e2(t) = j^e-^e2(uJ), (20.87) 

how can 
ex{t) = j ^e-^'zxiu) (20.88) 

be determined, using the fact that e(t) = 0 for t < 0? 
(d) Making use of these suggestions and employing numerical fast Fourier trans-

forms, find the real part of the dielectric constant given by Eq. (20.85) 

2. Connection between Kubo formula and Boltzmann equation: It is reas-
suring to verify that the Boltzmann equation does indeed emerge as the low-
frequency limit of the Kubo formula for the conductivity. Expression (20.67) 
becomes somewhat problematic in this limit, because from Eq. (20.58) the 
vector potential and hence the current diverge as LO —> 0. The dissipative pro-
cesses preventing this growth can be represented by taking u —> ui + i/r. 
Making this substitution and sending the real part, u, to zero, verify that 
Eq. (20.67) coincides with a result of the Boltzmann approach. 

3. Cubic symmetry: Show that if a conductivity tensor aaß is invariant under 
the cubic symmetry operations, then it must be a multiple of the unit tensor. 

4. Sums of poles: Consider the function 

30 , 

f(cv) = J2 - • (20-89) 
^ LO - LO[ - IT] 

(a) Plot this function for LO G [-1, 2] when LO, = 1/30 for 77 = 10~4, 77 = 10~2, 
and 77 = 0.1. 

(b) What integral does the sum correspond to for the larger values of 77? What is 
the value of the integral, and does it compare well with the sum? 

(c) The function / makes a qualitative transition between one type of behavior 
for small 77 and another type of behavior for large 77. What determines the 
value of 77 at which the transition takes place? 

(d) What does this problem reveal about the relation between eigenvalues of a 
quantum mechanical Hamiltonian and the idea of a density of states? What is 
the significance of 77? 
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5. Susceptibility of the electron gas: 

(a) Writing the electron density n defined in Eq. (20.74) in k space, show that 

n(q, t) = j dre-r^n{7, t) = £ fi(ï\qi)(q + qi\ï) (20.90) 

(b) Consider a potential of the form 

U(r, t) = U(q, Lü)e^7-iu;t/V. (20.91) 

Take the unperturbed states |/) to be plane waves. Show that Eq. (20.56) 
produces for n 

eU(q, u) y ^ 1 
V n ka 

**ft Jk+q 

^k-^k+q+UJ ^k-^l+q-^ 
(20.92) 

To obtain this result, drop a term proportional to 8$$ in order to focus upon 
spatially nonuniform conditions. 

(c) Consequently, derive Eqs. (20.76) and (20.77). 

6. Static Lindhard dielectric function: 

(a) By relabeling the first sum in Eq. (20.77), show that for u> = 0, 

Xc — y /_^ 2fk~ 
la ) 

1 
q-k 
m + fe 

(20.93) 

(b) Transform Eq. (20.93) into an integral over k in polar coordinates. First 
integrate over cos 6, and next integrate over k, from 0 to kf. The answer 
should be 

me2(44-*2)log(f^f)+4^ 
Xc = - ^ ö ^ - q l _ ( m 9 4 ) 

(c) Take the limit q —> 0 and show that 

Xc 

8? 

me kf 

' 7T2h2 ' 
(20.95) 

7. Screening of bare nuclei: The Lindhard dielectric function, Eq. (20.84), 
can be used in a wide variety of physical contexts, both dynamic and static, 
to solve problems involving the interaction of many electrons. Consider, for 
example, a nucleus of charge Z surrounded by a cloud of Z electrons, which 
produces a potential U for the purposes of Eq. (20.73) equal to 

Uext(q) 
4-irZe2 

This is the Fourier transform of the Coulomb 
potential —Ze2/r. 

(20.96) 
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(a) Show that Eq. (20.83) can be rewritten as 

jj/- \ Ue]it(q,w) /inn-7\ 
UW> w = "i—A /~2' (20.97) 

where U is the total potential produced by the nucleus together with the cloud 
of surrounding electrons. 

(b) Using the result of Problem 6, show that 

Lu{q = 0) = ~EF, (20.98) 

where 0 is the volume of the unit cell, and tip is the Fermi energy h2k2
F/2m 

appropriate for Z free electrons per unit cell. 
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21. Optical Properties of 
Semiconductors 

21.1 Introduction 

Chapter 19 made extensive use of the band theory of crystals to describe the trans-
port properties of semiconductors. It relied upon accurate values for energy gaps, 
as well as upon effective masses of electrons and holes in the vicinities of band 
maxima and minima. However, although the electrical properties of semiconduc-
tors depend crucially upon these quantities, the dependence is indirect. The most 
accurate experimental determinations come from optical measurements, where pho-
tons drive electrons between various Bloch states. These measurements are not 
nearly so simple as they sound. Apart from the difficulties of obtaining clean sur-
faces and pure samples, the process of optical absorption usually demands under-
standing some physics beyond the simple band theory. In the case of silicon and 
germanium, the lowest-energy optical transitions are indirect, and they cannot pro-
ceed without aid from phonons. Even in the semiconductors with a direct optical 
gap, the absorption process is almost always complicated by excitons, excitations 
resulting from the attraction between an electron and the hole it has left behind. 
These observations confirm that no simple model such as the one-electron picture 
of energy bands in a crystal will completely capture experimental phenomena in 
solids and that the more precise experiments become, the more apparent will be 
the discrepancies. 

21.2 Cyclotron Resonance 

In principle, once the band structure of the semiconductor is known, so are the ef-
fective masses, because they are nothing but second derivatives of the band energy 
£ with respect to the Bloch wave vector k as in Eq. (16.28). This definition pro-
vides a way to find effective masses from band structure calculations, but is almost 
useless if they are to be determined experimentally. Experimental determination 
of effective masses requires a physical probe that tests dynamics directly, a service 
provided in semiconductors by the technique of cyclotron resonance. 

Effective masses enter into expressions for conductivity such as a = ne2r/m*, 
but always in conjunction with the relaxation time, making it difficult to separate 
the two. Cyclotron resonance solves this problem by introducing a magnetic field, 
as shown in Figure 21.1. Classically, an electron moving at velocity v in a magnetic 
induction of strength B experiences a force perpendicular to the direction of motion 
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Figure 21.1. Cyclotron resonance is pro-
duced in a semiconductor by applying a static 
magnetic field and then applying microwave 
radiation at the orbital frequency of the elec-
trons or holes. 

of magnitude evB/c. Assuming it travels in a circular orbit of radius R and setting 
the centripetal force equal to the magnetic force 

m*v2 evB „, ,s 
- = - = (21-1) 

R c 
predicts an orbital frequency 

V e B I T A m \ B 1 r u /"11 ~>\ 
LÜC = — = = 17.6 — —— GHz. (21.2) 

R m*c m* [_kG_ 
Because this oscillation frequency is independent of the radius of the orbit, by 
applying a perpendicular electric field with frequency UJC, electrons can be excited 
to large orbits and resonantly absorb incoming radiation. The relaxation time enters 
nowhere in the resonance condition, although it plays a crucial role in determining 
when the resonance is practically observable. 
Calculation of Absorption. It is not too cumbersome to work out a detailed ex-
pression for the absorption of microwave radiation so long as the effective mass m* 
of an electron (or hole) can be taken to be a scalar. In the semiclassical approxima-
tion the dynamics of electrons are given by 

j , v eE e _, -> 
y -\ = y x B. T is the relaxation time. ( 2 1 . 3 ) 

r m* m*c 
Taking the static B field to point along the z direction, and allowing both E and v 
vary in time as e~luJt, one has that 

/ IN eE 
[-iLU + -)v = - u!c(xvy - yvx) (21.4) 

1 É ( ° l °\ 
^(-iLu + -)v = ~~-Lüc - 1 0 0 \ v. (21.5) 

r m* \ 0 0 0 / 
Therefore 

j = —nev = <TE, j is the current density, and n is the conduc- ( 2 1 . 6 ) 
tion electron density. 
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where 

CTv 

0"rv = 

and 

with 

>xy 

a7 

o0 

I &xx ®xy 
<7 = 1 — Oxy &xx 

V o o 
cr0(l -iur) 

(1 -ioJT)2+U)2T2 

CJQTÜJC 

(1 - ÎLOT)2 + L02T2 

O-Q 

1 — iiOT ' 
2 ne r 

0 
0 

c z 

m* 

(21.7) 

(21.8a) 

(21.8b) 

(21.8c) 

(21.8d) 

If the applied electric field is along x, then the time-averaged power absorbed by 
the sample, (È ■ ])/2, is proportional to the real part of oxx, which is 

Re[o-J = a0-
LO}T2 + U>2T2 + 1 

>2T2-LÜ2T2+\) +Aüü2T2 
(21.9) 

LÜ 

A plot of Eq. (21.9) appears in Figure 21.2 for several values of LOT. 

G 
3 

n o 

X) 

o 

Figure 21.2. Plot of Eq. (21.9) for three val-
ues of COT. The frequency ui is the frequency 
of the oscillating electric field E—in contrast 
with u>c, which is the resonant frequency of 
electrons governed by B. When LÛT <SC 1, col-
lisions damp the motion of the electron before 
it has time to complete one cycle and absorb 
much energy. No resonance is visible. By 
the time LOT = 1 the relaxation time has be-
come large enough to permit observation of a 
resonance. Varying uic is carried out by vary-
ing the strength of the static magnetic field, 
while the oscillating electric field frequency 
UJ remains fixed. 

LOC/LO 

Practical Considerations. It was a substantial achievement by Dresselhaus et al. 
(1953) and Lax et al. (1954) to turn cyclotron resonance into a practical tool, be-
cause for the experiment to work four competing requirements must be satisfied 
simultaneously. 
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1. One must guarantee that the semiclassical approximation be valid for the dy-
namics of the electrons or holes. This condition rules out optical frequencies 
where HOJ > 1 eV and interband transitions become possible. 

2. The oscillating electric field must be able to penetrate the sample. This re-
quirement is equivalent to demanding that _ > „p, the plasma frequency of 
Eq. (20.32). For undoped silicon and germanium at a temperature of 4 K, with 
free carrier densities on the order of 1013 cm- 3, this condition can be satis-
fied, but already by a temperature of 70 K the carrier densities have risen high 
enough that plasma oscillations mask the cyclotron resonance. This condition 
rules out use of this technique in metals. 

3. The relaxation time must be long enough that _ T > 1, according to Figure 
21.2, requiring (a) very pure samples to reduce impurity scattering and (b) 
low temperatures to avoid phonon scattering. 

4. The free carrier density must be high enough that electrons and holes are avail-
able to absorb radiation. Although the density of free carriers is exponentially 
small at low temperatures, this problem can be overcome by irradiating sam-
ples with photons at the energy of the band gap. 

21.2.1 Electron Energy Surfaces 

Data from a cyclotron resonance experiment in germanium appear in Figure 21.3. 
There is a large number of peaks present. Because germanium is an indirect gap 
semiconductor, its conduction band minimum does not lie atop k = 0, but instead 
consists of four pockets of electrons straddling the zone boundaries in the (111) 
direction: these electron pockets were shown in Figure 19.9(A). The constant en-
ergy surfaces in the neighborhood of the conduction band minima are not at all 
spherical, but instead have the form 

Every symmetric quadratic form can be diagonal-
ized; the energy is being expressed here in the ba- , ~ , -, ^ 
sis where the effective mass tensor is diagonal. In (_1 . lUJ 
the case of germanium, k\ is along (111), and for 
silicon it is along (100). 

where m\ = 1.64 m and m\ = m\ = 0.082 m. For arbitrary directions of the mag-
netic field, there is a separate peak from each pocket of electrons, although for 
certain symmetry directions the peaks coalesce. For silicon, the situation is simi-
lar [Figure 19.9(B)], except that the conduction band minimum lies along the line 
between 0 and (100), providing three rather than four distinct pockets of electrons. 
The effective masses for silicon are m\ = 0.9 m and m\ = m\ = 0.19 m. 

When the effective mass tensor is not diagonal, one must return to Eq. (21.4) 
to see how the resonance condition changes. Rather than finding again the shape 
of the absorption line, it is enough to ask for the frequencies at which resonances 
occur. Resonances are located by searching for solutions of Eq. (21.4) which, in 

£ = — 
2 L/ft 

7,2 ul ul 
_ L J . _ 2 . _ L _ 1 

mî mï-i 
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Figure 21.3. Data from cyclotron resonance in germanium. The magnetic field is oriented 
at 10° from the (110) plane and 30° from the [100] direction. Each of the four pockets of 
electrons in Figure 19.9 contributes a peak, as well as the light and the heavy holes. Be-
cause the applied electric field is not perfectly sinusoidal, but has a small frequency com-
ponents of 2LÜ, 2>iü . . ., higher harmonics of electron resonances are also visible. [Source: 
Dexter et al. (1956), p. 642.] 

the absence of damping (r = 0), can exist when Ê = 0. If one adopts coordinates 
where M is diagonal, then 

/ 

e 
: iüJV 

c 

1 

m* 

0 

0 

0 

1 

0 \ 

0 

1 

(21.11) 

� to � i a = l 

B2m* 
m\m\m\ 

Find when the determinant of the right-hand 
side of Eq. (21.11) vanishes. 

(21.12) 

Effective masses are determined by changing the direction of the magnetic field and 
by observing changes in locations of the resonance peaks according to Eq. (21.12). 

Hole Energy Surfaces. The valence band maxima of silicon and germanium are 
found at k — 0. However, matters are still somewhat complicated, because these 
bands are twofold degenerate right at k = 0, allowing two separate effective masses 
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for holes. The heavy hole in germanium has m*H « 0.28 m and the light hole has 
m\ « 0.044 m, while the corresponding numbers for silicon are m^ ss 0.49 m and 
m*L ~ 0.16 m. 

21.3 Semiconductor Band Gaps 

21.3.1 Direct Transitions 

Direct gap semiconductors, as defined in Section 19.3.1, have a maximum of the 
valence band sitting directly below the minimum energy state of the conduction 
band in k space. 

The theory for optical transitions in this case starts with Eq. (20.70), which 
shows a contribution to absorption whenever the energy hco of an incoming photon 
equals the difference £„/ — £„ between two energy states. In order to place the 
theoretical result in the most convenient form, it is helpful to recall Eq. (20.14) and 
rewrite (20.70) as 

I m M = ^ ^(/ /-/ /0(/ |4|/ ,)(/ / | JP/3|0^(£/'-£/-M (21.13) 
m UJ V w 

f2ire\2 1 -̂  
= vT, (kni\Pa\kn2){kn2\Pß\knl)6(8,n2l-8,nii-nLv) (21.14) 

kn\U2 
Labeling the states now by Bloch index k and band indices n\ and «2- The Bloch indices 
k of the initial and final states must be the same or else the matrix element vanishes. The 
sum is understood to include only cases where n\k is occupied, and n-^k is unoccupied. 

= (—) |Pa/3M|2Z>j(fia;), (21-15) 
\ moj / 

where 
lp , M 2 _ £ W ( f a l l f a t o ^ n z l P g l ^ i Q ^ g g - £ g-«a;) 
1 Q / S M I = E tS(S- r - £ r-hui) ( 2 L 1 6 ) 

*—'n\n2k v nik n\k > 
and 

H^) = \ E / ( £ ^ - ^ - M - (21.17) 
n\nik 

The absorption has been expressed as a product of an average matrix element 
\P\ and the joint density of states Dy The reason to place the expression in this 
form is that the averaged matrix element has no particular reason to exhibit sharp 
changes as a function of frequency and can often be approximated as a constant, but 
the joint density of states D} is extremely sensitive to details of the band structure 
and depends strongly upon frequency. The joint density of states carries all the 
information about whether there exist pairs of occupied and unoccupied states with 
the right energy separation so that the photon can excite an electron between them. 
It vanishes when this condition is not met. In addition, whenever the band energies 
Zn £ and Zn -k run parallel to one another as a function of k, Dj exhibits van Hove 
singularities, as defined in Section 7.2.5. 
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For direct band gap semiconductors to which Eq. (21.14) applies, one must 
turn to alloys, such as GaAs, or InSb. It is natural to expect that right at the 
threshhold of absorption, where hu > £g , the matrix element \Paß\ has no reason 
to vary rapidly, so optical absorption should be proportional to the joint density of 
states Dj(hu). Because both valence and conduction bands have parabolic extrema 
around k = 0, 8.c(k) — £v(k) — £g is a parabolic function vanishing at k — 0, and Dj 
must therefore exhibit the van Hove singularity discussed in Section 7.2.5; that is, 
Dj should vanish for hu < £g, and then should rise as ^hu — S.g. 

There are few cases where such behavior is actually observed. One of them ap-
pears in Figure 21.4. More frequently, the onset of optical absorption displays the 
behavior shown in Figure 21.5. The expected square root shape has been overrid-
den by an additional process, the formation of excitons, to be described in Section 
21.4. 
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Figure 21.4. Measurement of absorption coefficient a times hu, showing a van Hove 
singularity at onset of optical absorption in the direct gap semiconductor InSb. Data taken 
at a temperature of 5 K by Goebli and Fan and reported by Johnson (1967), p. 171, are 
compared with the expected square root form. The y axis is multiplied by hu because of 
the u dependence predicted by Eq. (20.21) in combination with Eq. (21.16). (A) shows 
the data on a linear-log scale, while (B) shows the same data replotted on a linear scale, 
making the agreement look less impressive. Deviations from square root form due to 
variation of the matrix element \Paß\ produce better agreement with the experiment and 
were calculated by Kane (1957). 

21.3.2 Indirect Transitions 

As mentioned in Section 19.3.1, the elemental semiconductors germanium and sil-
icon have indirect gaps, meaning that the conduction band minima are at different 
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Figure 21.5. Measurement of absorption coefficient a in gallium arsenide, showing mod-
ification of absorption due to excitons. [Source: Sturge (1962), p. 771.] 

locations in k space from the valence band maxima. It is possible for light to excite 
electrons between the valence band maximum and conduction band minimum, but 
only with the assistance of phonons so as to permit conservation of momentum. 
The microscopic theory of such transitions is therefore rather involved. The initial 
and final states of the system differ not only because an electron has moved to a 
new state, but also because the number of phonons has changed. The interaction 
Hamiltonian between photons and solid does not include a term for phonons, so 
any matrix element with the interaction Hamiltonian in the middle and with such 
initial and final states on either side must vanish. These transitions show up only 
at second order in perturbation theory. Fortunately, it is possible to guess the form 
of the final result without going through detailed calculations, using only conser-
vation laws. In order for the Bloch index of an electron to change by 5k, either a 
phonon of wave vector — 5k and energy hu)pu(5k) must be created, or a phonon of 
wave vector 5k and energy hw^ôk) must be destroyed, in order to conserve crystal 
momentum. In order for energy to be conserved, one must have 

HLÜ = £ c — £ v ± HiOph (5k). E-c is the energy of an electron in the conduc- ( 2 1 . 1 8 ) 
tion band, and £„ is the energy of an electron 
in the valence band. 

At temperatures much lower than the Debye temperature, there will be very few 
phonons residing naturally in the sample, and the negative term in Eq. (21.18) 
where a phonon is destroyed should cease to provide transitions. So according 
to Eq. (21.18), optical absorption in silicon and germanium should appear in two 
stages, at a first and a second frequency, with the strength of the absorption at the 
first frequency diminishing steadily with temperature. 

The shape of the absorption curve can similarly be estimated. A complete for-
mula will have to involve various matrix elements, sums over intermediate states, 
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and so on. Assuming that the energy dependence of all these can be neglected, the 
extinction coefficient K should be proportional to 

K O C ^ J (e.c(kc)-£,v(kv)-hL;±hLüph(Sk)) (21.19) 
k(kv 

= J d£c J d£vDc(£.c)Dv(E.v)6 {£.c-E.v-hüj±hu&) (21.20) 

Neglect the Sk dependence of wph. 

oc / dS.c / d£.v JS.C — £.g\/—8-v S (£c — Ev — hu;±hujph) (21.21) 
"S 

Letting £g be the band gap, setting the valence band maximum to 
zero, and using the generic three-dimensional forms of the density 
of states near a band maximum or minimum. 

■hw^hiüpb 

d£c y£ c-£g 1y/iu;-£ c=F/kjpn (21.22) 

= ( / ^ T ^ p h - £ g ) 2 f dy^^Y^. (21.23) 
Jo 

Letting y = (Ec - £s)/(fiw =F f>u}ph - £g). From Eq. (21.22), the 
result vanishes, however, unless HUJ > £g ^fHwph. The value of the 
integral is not important, just the fact that it is constant. 

This prediction is only in moderate accord with experiment, as shown in Figure 
21.6. It is possible to pick out the two frequencies £ s ^hioPh. However, at low en-
ergies the curve does not have the expected form, nor does the onset of absorption 
at £g + hiüph. Both of these discrepancies are attributed to excitons. 

21.4 Excitons 

When a photon excites an electron into the conduction band, it inevitably leaves 
behind a hole in the valence band as well. In the context of the single-particle 
band theory, the energies of these two excitations should simply be added together. 
However, it is easy to imagine that because the electron and hole are charged par-
ticles and because at low temperatures there will not be enough free carriers to 
screen them, they can lower their energy by approaching one another and binding 
together. Such bound electron-hole pairs are called excitons (Figure 21.7). 

The exciton can be considered in two limits. In the first case, the binding is 
sufficient weak that the hole and electron orbit at a large distance from one another. 
Then one has a Mott-Wannier exciton. In the second case, the hole and electron 
are so tightly bound that they sit on the same site. Then one has a Frenkel exciton. 

21.4.1 Mott-Wannier Excitons 

Excitons are comparatively easy to understand in semiconductors. Because of the 
large static dielectric constant, the Coulomb interaction between electron and hole 
is greatly reduced, and their mean separation when bound together is much larger 
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Figure 21.6. Onset of optical absorption in germanium. The square root of the extinction 
coefficient K is plotted as a function of incoming photon energy, in the expectation that 
the experiment will behave according to the prediction of Eq. (21.23). The measurements 
should look like a straight line, followed by a smooth transition into another straight line 
of steeper slope. Extrapolation of the first straight line to zero (sloped dotted lines) should 
give Eg — Awph, while the transition point should give Eg + hiüph (vertical dotted lines). 
At the very lowest temperature, this prediction is obeyed partly, although there is a cusp 
at the transition point. At the two higher temperatures, there is also a low-energy tail in 
the absorption that does not fit the predictions. These discrepancies have been explained 
quantitatively as consequences of excitons. [Source: Macfarlane et al. (1957), p. 1379.] 

Figure 21.7. Schematic view of energy levels resulting from exciton formation. In (A) an 
electron and hole bind together. (B) shows the energy levels of the bound pair consisting of 
an infinite series of discrete levels below the one-electron conduction band that vary with 
k because of their center-of-mass motion, along with a continuum of states above. 
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than a lattice spacing. In this limit, the exciton is called a Mott-Wannier exci-
ton. The same arguments used in Section 18.3.1 to discuss interaction of electrons 
with weak impurity potentials apply again. Assume that the characteristic distance 
between electron and hole is much larger than a lattice spacing, so that the wave 
functions for both electron and hole can be constructed as products of Bloch waves 
with wave vector k near 0. Then the interactions of electron and hole with the pe-
riodic ionic potential can be eliminated from the Hamiltonian, provided that their 
masses are replaced by the appropriate effective masses. That is, the electron and 
hole obey 

-h2^2 -rt^i 
V- + V-2m* r" 2m* r'' 

e2 

e°\7n-rn\ 
- £ Wn, rP 0. 

(21.24) 
Equation (21.24) is exactly the equation obeyed by the electron and proton in 

forming the hydrogen atom. It can be separated into two equations, one describing 
the center-of-mass motion of the exciton and the other describing the binding by 
defining 

R 
m*r„ + m*prp 

r = r, 
to give 

0 = 

0 = 

m* + m* 

2(m* + m*) -Vl- *cm(fl) 

-w-
2ß e°r *b(?), 

cm= center of mass. 

b=binding. 

with the reduced mass /i given by 
m*m* 

m* + m* 

(21.25) 

(21.26) 

(21.27) 

(21.28) 

(21.29) 

There is no need to repeat the solution of the hydrogen atom any further. The bound 
states of Eq. (21.28) have energies 

\xe V 
2h2e°2l2 me°2l2 

and are characterized by a radius 

* _ e°h2 

ü° ~ e2» : 

13.6 eV / = i . . . ° c . 

me 
M 

• 0.529 Â. 

(21.30) 

(21.31) 

Because \x is typically half an electron mass or less, while e for a semiconductor 
may be around 10, the scale on which the bound state lives is 20 times larger than 
the usual hydrogen atom; therefore, the picture of the electron and hole sitting in a 
classical background dielectric is consistent. Binding energies are on the order of a 
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Figure 21.8. Absorption measured in CU2O. Cuprous oxide is an indirect gap semiconduc-
tor, and absorption begins to increase as a square root, at an energy of 2.045 eV. This square 
root form is predicted by Elliott (1957) for phonon-assisted transitions to the lowest-lying 
exciton state; direct transitions are forbidden by symmetry. At about 0.1 eV higher in en-
ergy a series of peaks corresponding to electron transitions between the top of the valence 
band and excited exciton states begins. The first (/ = 2), second, and third excited states 
are clearly visible. [Experiments performed at 77 K by Baumeister (1961), p 361.] 

hundredth of a Rydberg, or 0.1 eV. The dispersion relations of excitons have been 
measured with great accuracy, as reported by Ueta et al. (1986). 

According to Eq. (21.30), the presence of excitons produces a sequence of 
discrete energy states sitting near the conduction band edge. Usually these peaks 
are not resolved individually, but merge into a bump centered around hu = £,g. 
However, at low temperatures in CU2O, a sequence of distinct absorption peaks can 
be measured, as shown in Figure 21.8. In these measurements, an electron makes 
a transition from the valence band to various excited states of the excitons. In 
addition, just like the hydrogen atom, Eq. (21.28) must have a continuous collection 
of unbound solutions, which enhance the absorption for Hco > Eg. Why are such 
effects observed in GaAs (Figure 21.5) but not InSb (Figure 21.4)? The static 
dielectric constant of InSb, recorded in Table 22.2, is 17.88, and the effective mass 
m* is 0.01m, reducing the energy scale of the excitons to 3 ■ 10~4 eV and making 
them invisible even at temperatures as low as 5 K. 

21.4.2 Frenkel Excitons 

The Frenkel exciton consists of a bound state of electrons and holes in insulators, 
where the spatial extent of the exciton is on the scale of angstroms, and the con-
tinuum approximation that served the Mott-Wannier exciton fails. These excitons 
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have excited states, just like more conventional molecules, and transitions between 
these excited states allow optical absorption in insulators. In addition, these exci-
tons are mobile and can travel through the lattice as particles. A calculation of their 
properties, using the Hartree-Fock approximation, appears as Problems 4 and 5. 

21.4.3 Electron-Hole Liquid 

When a sufficiently large density of excitons is created in a semiconductor, by 
strong illumination, the excitons can condense into a liquid-like state that manifests 
itself as an electron-hole drop, first predicted by Keldysh and Kozlov (1967) and 
reviewed by Hensel et al. (1977) and Rice (1977). 

21.5 Optoelectronics 

Semiconductor electronics can be made to interact with light in numerous different 
ways, ranging from the conversion of photons into electrical energy to the con-
version of electrical energy to laser beams. These various applications are largely 
implicit in the Kubo formula, Eq. (20.70), but great ingenuity continues to be ex-
pended in obtaining efficient performance. 

21.5.1 Solar Cells 

A solar cell is essentially a diode that has been fabricated so as to absorb as much 
light as possible in the neighborhood of the junction. Every photon that is absorbed 
generates an electron-hole pair. The pairs that are generated inside the depletion 
region are immediately ripped apart by the enormous electric fields and sent to 
opposite sides. Because the depletion region is very narrow, the formation of pairs 
in the quasi-neutral regions is more important. Minority carriers formed within a 
distance Lp or Ln of the depletion zone can diffuse there and are then swept across 
to the other side of the junction. This picture predicts that shining light of intensity 
/ on a diode will produce a current density 

j = — 7 5 ( L „ + L „ ) S is some constant of proportionality taking ( 2 1 . 3 2 ) 
into account the efficiency of absorption, and 
making the units come out right. 

Because the sizes of the quasi-neutral regions are independent of the voltage 
across the diode, the main effect of light is simply to lower the current-voltage 
curve of the diode downwards, as shown in Figure 21.9. When the solar cell is 
under illumination but not connected to a circuit, the separation of electron-hole 
pairs causes the voltage across it to rise until the current-voltage curve intersects 
the point where current vanishes, at a voltage on the order of kßT/e, or around 
0.025 V. Connected to a load, the voltage drops slightly and current begins to flow, 
generating power. There is an ideal load at which power generation is maximum, 
while if the cell is connected across an open circuit the voltage across it drops to 
zero, and it again generates no power. Solar cells can convert sunlight to power 
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Figure 21.9. The current-voltage characteristic for a solar cell is essentially the ideal 
diode equation (19.78) shifted vertically downwards. In the lower right quadrant the diode 
is forward biased, but current flows in the opposite direction, generating power. 

with an efficiency of over 25%, but are not yet an economical source of energy 
under most conditions. 

21.5.2 Lasers 

The laser is based upon the idea of stimulated emission, first conceived by Ein-
stein (1916) and first measured by Ladenburg (1928). Three decades followed the 
first experimental observations before a coherent beam of radiation was actually 
produced, and several more decades followed before this "solution in search of a 
problem" became important commercially. Possible applications of the laser were, 
however, evident right from the outset. 

Hecht (1992) describes the complicated history of the race to complete the 
laser. G. Gould eventually won extensive patent rights to the laser based upon per-
sonal notes written in 1957, but it was an influential paper of Schawlow and Townes 
(1958) that started the international scramble to build a working device, won by 
Maiman (1960). The basic idea is fairly simple. If an excited electronic state that 
should be nearly empty in thermal equilibrium is somehow given a macroscopic 
occupation of electrons, then as soon as the electrons begin to travel to the ground 
state the process can proceed explosively. The light emitted by electrons as they 
jump down the energy levels triggers other electrons to jump down simultaneously, 
and light emission grows exponentially. To see why, go back to Einstein's original 
argument. 

Stimulated and Spontaneous Emission. Einstein (1916) deduced stimulated 
emission from deceptively simple arguments about thermal equilibrium. Consider 
an isolated cavity filled with material whose index of refraction is n, and focus 
upon two electronic states 1 and 2, of energies £i and £i + £12- Einstein first ob-
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served that all systems prepared in an excited state decay at some rate, and he took 
the spontaneous transition rate Rsp from state 2 to 1 to be 

D f (\ f \ ^ e transition rate >s proportional to the proba- _ __ 
«sp = A2lJ2\ 1 — J\) bility that state 2 be occupied and that state 1 be {21.33) 

empty, fa and f\ are Fermi factors for the respec-
tive states. 

Next suppose the cavity to be so well isolated that the material inside is in 
complete equilibrium with a bath of photons at temperature T. Whenever a photon 
of the right frequency collides with an electron in state 1, it has the chance to be 
absorbed and bring the electron to state 2. The rate Rn at which electrons make 
transitions from the lower to the upper state is proportional to the probability f\ 
that the lower state is occupied, to the probability (1 — fi) that the upper state is 
unoccupied, and to the number of photons Nßn of energy £12 in the cavity. As 
noted in Eq. (20.72), transitions between electronic states are never completely 
restricted to a single energy, but can be produced by photons in some small range 
d£. Accordingly, the number of photons producing the transition is proportional 
to Ar£12Dph(£i2), where Dph is the energy density of photon states. Because the 
density of photon states will depend upon the index of refraction of the medium, 
complicated electron-electron interactions are subtly being included with almost 
no increase in the complexity of the theory. Thus 

Rl2 = B\2f\(l — fl)N^nD„\i{^\2) Bi2 i s a temperature-independent coefficient ( 2 1 . 3 4 ) 
H to be determined later. 

The reverse rate, R21, at which an electron jumps down from an excited state, 
producing photons, must at least be as large as Rsp. Einstein guessed that the rate 
would also rise in proportion to the number of photons in the cavity. Choosing a 
coefficient #21 defined to correspond closely to the coefficient in Eq. (21.34) gives 

Ä21=ß2l/2(l- / l )^e1 2Dph(£l2)+A2l/2(l- / l ) . (21.35) 

The transition rate is the sum of the spontaneous transition rate, independent of 
the photons, and a term proportional to the photon number. 

The contribution proportional to Afe12 is the stimulated emission rate. Why photons 
should cause such transitions is not immediately clear, but considering how thermal 
equilibrium is maintained shows that these transitions must be present. 

In thermal equilibrium the population of electrons is stationary, and Rn and 
/?2i must be equal. Because 

ri-, r \ Just put in Fermi functions to verify. Equivalent 
j1\\ J\) — ßE\2 to the statement that the probability of occupying , « , ~s\ 
r 1-1 r \ ^ > any quantum state in equilibrium is proportional \L\..5\}) 

/ l ( , l - j 2 ) t o e - ' 9 £ . 

one has 

*12 = *21 (21.37) 

^ßi2^V£l2Dph(£i2) = ̂ "/3£l2 [ß2iAr£|2Dph(£12)+A21] (21.38) 
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^ D p h ( £ 1 2 ) ß 1 2 - A 2 1 = e - / 3 £ ' 2 [Dph(£12)fi2,-A2i] "£ l 2= (21.39) 
l/(exp[/3£i2]- 1) 

^A2l =Dp h(£i2)ß2i and 51 2 = (2|,40) 

If Eq. (21.39) is to hold independent of temperature. 

Equation (21.40) can also be written as 

Ä21=fi2l /2( l - / l ) (Afe ) 2 + l)0ph(£l2). (21-41) 
In this form, change in electron energies by emission and absorption of photons 
reveals a perfect parallel with the change in neutron energies by emission and 
absorption of phonons described in Eq. (13.134). The probability of transitions 
where electron energy increases is proportional to Nß]2, while the probability of 
transitions where it decreases is proportional to N^n + 1, with the trailing factor of 
1 responsible for spontaneous emission. 

Einstein's argument is completed by asserting that in nonequilibrium situa-
tions, as when a stream of light energy hits electrons and is ultimately dispersed as 
heat, the occupation probabilities f\ and / 2 need not have the values used to obtain 
Eq. (21.36), but the transition rates R\2 and R2\ will continue to depend upon f\ 
and f2 in the ways indicated by Eqs. (21.34) and (21.41). Thus, away from equi-
librium, the absorption of energy by electrons from photons will be proportional 
to 

Rn-Ri\ =Ä2i [(/i -H) NEl2 - / 2 ( 1 -/i)]Z)pn(£12). (21.42) 

The absorption of energy is given by the difference between absorption and 
emission, as given by Eqs. (21.34) and (21.41). 

The coefficient B\2 is the only remaining unknown of the theory, and it can 
be determined by comparison with the Kubo-Greenwood formula. When the 
photon density Â £12 is very large, spontaneous emission becomes negligible, and 
Eq. (21.42) must coincide with the results of the semiclassical theory of absorp-
tion. Therefore, turn to Eq. (20.71), which predicts that if one is considering only 
the the two quantum states 1 and 2, then the conductivity is 

2 

Re[aaß(uj)} = ^ ^ - ( / i -f2)Fl2(cü)(l\PQ\2)(2\Pß\l). (21.43) 

F\2(ÜJ) is the lineshape, a function with unit area, and peaked at UJ2 — cj| ■ 

In practical situations, there will not simply be two levels 1 and 2, but instead a 
large number N of atoms or impurities that can be excited from one level to another. 
Summing over these many atoms will have the effect of averaging over all possible 
spatial orientations of the excited state |2) and replacing the matrix elements by 
their spatial average Y,ß lOI^I2)!2 /3- Using Eqs. (20.14) and (20.21) to relate 
conductivity to the attenuation constant a = — g shows that radiation intensity / 
grows as exp[gx] where the gain is 

* M = y — [te) * i 2 M ( / 2 - / i ) 3m2c2 ■ (21.44) 
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The net rate R21 —R12 at which electrons travel between states 2 and 1 equals 
the rate at which photons are produced per time. To find the total number of pho-
tons, multiply g in Eq. (21.44) by c/n to find the time rate of change of light in-
tensity /. Next recall that light intensity is proportional to photon number through 
/ = N£nhui, and finally that in a medium with macroscopic index of refraction n, 
the density of photon states per volume is 

-3 2 
n ui 

D0h(uj) = . This is density of states per volume; a fac- ( 2 1 . 4 5 ) 
7T^C^ tor of V is needed to find total numbers of 

photons. 
Multiplying Eq. (21.44) by Eq. (21.45), multiplying by Vc/n, and integrating over 
LU gives 

«,,-«„ = !"«„ = - ^ g ) 4(/, -A) £ KMW£ii(21.46) 
N is the number of host atoms or impurity sites, while N^l2 is the number of 
photons. Bi2 can be determined from Eqs. (21.42) and (21.45) if desired, but 
this rate equation for photons is more useful than B\i. The lineshape F\2(ui) 
integrates to 1. 

Equation (21.44) contains a theoretical motivation for building a laser. If it is 
possible to construct an initial state in which fa > fa, then the attenuation will be 
negative, and light will grow exponentially as it passes through the medium until 
state 2 is depleted. Under these circumstances, — a = g as computed in Eq. (21.44) 
is renamed the gain, and the symbol a is reserved for sources of attenuation and 
loss that compete with the growth from population inversion. 

In order to obtain a laser, it is not enough for the intensity of a beam of light 
passed into the system to grow. It must be possible for external light sources to be 
turned off, while light emission from the system continues to grow spontaneously. 
This condition can be achieved by placing material in a cavity with reflecting ends, 
as shown in Figure 21.10. If the reflection coefficient of the two ends is % then the 
condition for amplification in the laser cavity is 

Ji e x p [ x ( e — C()] > 1. Light has to be able to make a round trip in ( 2 1 . 4 7 ) 
the cavity and end up stronger than at the be-
ginning. The gain g due to stimulated emis-
sion competes with loss processes summarized 
in the coefficient a. 

Pumping. The discussion has hinged upon the assumption of population inver-
sion: that an excited state has been populated so that fa > fa. Occupying an excited 
state preferentially at the expense of one lying lower in energy is easy to describe, 
but violates conditions of thermal equilibrium, so it is not immediately obvious 
how to achieve it in practice. 

Lasers can be created in numerous different ways and in many different types 
of materials, including liquids and gases. The following discussion will focus upon 
solid-state lasers, which does not refer exclusively to lasers formed of semiconduc-
tors, but includes any case in which the laser material is solid. The most impor-
tant ideas are metastable states and pumping. For the purposes of laser physics, 
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x 
Figure 21.10. Light in a laser cavity reflects several times back and forth from mirrored 
ends of reflection coefficient CR so as to stimulate more light emission before exiting. 

a metastable state is an excited energy level with a lifetime on the order of 10~5 

to 10~3 s. Characteristic non-radiative decay times of excited states in solids are 
usually on the order 10~8 to 10~n s, because this is the time that phonons typi-
cally require in order to transfer energy from an excited level. A first requirement 
of a solid-state laser is therefore to find an excited state that cannot be depleted by 
single phonons, either because available transitions exceed the maximum phonon 
frequency or because symmetry causes matrix elements [analogous to the ones 
in Eqs. (13.99) or (20.70)] between initial and final states to vanish. Transitions 
driven by multiple phonons are still possible, but sufficiently unlikely that emis-
sion of photons has a chance to win. 

A metastable state has a long lifetime, and by the energy uncertainty principle 
it can only be excited from the ground state by energy lying in a very narrow 
range. Because only a laser can produce light with such a narrow linewidth, it 
would seem that a laser is required to populate the levels upon which laser action 
is to rely. This difficulty is overcome by pumping, illustrated in Figure 21.11. 
Rather than occupying the metastable state directly, one pushes electrons into one 
or more states with short lifetimes that lie above the desired metastable state, and 
that rapidly decay to it in non-radiative fashion. 

Solid-State Ionic Lasers. One way to make a laser is by employing the discrete 
energy levels provided by color centers in insulating crystals (Section 22.4). The 
first laser, built from a crystal of ruby by Maiman (1960), was a three-state laser in-
volving pump states and a metastable state decaying to the ground state, as shown 
in Figure 21.12(A). In order to occupy the 2E state upon which the laser relied, the 
crystal was illuminated with a powerful flashlamp that succeeded in placing more 
electrons into 2E than were left in the ground state. Numerous researchers real-
ized that a four-state laser would have considerable advantages because if the state 
at the bottom of the laser transition was normally unoccupied, constraints upon 
the occupation of the upper level become less severe. Three-state lasers typically 
operate in pulsed fashion, with bursts of laser radiation following flashes of pump-
ing light, while four-state lasers can operate continuously. The energy levels of 
Nd in yttrium aluminum garnet (YAG), the impurity in one of the most important 
solid-state lasers appear in Figure 21.12(B). 
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Figure 21.11. (A) The problem of occupying a metastable atomic state is a bit like pump-
ing water from a trough into a funnel. The pumping action can be sloppy and erratic, but 
the water nevertheless exits the funnel in a narrow steady beam. (B) For a semiconductor 
laser, the pumping scheme is a bit different. As electrons travel along, they pass into a 
region where the doping has changed, and the Fermi level drops precipitously from con-
duction to valence band, leading to a laser transition somewhat like water falling through 
a drain. The double heterostructure laser ensures that the optical transitions take place in 
a confined spatial region by trapping the electrons with an additional slight drop in Fermi 
level of the conduction band that resembles a basin. 

Figure 21.12. (A) Energy levels of Cr3+ in AI2O3 (ruby). Electrons are pumped to high 
levels, and they quickly decay to metastable state 2E. The laser transition then occurs to 
4A2. (B) Energy levels of Nd in Y3A15012 (Nd:YAG). The metastable state is 4F3 / 2 , and the 
laser transition occurs to state /f,/2- Transitions to other states also occur, but the transition 
to 4/n/2 is the most likely, at 60% probability. Energy levels are being described in LS 
coupling, as described by Schiff (1968), p. 435, or Landau and Lifshitz (1977), p. 250, 
where the superscript gives 2S + 1, the subscript gives J, and the capital letter indicates L. 
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Figure 21.13. A double heterojunction structure makes use of two junctions to trap elec-
trons and force them into radiative transitions in a small region. Electrons arriving from 
the n-doped region on the left find themselves trapped in a p-type region and hemmed in 
on both sides. The central layer also has a higher index of refraction than the surrounding 
regions, confining light in a cavity. 

Light-Emitting Diodes and Semiconductor Lasers. The light-emitting diode 
and semiconductor laser exploit the fact that electrons in «-type material traveling 
in the conduction band must rapidly fall to the valence band after entering p-type 
material. In the process, they emit photons whose energy equals the band gap. The 
light-emitting diode simply extracts this radiation. To obtain a laser, it is necessary 
to obtain a high spatial density of recombining electrons and holes, and to trap the 
light they emit in a cavity. Practical devices are based upon the double hetero-
junction structure shown in Figure 21.13. The central region acts like a trap where 
electrons collect in large numbers and recombine with high efficiency. 

If an indirect gap semiconductor such as silicon were used in this application, 
electrons would collect at the lowest point in the conduction band but then find 
themselves unable to make the transition to the valence band without assistance 
from phonons. The efficiency of the device would be unacceptable. That is why 
direct gap semiconductors such as GaAs are needed for optical applications. 

Problems 

1. Optical measurements: 

(a) Use the locations of the peaks for light and heavy holes to estimate the fre-
quency to at which the experiment in Figure 21.3 was conducted. 

(b) The data in Figure 21.6 allow one to estimate ujph(ök). Using the data at 20 
K, what are o;ph and Ski 

2. Lifetime of hydrogen excited state: Many of the quantities appearing in the 
theory of lasers can be evaluated explicitly for hydrogen. Consider transitions 
between the 2P and IS states, using the wave functions 

V, = e X p [ ^ . a o ] and y,2 = * e X P h ^ f l f (21.48) 
2V-5 

"Kür, 



Problems 653 

(a) Evaluate the integral P12 = (l\Px\2). 
(b) Evaluate u> for the 2P —> IS transition. 
(c) How must Eq. (21.44) be generalized to account for the sixfold degeneracy 

ofthe2P state? 
(d) Show that in a box with N hydrogen atoms, the transition rate A21 from one 

of the six 2P states to one of the two IS states is given by 

1 c 
^2 l (w) ( / 2 - / l ) = — g{uj)-. 

on n 
(21.49) 

(e) Set n = 1, and find A21 by integrating A21 (io)Dph(io) over ui. 
(f) Put A21 into a final form involving e, m, H, and c. The numerical answer is 

6.268-108s- ' . 

3. Gunn effect: The conduction band of gallium arsenide has the form shown 
in Figure 19.8. In the central minimum, electrons have a small effective mass 
(m* = 0.07m), leading to a mobility on the order of 7500 cm ̂ " ' s " 1 . How-
ever, once the electron acquires a k in the minimum on the right, its effec-
tive mass increases to around m* = 0.4m, and its mobility decreases to 200 
cm 2 V - 1 s - 1 . The result is that electron velocity as a function of electric field 
E looks as shown in Figure 21.14. 

When a sufficiently large electrical field (~ 3000 V/cm) is applied to GaAs, 
the crystal begins to emit pulses, typically at frequencies in the 50 GHz range. 
The physical origin of the pulses lies in the fact that as electrons become more 
energetic, it is favorable for them to jump from the center valley at Y to the 
left valley at L in Figure 19.8. However, when they do so, their mobility 
decreases, and they slow down. This leads to a traffic jam of charge, which 
travels through the sample as a localized pulse. The goal of this problem is to 
calculate properties of these moving pulses. 

Model electron velocity versus field by 

v{E) = { H\E 
ß2E 

for E <EC 
for E > Ec, 

(21.50) 

Ec 
Electric field E 

Figure 21.14. Schematic view of velocity as a function of field for electrons in gallium 
arsenide. Electron mobility decreases for fields greater than the critical Ec. 
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with /ii > H2, as shown in Figure 21.14. Denote net charge density as a 
function of length x along the sample by n(x); n(x) vanishes far from the 
pulse. Denote current by j , and take it to be of the form 

on 
j = nev(E)-eD—, (21.51) 

where e is the electron charge and D is a diffusion constant. 

(a) Write down Poisson's equation for the electric field, and an equation relating 
the current j and the time rate of change of the charge density n. In order to 
describe a pulse moving at velocity v*, assume that all spatially varying fields 
are moving in steady state at velocity v*, and use this assumption to simplify 
the relation between current and charge density. 

(b) Look for a solution such that charge density vanishes for large negative x and 
large positive x. Assume that for large negative x the electric field approaches 
a low value E\ < Ec, and for large positive x it approaches a larger value 
Ei > Ec. Find an expression for dn/dE, and integrate it to find charge as a 
function of electric field. 

(c) Assume that 
p,\E\ = H2E2 = v*. (21.52) 

Adding to these equations the condition that charge density vanish when the 
field reaches E2, find v* in terms of the mobilities p\, p2, and Ec. 

(d) Find the electric field E{x) for E < Ec. 

(e) As a pulse of this type moves across a sample, what happens to the potential 
drop from one end of the sample to the other? Suppose that one demands that 
the potential drop across the sample remain constant as the pulse moves in 
its interior. Draw a sketch indicating how one could construct solutions that 
would make it possible to satisfy this condition. 

4. Frenkel exciton I: To model the Frenkel exciton, consider a variant of the 
tight-binding model. At each site of a lattice there is an electron, which can 
occupy one of two states, an atomic ground state and an atomic excited state. 
Denote the Wannier states by wg(r — R) and we(r — R); suppose they are real 
functions and are localized near the atomic sites. 

When the atoms are assembled into a crystal, the ground state is given to good 
approximation by a Hartree-Fock state, consisting of an antisymmetrized 
product for N electrons of wg(?i — R), the product being taken over all N sites 
in the lattice. In second-quantized notation, the ground state of the system is 

|$0) = TTct |0). „t . u (21.53) 
1 1 1 R,g c- creates an electron in the atomic ground 

R R'g 

state at site R. 
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Suppose now that the only quantum states of importance are the ground state 
and the excited states where one electron at one site moves from the ground 
to the excited state; such a state is 

i*>=4%i*°>- (2L54) 

(a) Choose the zero of energy so that (/J|Ä|$o) = 0- If the states in Eqs. (21.53) 
and (21.54) are all that matter, then the Hamiltonian is given by 

Ä = |$o><$o|Ä|$oX$o| + £ \R)(R\Ü\R')(R'\. (21.55) 
RR' 

Show that 

R 

is an eigenstate, and find the eigenvalue. Use the fact that (R + R'\!K\R} de-
pends only upon R'. 

(b) Now proceed to evaluate the matrix elements (R\$C\R') that determine this 
eigenvalue. The Hamiltonian "K contains kinetic energy and Coulomb inter-
action terms. There are many contributions to (R\Ji\R); however, this matrix 
element causes something proportional to the unit operator to be added to the 
Hamiltonian, is equivalent to a constant shift in energy, and can be neglected. 
Therefore, focus on evaluating (R\$C\R') for R ^ R'. Assuming that Coulomb 
interaction leads to the largest interaction between sites, take 

- e ^—^ 1 This is the Schrödinger representation; do not 
JX = — y p ; z^-r. confuse the independent variable r/ with the ( 2 1 . 5 7 ) 1 TTv \n-n>\ wave function centered at R, which is denoted 

by \R). 

Write the Hamiltonian (21.57) in second quantized notation, using Eq. (C.10). 
(c) Show that 

(R\X\R')=e2 [pz 
J ' 1 

dr\dr2 wg{rx -R')we(r2-R)we(rl -R')wg(r2-R) 
we{rx -R)wg(r2-R')we{ri -R')wg{r2-R) 

(21.58) 
(d) Argue from localization of the wave functions that the second term in 

Eq. (21.58) can be neglected, and 

(R\Û\R') ^e2 f $^% wg(h -R')we{r2-R)we{7, -R')wg(f2-R). 
\n-r2\ 

(21.59) 
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5. Frenkel exciton II: 

(a) Continuing the study of the Frenkel exciton, let 5R = R — R', 5r\ =~r\—R' 
and 6r2 = r2—R. Show that 

OR 
\ri-r2\ 2 

2{Sfx - 8r2) ■ SR (8r: - 8r2f 
OR2 OR2 + � 

(b) Define the dipole moment 

Show that 

p = e dr wg(r)we(r)r. 

(5\<îf\S'\~ P2 ^P^R)2 
m R ) ~ Ô R Ï - 3 ^ R Î -

-P- V(p-V OR' 

2(87] - 8r2) ■ 8R 
8R2 

(21.60) 

(21.61) 

(21.62) 

(21.63) 

(c) Using Eq. (21.63), find the energy of state <P̂ . Convert sums over OR to 
integrals to find the final expression. 
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22. Optical Properties of Insulators 

22.1 Introduction 

Insulators do not allow charge to travel long distances at low frequencies, but that 
does not mean that their response to electric fields is simple. Even the response of 
insulators to static fields is complicated, expressed in terms of quantities that are 
difficult to define, and hard to calculate precisely. As the frequency of incoming 
radiation increases, insulators become difficult to distinguish from metals, because 
radiation passes through both in similar ways. 

Almost all optically transparent materials are insulators. Insulators have no free 
electrons to interact with light, and phonons provide the main way for insulating 
crystals to interact with radiation. If phonons provided the only mechanism, insu-
lating crystals would generally be transparent. However, very small concentrations 
of impurities and vacancies create localized states that have a large effect on optical 
properties. The study of these color centers is one of most important topics in the 
optical properties of insulators, and it has had an impact on applications ranging 
from photography to the laser. 

22.2 Polarization 

Polarization is Ill-Defined. As defined by Eq. (20.6) the polarization is not pre-
cisely determined. Changes in the polarization are given by the current j , but the 
actual value of the polarization at any given time is rather arbitrary. This uncer-
tainty is unavoidable, as indicated in Figure 22.1. Depending upon how charges 
are grouped together, the polarization can have any value desired. Measurable 
quantities are not affected by changes in the definition of the polarization, because 
every change in definition of bulk polarization simultaneously implies changing 
the amount of surface charge. However, Figure 22.1 actually understates the diffi-
culty of defining polarization, because charge distributions are not point-like, but 
distributed continuously as in Figure 11.1. By changing the origin of the unit cell 
continuously, the dipole moment of the cell can also be made to vary continuously. 
So long as one consistently keeps track of polarization and surface charge, there 
should not ultimately be any difficulties. 
22.2.1 Ferroelectrics 

The need to define polarization becomes especially acute for the pyroelectric and 
ferroelectric materials. Pyroelectric solids develop an electric field upon heating 
and cooling. Any free charge in the environment quickly rushes to mask it, but un-
til then the field is measurable. Heating and cooling produce electric fields because 
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Figure 22.1. When charges are distributed throughout a solid, the polarization density de-
pends upon how they are grouped. In (A), positive and negative charges have been grouped 
with their nearest neighbors. In (B), they have been grouped so that the polarization now 
points in the opposite direction. In compensation, there is now a substantial surface charge. 

they cause expansion and contraction of the crystal along various axes. Each unit 
cell is electrically polarized, and as the dipole moment changes, an electric field 
develops. The ferroelectric crystals have an additional property, which is that each 
unit cell can choose between two symmetrical forms where the dipole moments 
point in opposite directions. The crystal can be caused to flip between one and the 
other by application of an external field. Usually, a ferroelectric has a transition 
temperature Tc above which the polarization vanishes, and the substance becomes 
paraelectric. External electric fields easily cause ferroelectrics to flip between the 
two equivalent stable states just below the transition temperature, whereas far be-
low the transition temperature, electric fields powerful enough to cause the polar-
ization to flip may not be available in the laboratory. 

The explanation of ferroelectrics in terms of dipole moments in each unit cell 
seems intuitively clear, but is thrown into question to the- extent that this dipole 
moment cannot be defined. Because thousands of ferroelectric compounds have 
been created, measured, and tabulated (for example, in Landolt and Bornstein (New 
Series) vols. 16 and 28), the best definition of the polarization is in terms of the 
actual operations performed in experiment. 

Figure 22.2. The spontaneous electric polarization of a sample is measured by cooling it 
below the ferroelectric transition temperature in an electric field, and then measuring the 
total charge that flows between the ends. 
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The experiments depend upon being able to access the paraelectric phase above 
Tc, where the polarization can safely be taken to be zero. As indicated in Figure 
22.2, the experiment begins with an insulating sample in the paraelectric phase, 
with electrical contacts at the ends. The aim is to measure all the charge that flows 
between ends of the sample, so the electrical contacts at the ends must be very good 
and are often obtained with liquid electrolytes. An electric field is applied to the 
sample, and the temperature is then lowered through the ferroelectric transition. 
The applied field ensures that the sample forms a single domain of dipoles all 
pointing in the same direction. Finally, the applied electric field can be turned 
off. The total charge Q that has flowed from one end of the sample to the other 
since the beginning of the experiment gives the total polarization through P = Q/A, 
following Eq. (20.6). It is really the change in polarization between two states of 
the solid that is being measured, and nothing else can precisely be defined. 

22.2.2 Berry phase theory of polarization 

With the advent of band structure calculations, considerable effort has been ex-
pended in learning how to calculate ferroelectric polarizations or, more precisely, 
to find the difference in polarization between the two symmetrical states of the 
ferroelectric. 

The computations are based conceptually upon the experimental procedure of 
starting in a paraelectric phase without polarization and adiabatically changing the 
temperature T until spontaneous polarization appears. This process corresponds 
exactly to the situation in which the geometric phases of Section 8.4.3 should arise, 
as pointed out by Resta (1994) and Kingsmith and Vanderbilt (1993). 

Suppose that at time t = 0, one has an insulating crystal without any bulk po-
larization. Suppose that a long time later, by slowly changing a parameter such as 
temperature, a polarization appears. Denote the Wannier functions at the later time 
by wn(r). The dipole moment per unit cell changes from 0 to 

P = \ / dr 7 \wn(7)\ . Sum only over occupied bands n. ( 2 2 . 1 ) 

As discussed at the beginning of Section 8.4.4, Wannier functions in insulators 
are localized, and the integral in Eq. (22.1) should converge. Indeed, the integral in 
Eq. (22.1) was defined in Eq. (8.56), making it possible to rewrite in terms of the 
Berry connection, Eq. (8.54), as 

*=-££* = -££*«*• (222) 
" nk 

A comparison of theory and experiment for some crystals appears in Table 22.1. 

22.2.3 Clausius-Mossotti Relation 

The Clausius-Mossotti relation is the classic link between atomic polarization and 
dielectric constants. Suppose one takes a single unit cell out a solid, subjects it to 



662 Chapter 22. Optical Properties of Insulators 

Table 22.1. Comparison of theory and experiment for 
spontaneous polarization P of selected perovskite crystals. 

KNb03 PbZr1/2Ti1/203 BaTi03 

Theory (C/m2) 0.35a 0.74fo 0.2-0.4rf 

Experiment (C/m2) 0.37 075^ 0.27rf 

Sources: (a) Resta et al. (1993), (b) Saghi-Szabö et al. (1999) (c) 
Berlincourt and Krueger (1959) (d)Wahl et al. (2008) 

a uniform electric field of strength Ë, and finds that it responds by developing a 
dipole moment p = aE. The question is how a periodic solid tiled with such unit 
cells will respond to an external electric field. The dipole moment in each unit 
cell creates electric fields that affect all other unit cells, so the problem must be 
solved self-consistently. It is tricky because the sums that arise are divergent and 
must be handled carefully. In fact, the field created within a solid by a collection 
of dipoles depends upon the way the sum is cut off far away; that is, it depends 
upon the macroscopic shape of the sample. The field also depends upon details of 
how dipoles are arranged at the atomic level. The influence of local arrangement 
simplifies considerably in the case of a crystal of cubic symmetry, so the following 
discussion will focus on this special case. 

Consider a sphere of dielectric material. The reasons to focus upon a sphere 
are as follows: 

1. When a sphere of dielectric material is placed into a uniform external electric 
field of strength ÈQ, classical electrostatics shows that the polarization P and 
electric field E inside the sphere are uniform, as shown in Figure 22.3 and 
related by 

£ = £ o - y P . (22.3) 

Therefore, one should expect that all the unit cells in a sample of this shape 
develop the same microscopic polarization p. In a sample of arbitrary shape, 
electrostatics would predict that fields and dipole moments should vary macro-
scopically in a complicated way throughout the sample, making it difficult to 
relate microscopic and macroscopic behavior. 

2. In a cubic crystal, the unit cell at the center of a sphere sees fields with cubic 
symmetry, a fact that can be used to resolve conclusively the value of divergent 
sums. 

Focus on the unit cell at the center of the sphere. The field £cen acting upon it 
is due to two sources. First, this unit cell sees the external field EQ. Second, it sees 
the field 

* .=-£V^ = E 3 ^ - | (22.4) 
R^O R^O 
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Figure 22.3. A dielectric sphere placed in a uniform electric field E0 counteracts the field 
by developing a uniform polarization in the opposite direction, as if rigid spheres of pos-
itive and negative charge move slightly apart. The reduction of EQ to £o ~~ 4irP/3 results 
from the uniform field created by the surface charges at the top and bottom of the sphere. 

due to all the dipole moments of the other unit cells. By symmetry, E\ must vanish, 
as shown in Problem 1, so Eœ\\ = £o- But if this result holds for the center of the 
sphere, it must hold elsewhere as well, because all parts of the sphere have the 
same dipole moment. The polarization p in each unit cell is 

p = Q.ECe\\ ^r~ B — OLEQ. The susceptibility a is defined to be the coef- ( 2 2 . 5 ) 
ficient of proportionality in this relation. 

So when the spatial density of dipoles is n, 

P = tlOtEn. The ambiguities about choice of unit cell and ( 2 2 . 6 ) 
definition of P are resolved by requiring P to 
vanish when £0 vanishes. 

To adopt the language of dielectric media, one must consider the electric field 
and polarization density on scales very large compared to the lattice spacing. The 
spatial average of the polarization is P, while the spatial average of the electric 
field E is given by Eq. (22.3) and is the sum of the external field EQ with the field 
—4irP/3 produced by surface charges. Finally, to compute the dielectric constant, 
one has to find the ratio of E + 4TTP to E. This ratio is 

E *-?' 
3 + 87rna 

= » £ = . Using Eq. (22.6). ( 2 2 . 8 ) 
3 — Anna 

Equation (22.8) is the Clausius-Mossotti relation. 
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A sphere is not the only shape that adopts a uniform internal electric field when 
placed in a uniform external electric field. Any ellipsoid has the same property, as 
does a thin slab. In general, the electric field inside one of these samples has the 
form 

È = ÈQ- NP, (22.9) 

where Ji is the depolarization factor and equals 4ir/3 for a sphere, equals 4ir for a 
slab, and vanishes for a long thin rod whose axis lies along the field. The electric 
field £ceii acting upon a unit cell in one of these samples must equal the electric 
field it would have seen if the sample had been a sphere, plus the additional field 
due to the different arrangement of surface charges. So the field acting upon a unit 
cell is 

The field on the cell varies according to ( 2 2 . 1 0 ) 
Eq. (22.9), but must equal EQ for a 
sphere when 74 = 4n/3. 

Use£ = 47r/V(e-1). ( 2 2 . 1 1 ) 

(22.12) 

(22.13) 

Reproducing Eq. (22.6) as expected. ( 2 2 . 1 4 ) 

22.3 Optical Modes in Ionic Crystals 

In modeling the phonon dispersion relations of silicon in Section 13.2.4, ions were 
taken to interact only with nearest neighbors. Despite the fact that models of this 
type may produce good agreement with experiment, they are misleading. When-
ever an ion moves, it interacts with other ions throughout the crystal with a force 
that dies off only as 1/r2. In an insulator, the absence of free charge means that 
these long-range interactions are not screened. Therefore a realistic calculation 
of phonon frequencies in an insulator should take long-range electrostatic effects 
into account. Furthermore, because ionic motion and the accompanying motion of 
charge are inseparable, the phonons should strongly couple to external electromag-
netic radiation. Optical phonons acquired their name for a reason. 

A truly realistic calculation would be very difficult to perform, but a good ap-
proximate calculation can be obtained by mixing together three ingredients. 

1. Nearby ions interact through short-range forces, needed to stabilize the crys-
tal. These forces will be modeled as linear forces between nearest neighbors. 

2. Ions also interact through long-range Coulomb forces that will be treated by 
using the Clausius-Mossotti relation. 

„ „ - . 4TÏ-. - 4 7 T -
£ce„ = E0 - N/> + — P = E + — P 

4ir e + 2 -. 
£cell = -Z 7P 

3 e — 1 
4TT e + 2 -

= ^ r«a£ceii 
3 e — 1 
3 / e - 1 4™ Ve + 2 

3 + Snna 
3 — 4nna 
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3. The individual ions are polarizable, and they develop internal dipole moments 
in response to electric fields. 

Mechanical Model for Near Neighbors. As a mechanical model for nearest 
neighbors, imagine that every unit cell contains two ions, of mass M\ and M2, at 
positions u\ and «2 relative to equilibrium. This problem has already been studied 
in Section 13.2.1. The equation of motion for the ions is Eq. (13.7), and the fre-
quency with which they oscillate is given by Eq. (13.9). According to Figure 20.1, 
when the frequency of light is in the vicinity of 10 THz characteristic of optical 
phonons, its wavelength is on the order of 106 Â, so only the k —> 0 limit given by 
Eq. (13.10) is important. In the long-wavelength limit, the ions have two dynam-
ical modes. In the acoustic mode, shown in Figure 13.4, the ions within the unit 
cell move together. The polarization in the unit cell does not change, so electro-
magnetic radiation will not easily excite this mode, and it can be neglected. In the 
optical mode, however, the ions move in opposite directions, creating oscillating 
dipole moments that can be excited by oscillating electric fields. To describe this 
interaction, let 

U z= U\ — Ui Normal modes are found by inverting a ma- ( 2 2 . 1 5 ) 
trix described by Eqs. (13.10). 

be the normal mode described by Eq. (13.10b). It has a resonance frequency of 

[zK . 1# M\M2 
LU where M = ^ ' s the spring constant of nearest neighbors ( 2 2 16) 

M ' ( M i +M2)' defined in Eq. (13.7). 

In the presence of an oscillating electric field of strength £cen, suppose that the 
optical mode oscillates according to 

M'u=-Mü2ü-MÜ/T + e*Eceü. (22.17) 
e* 

= ^ U — ———-,—^ zr^i ',—r^cell- Fourier transforming with \ dt expfi'u;/]. ( 2 2 . 1 8 ) 
M(LOZ — coz + VJJ/T) 

The relaxation time r describes how long ions keep oscillating once the exter-
nal field is turned off. A reason to employ an effective charge e* is that relative 
motion of the ions may well be accompanied by a readjustment in the electron 
clouds around them, so that the net motion of charge is less or greater than one 
would expect based on the distance the ions have moved. 

Dipole Moments. The dipole moment in each cell is made of two contributions. 
First, ionic motion produces a dipole moment e*u. Second, the electron cloud 
around each of the ions can polarize, producing a second moment of size a°°.ECeii. 
The electrons adjust much more quickly than the ions to external fields. The total 
polarization is therefore 

n = e*U + a ° ° £ c e i i . a°° comes from redistribution of charge around (22.19) 
individual ions, and is different from a caused 
by ionic motion in Eq. (22.14). 
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The long-range interactions between dipoles can be described by the same ar-
guments that lead to the Clausius-Mossotti relation. In particular, the field Z?ceii 
acting on the dipole in each cell is given by Eq. (22.10). Therefore 

,*\2 («*) 
-ur M(ü2 

3 e ( w ) - l 
4 7 r e M + 2 

■ iuj/r) + a° £ c d l Put Eq. (22.18) in Eq. (22.19). 

= n 
„*\2 

M(u>2 — to2 - iuj/r) + a° 

(22.20) 

(22.21) 

The quantity on the right is just P/Ece\\, while the left comes from Eq. (22.13). 

There are four phenomenological quantities in Eq. (22.21): e*,T, a°°, and Co. 
Figure 22.4 shows that the dielectric function e(uj) has definite low- and high-
frequency limits, and these can be used to eliminate two of the phenomenological 
constants. For frequencies u much greater than ü, but still small enough that elec-
tron charge responds quasi-statically, one can use Eq. (22.21) with u « 0. Denoting 
the dielectric function in this limit by e°°, Eq. (22.21) gives 

or 
3 

Aim 
- 1 

' + 2 
(22.22) 

On the other hand, for frequencies uo much less than UJ one can take 

e*Ece\\ 
Mui2 

and find 

(e*Y 
9Müi2 

Aim (e° + 2) ' + 2) 

(22.23) 

(22.24) 

With these values for e* and a°°, one can now solve Eq. (22.21 ) for e(u) and obtain 

e M = e°° + 
UJ . U! 

UJ2 TÜJ2 

e° + 2N 

;°°+2 

(22.25) 
1 

Equation (22.25) goes to the correct limits as ui —> 0 and UJ —*• cxo. 

22.3.1 Polaritons 

To simplify the dispersion relation (22.25), it is useful to define the transverse 
optical frequency coj by 

UJ7 

' + 2 
e° + 2 

(22.26) 

and the longitudinal optical frequency Ĉ L by 
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"£ = 

e(u)-. 

-UJj 

OJ2 + ÎÙJ/T — Lü2^ 

LÜ2 + iu/r — LÜ\ 

(22.27) 

(22.28) 

The relationship (22.27) between O>L and U>T is called the Lyddane-Teller-Sachs 
equation. 

The dispersion relation Eq. (22.28) allows both transverse and longitudinal 
propagating modes within the crystal. According to Eq. (20.17), the transverse 
modes satisfy 

u)2e(uj) 

while according to Eq. (20.23) the longitudinal mode satisfies 

e(w) = 0. 

(22.29) 

(22.30) 

In the limit r —> oo, the dielectric function vanishes for u = O>L, explaining the 
name given to WL-

The dielectric function of CdS has been measured by Balkanski (1972) from 
reflectance and absorption measurements, and the results are shown in Figure 22.4. 
The data match so well to Eq. (22.28) for the parameter values listed in the caption 
that it is sufficient just to plot the theoretical formula. Employing this dielectric 

100 

50 

-50 

-

/ J 
e2(o>) 

.-OO 

\ " 
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LÜ/2TTC (cm -1) 
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Figure 22.4. Dielectric function for CdS, deduced from reflection data by Balkan-
ski (1972). The data fit Eq. (22.28) with e°° = 5.4, e° = 8.9, LÜJ/ITTC = 232 cm"1, 
1/27TTC = 6.9 cm"1. Most data in the infrared are reported for u) in units of cm - 1 , re-
ferring to 1/A — lojlixc, with c the speed of light in vacuum. 
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Figure 22.5. Frequency UJ of transverse waves as a function of complex wave vector q 
resulting from data of Figure 22.4. 

function in Eq. (22.29) produces the plot of u versus real and imaginary parts of q 
that appears in Figure 22.5. 

The dispersion relation has three branches, which are most easily distinguished 
by sending r —> oo to identify the physical significance of LO^ and ^T^ 

Lower Branch: At low wave numbers, light behaves as if traveling in an ordi-
nary dielectric medium of dielectric constant e°. As q increases, the dispersion 
curve bends over and finally approaches the transverse frequency LOJ. The di-
electric function becomes very large along this branch, which means that a 
small amplitude of external electromagnetic radiation is accompanied by an 
extremely large polarization. Purely light-like at low frequencies, the radia-
tion becomes almost completely phonon-like near UJJ. The mode created by 
the coupling of light and phonons is called a polariton. 

Central Branch: Between u>j and U>L, propagating modes are heavily damped, 
and any incident radiation is almost completely reflected from the crystal. 
The central region is fairly narrow, and collecting radiation reflected from a 
crystal transforms broadband radiation into a fairly monochromatic residual or 
Restrahl band. Einstein (1907) used this frequency in calculating the specific 
heat of diamond, as mentioned in Section 13.3.1. 

Upper Branch: Well above U;L light propagates as if in a medium of dielectric 
constant e°°. There are propagating modes in the vicinity of frequency WL that 
are transverse modes and should not be confused with the distinct longitudinal 
mode that exists right at LJL-
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Values of dielectric constants and transverse and longitudinal frequencies appear 
in Table 22.2. 

22.3.2 Polarons 

Electromagnetic radiation traveling in the vacuum is always transverse, so it tends 
to generate transverse waves when it impinges upon a crystal. It provides no op-
portunity to excite the longitudinal mode where e = 0. If, however, an electron flies 
into a polar crystal, it excites mainly the longitudinal modes, while it pushes charge 
out of the way like a snow plow. A polarization cloud surrounds the electron as it 
travels, changing its effective mass. The resulting quasi-particle is called a polaron. 

The polaron is not an easy particle to find experimentally. The theoretical atten-
tion it has received might therefore seem difficult to understand. One explanation 
is that the interaction between electrons and phonons needed to attack the polaron 
problem is also the basic interaction lying behind superconductivity of metals and 
alloys. Superconductivity brings new layers of complexity to the problem, so there 
is value in studying the simpler case of the polaron first. 

Relation between Polarization and Displacement. Because the interaction be-
tween electrons and phonons excites longitudinal modes, it is useful to begin by 
finding a relation between the polarization P and ionic displacement ü for the lon-
gitudinal mode. Start with 

P = n[e*Ü+a°°Ecen]. From Eq. (22.19). (22.31) 

Then 
E — —4TTP, Because e = 0 => D = 0. (22.32) 

which holds for the longitudinal mode implies in conjunction with Eq. (22.10) that 

£ceii = ^ = - y ^ (22.33) 

ne* 
l+na°°87r/3 

The expressions (22.22) and (22.24) for e* and a°° give 

U. PutEq. (22.33) in Eq. (22.31). (22.34) 

0 ^oo 9Mco2 e u - e 
ne* V 47m (e° + 2)(€°°+ 2) 

: " , , . . 0 0 — T V T T ^ T ^ ^ (22.35) l+na -87r /3 1 +2(e°° - l)/(e°° + 2) 

JMu>ln f 1 1 
4TT V e°° e° 

(22.36) 

Therefore 
P = ßu, (22.37) 
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Table 22.2. Dielectric properties of ionic crystals 
^ A oo o ^T wL m* m* ap mol Compound e°° eu -— -— — a„ —(l + -r) —t-2nc 27TC m m 6 m 

(cm-1) (cm-1) 
LiF 
LiCl 
LiBr 
LiH 
NaF 
NaCl 
NaBr 
Nal 
KF 
KC1 
KBr 
KI 
RbF 
RbCl 
RbBr 
Rbl 
CsF 
CsCl 
CsBr 
Csl 
GaAs 
GaSb 
GaP 
InAs 
InSb 
CdS 
CdSe 
CdTe 
ZnS 
ZnSe 
ZnTe 
ZnO 
PbS 
PbSe 
PbTe 
AlSb 
InP 
SnTe 
CdF2 
SiC 

1.93 
2.79 
3.22 
3.60 
1.75 
2.35 
2.64 
3.08 
1.86 
2.20 
2.39 
2.68 
1.94 
2.20 
2.36 
2.61 
2.17 
2.67 
2.83 
3.09 

10.90 
14.40 
8.46 

11.80 
15.68 
5.27 
6.10 
7.21 
5.14 
5.90 
7.28 

4 
18.50 
25.20 
36.90 

9.88 
9.56 

45 
2.40 
6.65 

8.50 
10.83 
11.95 
12.90 
4.73 
5.43 
5.78 
6.60 
5.11 
4.49 
4.52 
4.68 
5.99 
4.58 
4.51 
4.55 
7.27 
6.68 
6.38 
6.32 

12.83 
15.69 
10.28 
14.61 
17.88 
8.42 
9.30 

10.23 
8 

8.33 
9.86 
8.15 
190 
280 
450 

11 
12.29 

177 
7.78 

10 

318 
221 
187 
590 
262 
178 
146 
124 
202 
142 
114 
102 
163 
117 
95 
76 

134 
107 
78 
66 

273 
231 
365 
219 
185 
244 
174 
141 
282 
207 
177 
414 

67 
44 
32 

323 
308 

22 
224 
793 

667 
435 
360 

1116 
431 
271 
216 
182 
334 
216 
169 
144 
286 
180 
131 
108 
245 
168 
118 
94 

296 
240 
403 
243 
197 
308 
214 
168 
352 
246 
205 
591 
214 
147 
110 
344 
350 
140 
403 
972 

0.434 
0.390 
0.325 

0.432 

0.368 

0.420 
0.066 
0.047 
0.338 
0.023 
0.014 
0.155 
0.130 
0.091 
0.280 
0.171 
0.160 
0.240 
0.082 
0.047 
0.034 
0.011 
0.077 

0.900 
0.240 

3.45 
3.14 
2.51 

3.84 

3.16 

3.67 
0.07 
0.03 
0.20 
0.05 
0.02 
0.53 
0.46 
0.32 
0.65 
0.43 
0.33 
0.85 
0.32 
0.21 
0.15 
0.011 
0.076 

0.450 
0.230 

0.683 
0.594 
0.461 

0.708 

0.562 

0.677 
0.067 
0.047 
0.349 
0.023 
0.014 
0.169 
0.140 
0.096 
0.310 
0.183 
0.169 
0.274 
0.086 
0.049 
0.035 
0.02 
0.11 

3.19 
0.26 

0.920 
0.700 
0.540 

1.030 

0.720 

0.960 
0.066 
0.047 
0.350 
0.023 
0.013 
0.170 
0.140 
0.096 
0.313 
0.184 
0.169 
0.279 
0.087 
0.049 
0.035 
0.011 
0.077 

0.690 
0.240 

The experiments were performed on single crystals at liquid helium tempera-
tures. To check polaron theory, compare m*ol/m with m*/m(l + a p / 6 ) . The 
approximation is excellent for ap <C 1. Source: Kartheuser (1972). 
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with 

'-HR^ÏJ-
Interaction between Electron and Polarization. When an electron interacts with 
a polarized medium, the energy of interaction is 

£4l-phon — e I dr P(7 ) -VV'—^ :• R is the position operator for the electron. ( 2 2 . 3 9 ) 
./ \R — r'\ 

Making use of Eq. (13.43a), which expresses û in terms of creation and annihila-
tion operators, and Eq. (22.37), which gives the polarization in terms of the lattice 
displacements û, leads to 

'̂-̂ wW^bç^ V , ' 
r'-R\ 

[eik-7 âr + e-ik-7 âl] (22.40) 

= -eß fdfJ—^—y——i-^[eil7'âl-e-ilT'ât}. (22.41) 
J ]j 2MOJLN ^ k \r'-R\ k k 

In Eq. (22.40), only the longitudinal mode, where the polarization equals k/k, was 
retained. The reason is that this mode is the only one to survive the dot product 
with k that emerges in Eq. (22.41). Electrons moving through a charged medium 
naturally push at material in front of them, creating compression waves, and are 
less likely to induce the side to side wiggling of transverse waves. Finally carrying 
out the integral over V the electron-phonon interaction becomes 

t/d-ph« = */W™ Ç J^±^l-[e-^-^%]. (22.42) 

To characterize the strength of the electron-phonon interaction, define a di-
mensionless parameter comparing the typical energy of phonons, HLOL, to a charac-
teristic electrostatic energy. Forming a distance from ^H/2m*LOL, where m* is the 
electron effective mass gives a dimensionless ratio ap of electron energy to phonon 
energy defined by Fröhlich (1952): 

ap 
e2 2m*u>L 1 / 1 1 \ « / 1 1 \ m*/m 
— i / — r - - — „ =l .44-10 8 jr) \ — '—. (22.43) 
2 V n hojL \e°° e°J \e°° e°J V u>L-s 

Finally, the ion mass M cancels between Eqs. (22.42) and (22.38), so 

'»VN1 / 4 

£/el-phon = V 4 ™ P ^ ( ä ^ J E f c ^ ' M - ^ ' ^ - ( 2 2 4 4 ) 
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The second quantized form of (22.44) will be useful. It is obtained through the 
identity (C.7), 

^el-phon = Y] et (q"\Ûei-phon\q)cg The c's are creation and annihilation opera- ( 2 2 . 4 5 ) 
r * ■* H r i tors tor p|p.rtrnrK in nlane. wave, states 

<?<? 
tors for electrons in plane wave states. 

and is 

^el—phon = I 
r— 1 / ^ W V t ~ 

v \ / £"fc 

i t i t 
^ " V + / ? " ^ ' ( 2 2 - 4 6 ) 

* ç"+it 

Polaron Dispersion Relation. The operator for electron-phonon interactions can 
be used to search for the change in effective mass of an electron moving through 
an ionic crystal. If the coupling parameter ap is small, then this task may be ac-
complished by finding the change in energy of an electron to leading order in per-
turbation theory. To make things simple, assume that in the absence of polarization 
effects, the electron would travel as a plane wave with energy H2q2/2m*. The ef-
fective mass here results from interactions of the electrons with the static lattice, as 
in Section 16.2.3, and must be distinguished from the additional effective mass the 
electron will acquire when it drags around a cloud of phonons. 

At first order in perturbation theory, the expectation value of (22.46) vanishes, 
so to obtain a nonzero result one must move to the second-order term, which is 

A£( 2 ) 

£ ( ? , * o ) - £ ( ? , * ' ) 

$o refers to the ground state of the 
phonons, and $ ' is a state with 
longitudinal optical phonons present; q 
and q' are electron wave numbers. 

(22.47) 

Placing Eq. (22.46) into Eq. (22.47), the only intermediate phonon state <&' that 
survives is the one with precisely one phonon of wave number k = q — q' and 
energy hoj^. All possible electron momenta q' are allowed, but states q and q' 
must have the same spin, so when the sum over q is converted into an integral, the 
density of states is V/(2vr)3, not 2V/(2n)3. One has 

A£ ( 2 ) =4vra r 
1 //Pu; 5, ,3 

'VV 2m ̂ EÛ 
1 

q-q 712 
1 

j-2 2 

n q 
In? 2m* + hujL 

(22.48) 

= 47rar 
lh5Lül 1 

W 2m* 

an 

7T 

5, ,3 

h , d(cos 9) 2vrV 
(27T) iH^H 

2m* J-\ Jo 
1 

,2J2 hzq 
2m* 

n2(q'2 + q2 + 2qq's) 
2m* +HU;L 

= - C K r m*hoj3 — sin 
q 

2 „ 2 hlq 
2m*hwiJ 

(22.49) 

(22.50) 

(22.51) 

Perform first the q' integral, and then s. q' can safely be integrated to infinity because the 
integral is convergent. One of the terms following the q' integral looks hopeless, but it is 
odd in i and vanishes by symmetry. 
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The interaction of the electron with the phonons lowers the energy of the in-
teracting system. For low momenta Hq, the change in energy is —apHio^. As the 
electron energy rises toward the phonon energy, the energy gain increases. For 
small q one finds that 

h2q2 

A£ (2) -aph~LüL O n 12m* (22.52) 

Even in the absence of interaction with polarized ions, the electron already has an 
effective mass m* due to interaction with the periodic crystal potential. Interaction 
with the polarization cloud raises the effective mass to a new value, m*ol. 

When one adds Eq. (22.52) on to the original kinetic energy of the electron, 
h2q2/2m*, to lowest order in ap the effective mass of the electron is changed by 
the interaction with the phonons and equals 

m, pol 

nr 
1 

« n (22.53) 

This result is sensible, because the electron has to drag phonons around with it 
as it moves, and therefore becomes heavier. The stronger the coupling with the 
phonons, the heavier it becomes. 

When the electron kinetic energy is larger than HUJ^, then rather than simply 
being surrounded by a cloud of phonons, the electron emits them in a shower. 
According to Eq. (22.51), the change in electron energy becomes imaginary and is 

A£ ( -av\Jm*H(jJL q 
7r/2 + i cosh - l 

2 „2 hlq 
2m*tïujL 

(22.54) 

The meaning of an imaginary energy is that the probability of finding the electron 
in state q decays exponentially in time. The electron wave function behaves in time 
as 

i 
exp h 

(£<0) + A£(2)> 

so that the probability of finding the electron in its initial state decays as 

r2. 
exp Lfi 

Im(A£ (2)\ 

The decay rate is 

I T\/2 
2ap\/ m*hcü(j—— cosh 

2„2 ¥q 
2m* hu^ 

(22.55) 

(22.56) 

(22.57) 

The same computation can be carried out using time-dependent perturbation theory 
(Problem 3), and it gives the same answer, because time-dependent and stationary 
perturbation theory are really just different views of the same calculation. 
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22.3.3 Experimental Observations of Polarons 
Polaron theory has been checked rather carefully, although the experiments are dif-
ficult and not exceptionally accurate. A serious check requires independent mea-
surement of all the parameters in Eq. (22.43). One of the parameters in Eq. (22.43) 
is the electron effective mass m* in the absence of polaron effects, so experimental 
techniques must be devised that can turn off polaron physics to find m*, then turn 
it back on to measure m* , and compare with (22.53). 

Information on how this task may be accomplished is contained in Eq. (22.57). 
When the electron kinetic energy is larger than Hco^, its effective mass is no longer 
altered by polaron physics, and furthermore its interaction with polar ions de-
creases as q becomes larger. Equivalently, if the electrons are excited by an ex-
perimental probe at frequencies well above ÜJL, the electrons will display an effec-
tive mass m*, while at frequencies below O;L they display an effective mass m*o]. 
Faraday rotation, discussed in Problem 2, is a probe of electron effective masses at 
infrared frequencies, around 1014 Hz, while cyclotron resonance, discussed in Sec-
tion 21.2, operates in the microwave regime at around 1010 Hz, so the two effective 
masses can be measured independently. 

An additional experimental problem lies in the fact that it is difficult to coerce 
an electron into the conduction band of an insulator. In some cases, such as ZnO, 
the problem can be solved by doping with suitable impurities. In other cases, the 
solution is to blast the crystal with light of such a frequency as to excite electrons 
from valence to conduction band. Cyclotron resonance can be performed in either 
case, but Faraday rotation measurements have been restricted to the doped crystals, 
so the number of cases where a complete check of the polaron theory is available is 
limited. However, as can be seen from the final columns of Table 22.2, agreement 
between theory and experiment is quite good. Where the coupling constant ap is 
larger than one, lowest-order perturbation becomes questionable, and in fact the 
measured polaron effective mass is roughly double the prediction of Eq. (22.53), 
but for those compounds where ap < 1 the agreement is excellent. Feynman (1972) 
discusses on pp. 234-241 how to improve the theory so as to handle larger values 
of ccp. The strong-coupling limit, ap —» oo, has also been reviewed by Peeters and 
Devreese(1984). 

A related area of study considers charged localized excitations in polymers 
such as polyacetylene, and it has been reviewed by Heeger et al. (1988). 

22.4 Point Defects and Color Centers 

The coloration of ionic crystals provided a subject of intense interest for decades. 
The transverse and longitudinal frequencies listed in Table 22.2 all lie below the 
frequency of visible light. Figure 22.5 shows that visible light should pass almost 
unchanged through the ionic crystals. Yet they frequently have distinct colors. For 
example, sodium chloride can have either a bluish or a yellowish tint. The blue tint 
is naturally present in salt, and it is due to the presence of small aggregates of excess 
sodium. Röntgen (1921) showed that that the yellow color could be produced either 
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by heating a salt crystal in sodium vapor or by irradiation by X-rays, and he also 
showed that the photoelectric effect was greatly enhanced by radiation. The yellow 
coloration had earlier been ascribed to the precipitation of small metal particles 
within the crystal, but Röntgen showed that it was most intense in cases where no 
traces of precipitates were to be found. The defect responsible for discoloration 
was too small to detect with any microscope. 

The center of research into these phenomena in the 1920s and 1930s was in 
Göttingen, directed by R. W. Pohl. The nature of the localized color centers re-
sponsible for optical absorption and emission peaks was slowly teased out of a 
variety of experiments, involving irradiation, electrical conductivity, and mechan-
ical stresses. Mollwo (1933), for example, showed that the density of a crystal 
decreased in direct proportion to the strength of its absorption peak. A decrease 
in density can be explained by observing that each metal ion entering the crystal 
wants to divest itself of an outer electron and deliver it to a corresponding halo-
gen ion. In the absence of the halogen, it is thermodynamically favorable for an 
empty site to diffuse into the crystal and absorb the extra electron. Mott and Gur-
ney ( 1940) made the connection between the theoretical idea of the vacancy and 
the color centers observed by Pohl. 

The significance of research into color centers goes beyond explaining the yel-
low tint of salt. Understanding the role of defects in determining optical properties 
of ionic crystals provided the background for explaining the physics of photog-
raphy and the physics behind photocopying. The same body of knowledge also 
played an important role in finding materials suitable for creating the laser. The 
alkali halide crystals themselves have few practical applications as optical materi-
als, but they provided the testing ground where optical effects of defects could be 
explained in detail. 

22.4.1 Vacancies 

The simplest defect in a crystal is a vacancy, which is simply a lattice site from 
which an atom is missing. The energy cost of introducing a vacancy into a crystal is 
related to the cohesive energy. As shown in Table 22.3, these two energies are of the 
same order of magnitude, but never identical. The reason for the difference is that 
atoms in the vicinity of a vacancy relax, lowering the energy below what it would 
be after the atom had instantaneously been plucked out of the solid. Because the 
energy cost of a vacancy is finite, every equilibrium crystal contains a finite density, 
given by Eq. (5.21), that increases exponentially with temperature. In the ionic 
crystals, the density of vacancies can be increased enormously by introduction of 
alkali metals, rising to as high as one part in a thousand. Visible coloration is 
produced by vacancy densities on the order of one part in ten thousand. 

Frenkel and Schottky Pairs. In ionic solids there are common defects more 
elaborate than a vacancy. Because the ions carry charges, defects must form in 
such a way as to maintain charge neutrality. An ion that abandons a site (leaving 
a vacancy) and climbs into an interstitial location is called a Frenkel pair. The 
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Table 22.3. Cohesive energy versus vacancy en-
ergy for selected elements 
Crystal Cohesive Energy 8./N Vacancy Energy 

(eV) (eV) 
0.42 
0.97 
0.76 
1.4 
0.020 
0.077 
2.0 

Na 
Au 
Al 
Pt 
Ne 
Kr 
Ge 

1.16 
3.8 
3.4 
5.3 
0.021 
0.11 
3.9 

Source: Flynn (1972), p. 7. 

vacancy and interstitial are bound together because of the Coulomb attraction be-
tween them, and they occupy neighboring sites. A Schottky pair, by contrast, oc-
curs when nearby vacancies develop, one where a cation should be, and the other 
where an anion should be. 

22.4.2 F Centers 

The vacancy is thermodynamically the most likely defect, and it therefore leads to 
the dominant type of optical absorption in the alkali halides, called the F center 
(after Farbe, "color" in German). A vacancy binds an electron, as shown in Figure 
22.6, with the electron density largest at the center of the vacancy and diminishing 
rapidly far away. Optical absorption results from driving the trapped electron to 
a localized excited state lying approximately 2 eV above the ground state. The 
peaks of the absorption and emission bands at low temperature are tabulated in 
Table 22.4. A striking feature of these bands is the large difference between the 

Figure 22.6. The F center is a halogen ion vacancy that has trapped an electron. (A) A 
three-dimensional view of ions around the vacancy. (B) Diagram showing the density of 
the trapped electron in a two-dimensional section passing through the vacancy. 
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Table 22.4. Absorption and emission peaks from F centers in alkali halide 
crystals at low temperatures 

Compound £abs (eV) £ e m (eV) Compound £at,s (eV) £ e m (eV) 
RbCl 
RbBr 
Rbl 
CsF 
CsCl 
CsBr 
Csl 

2.05 
1.86 
1.71 
1.89 
2.17 
1.96 
1.68 

1.09 
0.87 
0.81 
1.42 
1.26 
0.91 
0.74 

NaF 
NaCl 
KF 
KC1 
KBr 
KI 
RbF 

3.72 
2.77 
2.85 
2.31 
2.06 
1.87 
2.43 

1.67 
0.98 
1.66 
1.22 
0.92 
0.83 
1.33 

Notice that the energy of absorption £abs and emission £em are substantially dif-
ferent. Source: Pick (1972), p. 659, and Fowler (1968), p. 627. 

frequencies of absorption and emission, called the Stokes shift. The phenomenon 
is called the Franck-Condon effect, and will be discussed in the next section. 

22.4.3 Electron Spin Resonance and Electron Nuclear Double Resonance 

The final controversies over the structure of color centers were laid to rest by spin 
resonance experiments. In electron spin resonance (ESR), a static magnetic field 
HQ is applied to the sample, producing an induction ßo = HQ. The two spin levels 
of the trapped electron are split in energy by an amount 2fißBo, where u,ß is the 
Bohr magneton. This energy splitting can be measured by applying an additional 
oscillating magnetic field at frequencies u) of order 1010 Hz and then detecting 
resonant absorption whenever HUJ = 2/J,BBQ. The technique gives information about 

2.5 3.0 3.5 4.0 
Magnetic field H0 along [110] (kG) 

Figure 22.7. Electron spin resonance in RbCl F centers at a temperature of 90 K. The 
oscillating magnetic field is applied at a fixed frequency of v = 9.38 • 109 Hz, while the 
static magnetic field is increased from 2.5 to 4 kG. The imaginary part xi °f the magnetic 
susceptibility is proportional to absorption, and the change of this quantity with applied 
field HQ is plotted on the y axis. The width of the peaks is approximately 36 G. [Source: 
Pick (1972), p. 666.] 

r̂ 1 s . 
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color centers because the absorption resonance can be split into multiple peaks by 
the hyperfine interaction of the trapped electron with the nuclei of the surrounding 
ions. A simple way to model this interaction is to observe that the static magnetic 
field experienced by a trapped electron is the sum of two pieces, 

B = B0 + J2Bh (22.58) 
/ 

where B[ is the magnetic field due to the nuclei of the nearby ions. In the case 
of RbCl, the positive ions are 85Rb, which has magnetic moment 1.35 /xyy (/i# = 
eh/2mnc is the nuclear magneton) and nuclear spin / = 5/2. Nuclear spins do not 
equilibrate quickly with the applied field Bo, so nuclei of the six near neighbors of a 
trapped electron can be in any of their quantum eigenstates, and the total spin with 
which the electron interacts ranges from — 15/i to 15/i. Thus the hyperfine inter-
action with near neighbors should split the electron spin resonance into 31 levels: 
The most likely level corresponds to total nuclear spin 0, and other levels appear 
with diminishing probability. Measurements are not in precise accord with the pre-
diction, as shown in Figure 22.7, because next-nearest and other neighbors cannot 
be neglected, and the resonance lines are accordingly broadened. The measure-
ments are made more precise by proceeding to electron nuclear double resonance 
(ENDOR), invented by Feher (1959), where at the same time the electron oscillates 
between spin levels a second oscillating field in the range of 1 MHz is applied to 
search for resonant oscillations of the surrounding nuclei. As discussed by Seidel 
and Wolf (1968), this technique measures the trapped electron probability density 
at distances up to eight nearest neighbors from the vacancy. The density distribu-
tion of a trapped electron measured in this way is shown in Figure 22.8. 

JMO"2 

>> 

I io-4 
c o 

M 1(T6 

w 0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Distance r/d 

Figure 22.8. Compilation of electron density versus distance from vacancy center, mea-
sured in KF, NaCl, KBr, and KI using electron nuclear double resonance. The solid line 
is a theoretical curve, assuming the electron wave function is hydrogen-like, decaying ex-
ponentially on scale 0.4a0- Distance is measured in units of nearest-neighbor spacing d. 
[Source: Seidel and Wolf (1968), p. 566.] 
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22.4.4 Other Centers 
Exposing ionic crystals to alkali vapor produces almost nothing but F centers. 
Bombarding the crystals with X-rays produces F centers as well, but also a host 
of other color centers. A variety of composite color centers can also be produced 
by irradiating a crystal full of F centers with light. It is energetically favorable for F 
centers to cluster near to one another, so when their density becomes high enough, 
they form bound pairs and triplets, much like atoms combining into molecules. 

Figure 22.9. The F2 or M center consists of two adjacent F centers, bound together like a 
hydrogen molecule. (A) A three-dimensional view. (B) A projection onto the x-y plane. 

The F2 or M center (Figure 22.9) consists of two neighboring anion vacancies 
that bind two electrons, and behave a bit like a helium atom, while the F3 or R cen-
ter [Figure 22.10(A)] is constituted by three neighboring anion vacancies binding 
an electron. If an anion is stripped of an electron, by irradiation at low tempera-
tures, the result is a VK center, [Figure 22.10(B)] which can be thought of as a hole 
bound to two negative ions in an otherwise perfect lattice. The perfect antimorph 
of the F center, a hole bound to a single alkali ion vacancy, does not exist. Holes are 
well-defined particles on length scales that are large compared to the lattice spac-
ing, but concepts such as effective mass from which holes derive are not clearly 
applicable on scales as small as a single vacancy. 

22.4.5 Franck-Condon Effect 

One of the surprising features of F centers, as shown in Figure 22.11, is that absorp-
tion and emission of light occurs at different frequencies and is highly temperature-
dependent. This phenomenon is the Franck-Condon effect. The basic physical 
reason is that ions near a trapped electron relax so as to optimize their interaction 
with it, but the way they relax for the ground energy state is different from the way 
they relax for each excited state. During an optical transition, the ions do not have 
time to move; the transition frequency should be calculated in a frozen lattice. If 
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F3 or R center YK center 

Figure 22.10. (A) shows a three-dimensional view of the F3 center, where three F cen-
ters have grouped together. (B) shows a cross-sectional view of the V# center, which is 
produced by ejecting an electron from a metal ion. 

c o 
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Figure 22.11. The absorption and emission lines of an F center in KCl are peaked about 
different energies and are strong functions of temperature. [Source: Liity (1961), p. 247.] 

the excited state is long-lived, however, the ions have time to adjust, the excess 
energy is dissipated in phonons, and by the time the trapped electron returns to its 
ground state, the transition frequency is diminished. Therefore, the difference in 
photon energies between absorption and emission of F centers directly measures 
the relaxation energy of nearby ions as an F center electron jumps to an excited 
state. 

Computation of Transition Probabilities for the Franck-Condon Effect. A sim-
ple model allows one to explore the phenomena occurring in the Franck-Condon 
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effect. The idea of the model is first to treat the F center and ion neighbors sepa-
rately, then couple them, and finally to include interactions with incoming photons. 

The starting point is a Hamiltonian Ä F describing the electronic levels of an 
F center. All one needs to know about this Hamiltonian is that the ground-state 
energy is £Q = 0, and it has an excited state \F\) of energy £1, so 

UF\F0) = £.0\Fo)=0 
ÄF |F,) = £i|F1). 

(22.59a) 
(22.59b) 

To model the process of interaction with ions, it is sufficient to fix upon a sin-
gle ion coordinate x, called a configuration coordinate, governed by the harmonic 
oscillator Hamiltonian 

pi Muß' 
Ä ion = —- + —^x2. (22.60) 

The idea behind the Franck-Condon effect is that the energy of the F center is 
coupled to the position of the ion. This effect may be captured simply through the 
interaction Hamiltonian 

CKint = gi3-CF , g is a coupling constant. 

so that the eigenvalue equation to solve is 

{ÄF(1 +gx) +Ä i on} |V) = fitotlV')-

(22.61) 

(22.62) 

It is fairly simple to find the eigenvalues of (22.62) exactly in terms of the eigen-
values of Äp. Let 

&(*) = <*,£/1 V>>- (22.63) 
Acting from the left with (x, £; | on Eq. (22.62) gives 

£/(i+g*) + 
-h2S/2 MUJ} 

-\——-x > 4>i (x) = £.tot4>i (x) ■ The index 'equals ° or l■ 
2M 2 

(22.64) 
Equation (22.64) describes a harmonic oscillator whose x coordinate has been 
shifted by 

D, 
Muf 

It can be rewritten as 
2vy2 

£/ + ► 
2M + � 

Mut (x + D , ) 2 - ^ (x) = 8.tot(f>i(x). 

(22.65) 

(22.66) 

The solutions of Eq. (22.66) are just the harmonic oscillator eigenfunctions </>/, but 
evaluated at the argument x + D/ rather than at x, and the eigenenergies of (22.66) 
are 

'l.n £/ + ^ ( n + i ) - i î ) 2 M a ; 2 . (22.67) 
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Figure 22.12. In the Franck-Condon effect, frequencies of absorption and emission of 
an impurity are different. The difference is called the Stokes shift. The reason for the 
difference is that once the trapped electron has absorbed a photon and moved to an excited 
state, the ions around it slowly adjust, lowering the energy of the state. 

Now consider the influence of incoming radiation of frequency to upon this 
system. According to Eq. (20.70), the real part of the conductivity and hence the 
optical absorption is proportional to 

/ , #(£tot,final 
final 

■ £tot,0 - fo^K^ul^int l^f inal ) (22.68) 

where J7int is the interaction Hamiltonian of the F center with the photons. To make 
matters simple, take U\nt to act only on the F center electron, and not to affect the 
ion coordinate x. In this case, the transition rate from the ground state to a state 
where the F center has energy £ i and the ion is in state n, absorbing a photon of 
energy 

Hu = £i +nhtOi — ^V^Mcjj , 

is proportional to 

/ 
dx(f)Q{x)4>n{x + T>\ In the final state, the F center is in state 1, 

which means that the oscillator wave func-
tions must be evaluated with argument x + 

(22.69) 

(22.70) 

There are two interesting limits in which to evaluate Eq. (22.70). The first is 
that in which T>\ is small compared to the natural spatial extent of the harmonic 
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oscillator wavefunction, 

H 
> D , SeeSchiff(1968),p.67. ( 2 2 . 7 1 ) 

(22.72) 
hMw? 

This limit corresponds to weak coupling of the ion to the center, or high LO\, which 
means that the ion can respond rapidly to the photon. The functions in Eq. (22.70) 
overlap best when n = 0, which means that the dominant transition is one that goes 
straight from the ground state at A to the lowest excited state C in Figure 22.12. 
The opposite limit is 

2) I>JCO, (22.73) 
which corresponds to weak coupling or to slowly responding ions. Now the max-
imum overlap in Eq. (22.70) occurs for a large value of n. The integral appearing 
there can be evaluated exactly, and defining x = X/XQ gives 

/ dxMx)Mx + V\) (22-74) 
Use the standard 

^ y , / gX£>iAo-(I>i/*o)2 /2( '_ \\n-— e~x2 e x P r e s s i o n s f o r harmonic ( 2 2 7 5 ) 
V Tr2.nn\ d\n oscillator wave ^ ' ' 

functions—for example, 
Schiff (1968) p. 71, or 
Landau and Lifshitz 
(1977), p. 70. 

= / dx \ (—-Ye^'/^'^/^^e"*2 Integrating by parts n times.(22.76) 
J y 7r2"rc! V XQ ' 

= \ / ^ ( - ) V ( 1 V " ) 2 / 4 - <22-77> 
y 2nn\ V xo ' 

As a function of n, (22.77) is largest when 

« = i(3V*o)2 . (22-78) 
Just as drawn in the path from A to B in Figure 22.12, the most likely final energy 
of the system is a quadratic function of the displacement coordinate T)\. If the 
excited state is long-lived, the ion will slowly relax down to C, and emission will 
take place from C to D. 

22.4.6 Urbach Tails 

If the optical gap of a solid is 8,g, then one should expect no measurable absorp-
tion for incoming light with hco < £.g. However, some absorption does occur, and 
in a wide range of solids including ionic crystals, insulators with F centers, and 
amorphous semiconductors, optical absorption takes the form 

kBT _ a ocexp (22.79) 
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Figure 22.13. Attenuation constant versus wavelength for radiation incident upon a KI 
crystal at a variety of temperatures. The range of exponential decay spans six decades. 
[Source: Haupt (1959), p. 239.] 

In the range where Eq. (22.79) is valid, a can vary by six orders of magnitude 
or more, as first found by Urbach (1953). Data from high-quality KI crystals are 
displayed in Figure 22.13. 

Problems 

1. Clausius-Mossotti relation 

(a) Using elementary electrostatics, verify Eq. (22.3). 
(b) Verify that (22.4) vanishes for dipoles arranged in any structure with cubic 

symmetry. 

2. Faraday rotation: In a Faraday rotation experiment, infrared radiation passes 
through a thin sample, along the direction of an applied magnetic field. If the 
light is linearly polarized, then the angle of polarization rotates. The Faraday 
rotation 8 per unit length along the sample is defined by 

u r - - l 
= 2c[n—n+] (22.80) 

where n+ and n_ are the indices of refraction for right and left circularly 
polarized light. 

(a) Consider a population of electrons obeying 

i i r 

r+- + -
T 

— rxB -Ee 
rrr 

(22.81) 

Take the magnetic field to point along z. Find the current, and therefore the 
conductivities a±, for right- and left-polarized fields E. 
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(b) Assume that the frequency to is large, which means LOT ^> 1 and eB/m*c <C 
UJ. Expand the conductivities to leading order in LJC and 1 jr. 

(c) Find the dielectric constant and index of refraction to leading order in these 
same quantities. Assume UJ ^> u;p, and find an expression for 6. 

3. Polaron decay: Assume that the energy h2q2/2m* of an electron in a po-
lar solid is greater than the energy HLOL of a longitudinal optical phonon. 
Employing Fermi's Golden Rule, Eq. (13.99), show that the rate at which 
an electron of wave number q decays is given by Eq. (22.57). Perform the 
angular integral over cos 9 before the momentum integral, and recall that 
cosh" ' x = In [x ± \fx2 — 1 ]. 

4. Franck-Condon effect: 
Consider an F center sitting in the excited state at position C in Figure 22.12, 
described by the Hamiltonian 

3<F + 3iion+3^int, (22.82) 

where the three portions of the Hamiltonian are described by Eqs. (22.59), 
(22.60), and (22.61). 
In the case where the distance 

Mcof 

is large compared to the quantum zero-point fluctuations of the ion coordi-
nate jtn, find the quantum number n characterizing the most likely final state 
indicated in Figure 22.12 by position D. 

5. Urbach tails: Theoretical calculations tend not to reproduce Eq. (22.79) 
exactly, but to find functional forms that fall off more rapidly as HLO falls below 
£g. As an illustration, one can use the configuration coordinate model for the 
Franck-Condon effect. 

(a) Write down Eq. (20.70) for the real part of the conductivity, and relate it to 
the optical absorption. 

(b) Take the initial state to be the state of energy £o,„ from Eq. (22.67), occupied 
with probability /„ = exp[—/?£o,n], and take the final state to be the one with 
energy S^Q: The electron is excited to state |Fi), but the ionic coordinate is 
relaxed. Rewrite Eq. (20.70), assuming that 

{FQ, n\P\Fi, 0) = <F0|P|fi)(Fo, n\Fu 0). (22.84) 

(c) Convert the sum over n to an integral, and perform the integral. Show that 
the temperature dependence of the result is correct, but that the absorption 
falls off too quickly as a function of £g — HLO. 
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23. Optical Properties of Metals and 
Inelastic Scattering 

23.1 Introduction 

The interaction of electromagnetic radiation with metals divides between low and 
high frequencies. Low frequency refers to frequencies too small to induce transi-
tions from one Bloch band to another. The energies involved in hopping between 
bands are characteristically around 1 eV, so the dividing line is around 

1 eV^>u;~ 10'5 H z ^ A ~ l /an. (23.1) 

For frequencies below this point, the absence of transitions between bands means 
that the behavior of electrons is semiclassical and can be treated by the formalism 
of Section 17.2. This is not to say that there are no quantum-mechanical effects; the 
response of electrons even to static electric fields has many quantum-mechanical 
features, but classical notions of electrons wiggling back and forth in response to 
oscillating fields provide the right starting point. At frequencies above the cutoff 
(23.1), the language and mode of thought in discussing the problem begin to alter. 
Although the incoming light will still be treated classically, and there is no need 
to quantize the electromagnetic field, the effects of the light waves are most easily 
understood as a beam of photons whose absorption is able to induce transitions 
between various quantum mechanical states. For energies of 10-100 eV, light has 
become the most powerful probe of electronic structure in metals and semicon-
ductors, making possible in some cases a direct experimental investigation of the 
one-electron picture, including quantitative measurements of the energy bands. 

23.1.1 Plasma Frequency 

In the Drude model, a metal consists of a gas of noninteracting mobile electrons. 
The response of such electrons to external electric fields was described in Eqs. (20.4) 
and (20.31), which showed that 

e(uj) = 1 To compare v 
LO(cj + Î/T) often must be 

c p = M / ^ = 5.64.1015Hz 
V m 

689 

ith experiment, the constant 1 
eplaced by e°°. 

1/2 

1022cm-3 

(23.2) 

(23.3) 
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Figure 23.1. Plasma oscillations result from the bulk motion of charge in a solid. 

The definition of the plasma frequency up is motivated by the limit WT » 1, 
which leads to 

2 
(23.4) ««> = '-(Ï)' 

It has a very simple physical interpretation, illustrated in Figure 23.1. Consider 
a slab of electrons sitting on top a slab of neutralizing positive charge. If the whole 
slab of electrons is moved a distance 8, then positive charge develops on one side 
of the slab, negative charge on the other. The charge, say, on the positive side is 
enA8, where A is the area of the slab, and n the density of charged particles. A 
uniform electric field E = Airenö develops between two such slabs of charge. If the 
total volume of the system is V, then the force on all of the electrons is 

enVE = 4Trn2e2VS. (23.5) 

Setting this force equal to mass, mnV, times acceleration 8 gives 

•• 4-7rae2 

o = o. 
m 

(23.6) 

So the frequency of plasma oscillations is 

A-Kne 
w„ 

m 

This result is correct only for free electrons. In the 
presence of a periodic potential, the plasma fre-
quency is modified. Conventionally, the electron 
mass m is replaced by an effective mass called the 
optical mass; see Eq. (23.27). 

(23.7) 
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Figure 23.2. Index of refraction n and extinction coefficient K for metal obeying Eq. (23.2), 
with ujpT = 100, showing absorbing, reflecting, and transmitting frequency ranges. 

Three Regimes for Metallic Response. The product LÜPT can be estimated from 
Eqs. (16.7) and (23.3) and can range from 10 to 100. Therefore, according to 
Eq. (23.2), the optical absorption of metals should pass through three phases, 
shown in Figure 23.2. 

Absorbing: For 0 < LOT < 1 the metal absorbs the incident radiation, because 

e « 1 + / r - ^ ( 1 + /WT) ^n^Kïx JTLOJ/2LU. (23.8) 

The index of refraction n and extinction coefficient K were defined in Eqs. (20.18) 
and (20.20). 

Reflecting: For 1 < LOT < LOPT the real part of e is negative, equaling approxi-
mately 

=-^- (23.9) 
LÜ1 

and resulting in 
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According to Eq. (20.43), because the index of refraction n is small in com-
parison with the extinction coefficient K, almost all radiation incident upon 
the metal in this range of frequencies will be reflected. 

Transparent: For UJ > LOP the real part of the dielectric constant first vanishes and 
then becomes positive as to increases. The metal becomes nearly transparent 
to the incoming radiation, with index of refraction and extinction coefficient 
given by 

l-u^/uP At« p (23.11) 
2TLO2

 A IUP — uP 

23.2 Metals at Low Frequencies 

When the frequency of radiation is low enough that the semiclassical approach is 
valid, a restriction that was the subject of Problem 20.2, the population of electrons 
is described by the Boltzmann equation (Section 17.2), which, in the absence of 
thermal gradients reads 

dg - dg g 
— = -V-Vg-eE -V- . Usedf/dk = d£/dkdf/8EN = -Hvdf/dfj,, ( 2 3 . 1 2 ) 
Ot Oll T starting withEq. (17.10) in the relaxation time 

approximation. 

Suppose the electric field to have the form 

Ê = E(q, *)<&*-**. (23.13) 

Then Eq. (23.12) is easily solved by taking 

gjf(<7, Uj)eiq'r lwt The label k describes the Bloch index of an ( 2 3 . 1 4 ) 
electron, while the label q describes the wave 
vector of the electromagnetic wave. 

so that 

- df 8k(<i, üj)[-iuj] = \-iv-q- l/r]gj(^, u)-eE-v— (23.15) 

i-> ^f E(q,uj)-v 
=^ gr{q, LO) =—e————. -: _ _. . Remember that v is a function of k ( 2 3 . 1 6 ) 

Oß\/T — l[fjJ — q-v) according to Eq. (7.59). 

The current associated with the distribution function (23.16) is determined by an 
integral over k, and from it can be obtained the conductivity a through 

j = —e [dk]vg-£ [dk] defined in Eq. (6.15). ( 2 3 . 1 7 ) 

= e> f[dk]^J[^% (23.18) 
J op \/T — i{uj — q-v) 
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„2 / r^i df v»vß Va0 = e / [dk] -^- — . P _ _ The subscript on t, is a ( 2 3 . 1 9 ) 
Ofl l/T — i[U) — q ■ V) Cartesian coordinate. 

e
L I -— ~"~ M The integral is over the ( 2 3 . 2 0 ) 

J 4ir3Hv 1/T — i(iü — q-v) Fermi surface, as in 
Eq. (7.73). Use Eq. (6.15). 

4nie f dT, vnvn 
=>eaß = Saß + / -T-^ Ti -, ~ ^ Using Eq. (20.14) to relate ( 2 3 . 2 1 ) 

LU J AlT^nv \/T — l[UJ — q -V) conductivity to dielectric 
constant. 

The wave vector q of transverse propagating electromagnetic waves can now 
be determined from 

q— — (n + iK) —. (23.22) 
c c 

Because q appears in the middle of the integral (23.21), this task is not particularly 
simple. 
Recovery of Drude Formula. Often, the q dependence of (23.21) can be ne-
glected. The conditions needed to neglect it are that q-v be small compared to 
other terms in the denominator of (23.21), which means that 

1 . . . , _ . . ,uvF 1 . 
iLU + iln + iK) sa lui (23.23a) 

r c T 
The largest q ■ v can be is qvp, where VF is the largest velocity of an electron on the Fermi 
surface; the factor of df/dß restricts v to the Fermi surface. Use Eq. (23.22) for q. 

HVF => —- < 1 (23.23b) c 
and 

KiovpTjc <C 1 or equivalently IT -C Ö, (23.23c) 

where lj = vpr is the electron mean free path, and 

5 = — (23.24) 
KUJ 

is the skin depth, the characteristic distance that electromagnetic waves penetrate 
into a metal, according to Eq. (20.19). Condition (23.23b) is almost always satis-
fied, because Fermi velocities are two orders of magnitude smaller than the speed 
of light. Condition (23.23c) is satisfied by typical metals at room temperature, 
where mean free paths are on the order of 100 Â and where for frequencies up to 
the cutoff in (23.1) the skin depth is 1000 Â or greater, as will be shown below. It 
is violated by pure metals at temperatures on the order of 10 K, because the mean 
free path can rise as high as 10~2 cm. 

Assuming that the conditions of (23.23) hold, a does not depend upon q. In an 
isotropic solid or a cubic crystal, the dielectric tensor can be treated as a scalar and 
equals 

e = l - , ?.. , (23.25) 
U)(üJ + l/T) 

with 
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9 4irne 
u?v = , (23.26) 

'Wopt 

the optical mass mopt being defined by 

i i I[dl] fr1 _ f dE 
lopt 

Averages of v\ equal averages of ( 2 3 . 2 7 ) 
[rfjfcl ft i-̂ VT «W D 2 / 3 . Denominator equals n. 

The Drude results (20.31 ) and (20.32) have emerged unchanged from this anal-
ysis, except that the electron mass is replaced by the effective mass mopt resulting 
from an average over the Fermi surface. 

23.2.1 Anomalous Skin Effect 

When the conditions of (23.23) do not hold, determining the dispersion relation for 
a metal rapidly becomes quite complicated. In the limit where the second of the 
conditions is reversed and the skin depth Ö is much smaller than the mean free path, 
the complications are worth pursuing slightly further. The integral appearing in 
Eq. (23.21) changes from an average over the entire Fermi surface into an integral 
very sharply peaked on a line running around the Fermi surface. For this reason, 
the anomalous skin effect can be used to measure geometrical properties of the 
Fermi surface, and Pippard (1957) employed it to obtain the first experimental 
determination of the Fermi surface of copper. 

Pippard's experiments were carried out at frequencies WK, 101 ' Hz and at tem-
peratures on the order of 10 K, where the relaxation time r in copper rises from its 
room temperature value of 10~14 s to 10~10 s. The dielectric tensor changes very 
rapidly in this frequency regime, so one cannot simply speak of an index of refrac-
tion, but roughly speaking n ~ 104, so that q ~ nu/c ~ 105 cm- 1. Because the 
Fermi velocity of copper is around 1.5 • 108 cm/sec it follows that to <C qvF, and u; 
can be neglected in the denominator of (23.21). The evaluation of Eq. (23.21) con-
tinues with the observation that because TVF q 3> 1, the integral will be dominated 
by occasions where q ■ vF = 0—that is, where the wave vector q is perpendicular 
to the direction of electron propagation v, as shown in Figure 23.3. As radiation 
passes through the surface of the metal, it decays rapidly. Because the mean free 
path of electrons is much larger than the skin depth, electrons traveling parallel to 
the surface and perpendicular to q are excited into large amplitude oscillations. 

To estimate the value of (23.20), suppose that radiation is arriving along q — qz, 
that it is polarized along x, and that the portion of the Fermi surface where v-q = 0 
can be approximated by two radii of curvature, "R^ and Rg, describing the curvature 
along the 0 and 4> directions depicted in Figure 23.3. Then 

and 

c » = e 

J S « R^QdOdcf), vx « vF cos 4> (23.28) 

2 r R^edOdcf) VF COS (p becL^thelntegririd dropoff very ( 2 3 2 9 ) 
J 4lT3hvF \/T + iqvFe rapidly away from ö = 0. 
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Figure 23.3. The electrons responsible for the anomalous skin effect have velocities per-
pendicular to the incoming radiation q. Recall from Section 7.2.5, and Problem 1 in Chap-
ter 7, that electron velocity vectors are normal to the Fermi surface. 

e1 

— 3L.3Ï0. Extending the limits of 0 integration ( 2 3 . 3 0 ) 
4TTHÜ from — oo to oo is also fine because 

qvFT » 1. 

Without following the analysis further, it is clear that the relaxation time r and 
Fermi velocity vp have dropped out of the expression for the conductivity, which is 
governed by the curvature of the Fermi surface. Detailed calculation of absorption 
requires studying a highly dispersive wave as it enters the surface of the metal, 
and it will not be pursued further here. However, the geometrical information in 
Eq. (23.30) is enough to determine shapes of Fermi surfaces, and it was the first 
method used to obtain Figure 16.12. 

23.3 Plasmons 

The plasma frequency UJV in Figure 23.2 where e = 0, n — K, and the metal passes 
from reflecting to transparent is worth examining further. Oscillations at frequency 
cup are only the longest wavelength limit of a whole family of oscillating modes. 
The general condition for a longitudinal propagating mode is e(q, to) = 0, and the 
excitations obeying this condition above the plasma frequency are called plasmons. 
To calculate their properties one can turn to the dielectric function of the electron 
gas defined by Eqs. (20.84) and (20.77). 

First look for a resonance at small q. One can rewrite the susceptibility Xc as 

xc = it E M " + 1—r-} <2 3-3 1) 

= e y _JkKJi k+^_ 

("*-"*+?)' 
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e 
V 

2 ^ 2h E — 2m m 

Lü^ 
q-k r i 2 

m 2ml 

(23.33) 

Because the goal is to find long-wavelength propagating modes in the vicinity of 
the plasma frequency uip, it is logical to treat q as small and expand (23.33) in 
powers of q. Keeping the first two orders gives 

Xc(q, w) v E ht 
up- m 

1 4 
3(q-k)2h 2fe2' 

m2ui2 (23.34) 

Carrying out an angular average, the factor of 3 disappears, leaving 

?2 

V 
(^ \ e" v^ h q 

Xc{q,u) = -- 2 ^ - 2 ~ 
k 

2^ + {qkfn 
m2cu2 

2 R 2 n The sum over k includes a sum over all angles 
of k, so the result cannot change if terms are 
replaced by their angular average. 

Recall that 

So one must have that 

la 

E/;*2 -Nk F-

(23.35) 

(23.36) 

(23.37) 
/to-

Using Eqs. (23.35) and (23.37) in Eq. (20.84) gives 

e(q, u>) 1 
4irne 

mui^ 

2 r 2u2 „2 

1 + T 
3 trkfrq 
5 m2io2 -

(23.38) 

So longitudinal modes propagate when e = 0, which means 

3H2k2
Fq2~ 

1 1 + 5 m2L02 

2 2 , 6 £ f f 
F 5 m 

(23.39) 

(23.40) 

Equation (23.40) is the dispersion relation for plasmons. 

23.3.1 Experimental Observation of Plasmons 

Plasmons are fairly long-lived until they achieve a wave vector at which it is possi-
ble for a plasmon to transfer some of its energy to a single moving electron. At this 
point, the plasma waves decay rapidly, in a phenomenon known as Landau damp-
ing. The condition for Landau damping may be obtained by examining when it 
becomes possible for the denominator in Eq. (23.33) to vanish with UJ and q related 
by Eq. (23.40), and k within the Fermi surface. 
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Figure 23.4. Number of scattered electrons as a function of energy loss. The peaks corre-
spond to creation of zero, one, two, or more plasmons. [Source: Lang (1948), p. 241.] 

The classic experiments measuring such plasma oscillations in metals were per-
formed simultaneously by Ruthemann (1948) and Lang (1948). A monoenergetic 
electron beam with an energy in the kilovolt range was passed through a 500-Â 
aluminum film. In aluminum huov is 15.8 eV, and collision events involving the 
creation of one or a few plasmons appear as energy loss peaks in multiples of this 
quantum after the electron beam exits the film. A sample of such data appears in 
Figure 23.4. 

Just as in the cases of neutron scattering for the measurement of phonon disper-
sion relations, or photoemission for the measurement of electronic band structure, 
the dispersion of plasmons can be measured through an inelastic scattering experi-

Electron counts ( curves magnified by different factors for visibility) 

Figure 23.5. Energy loss versus number of scattered electrons for numerous scattering 
angles 9. Only a single plasmon peak is visible, and it disappears when the conditions 
for Landau damping are met. The line through the peaks shows the plasmon dispersion 
relation hu(9). [Source: Kunz (1962) p. 59.] 
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Table 23.1. Comparison of measured and predicted 
plasmon dispersion relations 
Element Be AI Mg 
api [from Eq. (23.43)] 0.47 0.44 0.39 
api (experiment) 0.42 0.35 0.39 

Sb Na 
0.44 0.32 
0.37 0.29 

Source: Platzman and Wolff (1973) p. 71. 

ment. Plasmons are excited by electrons injected into samples. Inelastic scattering 
with electrons is called electron energy loss spectroscopy (EELS), and is reviewed 
by Schnatterly (1979). Equations (13.93) can be used to analyze data of the type 
shown in Figure 23.5. 

In particular, suppose that an electron enters a sample, losing energy A£, and 
changing direction from k to k', differing by a small angle 9. Then conservation of 
energy and momentum require that 

hcü(k-k') = A8. (23.41) 
t 2 ^ 2 Use Eq. (23.40), the fact that 0 is 

=> hLü(2k sin 0/2) «hu D + avl 62 ™a]}andEt ( „ 3 8 ) ; t h e <*? n s e i n (23.42) 
v ' ' m electron angle 0 is twice the v ' 

Bragg angle of Eq. (3.8). 

where 

°V = l£¥-- (23-43) 
5 zmnujp 

The results are satisfactory, as shown in Table 23.1. 
23.4 Interband Transitions 

As the frequency of incoming photons increases toward 1 eV, so does the probabil-
ity that light will induce transitions where electrons hop between bands. Actually, 
there is no reason in a metal why the such transitions cannot occur for arbitrarily 
small photon energies, but the minimum jump tends to be on the order of 1 eV. 
The dominant optical transition in such a case is described by the same equation, 
Eq. (21.14), that was employed to discuss direct transitions in semiconductors. 

Example: Sodium. Interband transitions in the alkali metals are particularly 
simple, because the conduction band electrons behave very nearly like free non-
interacting electrons, and have energies well above any of the core electrons. The 
Fermi surface is nearly spherical, and deviations from the completely free electron 
model can be attributed to a weak pseudopotential. These claims result from band 
structure calculations, and are also in excellent agreement with the optical measure-
ments to be discussed below, as well as with de Haas-van Alphen measurements 
of the type discussed in Section 16.5.2. 

All of the alkali metals adopt the bcc crystal structure in their ground state. The 
relation of the Fermi surface to the edges of the Brillouin zone is given approxi-
mately by the upper left image in Figure 8.7. The closest approach to the zone edge 
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is at point N, labeled in Figure 7.9, which is at distance 2ir/\/2a = 4.44/a from 
the origin, while the Fermi surface is at distance [67r2]1//3/a = 3.89/a. Figure 23.6 
shows the computed band structure of sodium along the line F — N. At the loca-
tion of the Fermi surface, the energy bands are extremely close to the free electron 
values, and therefore the wave functions are accurately given by Eq. (8.14). 

Figure 23.6. The sodium elec-
tron bands are nearly indistinguish-
able from free electron bands except 
near zone edges, and the Fermi level 
lies sufficient distance away that the 
nearly free electron approximation 
is excellent. The smallest interband 
transition, /zo>low, takes an electron 
from the Fermi surface up to the 
next band. 

In order to evaluate Eq. (21.16), one needs to find the matrix elements 

(ni~k\Pa\n2k). (23.44) 

There is only one occupied band n\, but there are 12 reciprocal lattice vectors 
equivalent to (110) providing upper bands «2 that must be considered. Their con-
tributions are simply additive, so it is enough to deal with one at a time. According 
to (8.15), which dealt with two bands at a time in the extended zone representation, 
the wave functions of electrons in the lower and upper bands are 

*rv*>^ 

Vfh(?) 

ei{k-K)rri] 
eikr + -K n £9 . 

k-K 

V 
j(k-R)-r 

„ik-f 

+ 
Ut 

£° -■ 
k-K n 

This is the wave function 
corresponding to the lower Cy\ AS\ 
branch in Figure 23.6. In V • ^ 
employing Eq. (8.15), K has been 
replaced by —K. 

This is the wave function 
corresponding to the upper 
branch in Figure 23.6. 

(23.46) 
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Most details are left to Problem 2. In brief, (20.70) becomes 

Re[c r a / g ] (w) = 
ne2h2 1 ^ „ \Up\2KJÇp sfsQ p 0 

-es 
^ e ( H O ) v k-K k 

to m2 V _ E h (£L,-£5)2 6{Q_k-Q-hu,) (23.47) 

k is summed over the Brillouin zone, and K ranges over the vectors equivalent to (110) 
under cubic symmetry operations. 

a(LO 
4e27r 
m2uj^ 

K2\Uz\2Di(hjj), 

where the joint density of states Dj defined in Eq. (21.17) takes the form 

H^) = \ E #(£JU-£j-M 
„3 

- ( u ; h i g h ~(jj)(ui- LÜ]0VJ) a vanishes for LÜ > whi8h and m 

with 

LÜ 

4TT2H4K3 

sh=H2K(K + 2kF) 
2hm 

W <LO'1 

U! 
low h2K(K-2kF) 

2hm 

(23.48) 

(23.49) 

(23.50) 

(23.51) 

Figure 23.7 shows experimental measurements of absorption in the alkali met-
als. The onset of absorption is in accord with the theoretical results, and it can be 
used to estimate the size of the pseudopotential Ug, as shown in Problem 2. 

2.0 -

1.5 

2 10 

0.5 

Figure 23.7. Optical absorption of alkali metals, showing quadratic peak due to onset 
of interband absorption. The minimum in absorption at whlgh lies at higher frequencies 
than those shown and it would likely be masked by transitions between additional bands. 
[Source: Smith (1970), p. 3664.] 
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Noble Metals. The noble metals differ from the alkalis because the filled d band 
lies comparatively close to the Fermi surface, as shown in Figure 10.7. This fact has 
two consequences. First, it means that in the frequency range where the dielectric 
constant is dominated by the 5 electrons, e°° is quite large, on the order of 7, be-
cause the d electrons provide a highly polanzable environment, roughly as depicted 
in Figure 20.4. Second, the first interband transitions are not between electrons at 
the Fermi surface and unoccupied bands above. Instead, the lowest-energy jumps 
are between the d bands and the Fermi surface, as predicted by Figure 10.7(A). Ex-
perimental measurements of absorption in the three noble metals appear in Figure 
23.8, showing that absorption begins at the expected frequencies. 

„ 4 
3 

Figure 23.8. Imaginary part of the di-
electric constant measured for copper, 
silver and gold. The absorption edge 
occurs close to the energy of around 
2 eV predicted for copper in Figure 
10.7(A), although it is not completely 
sharp. [Data of Thèye (1968), published 
byAbelès(1972)p. 138.] 

23.5 Brillouin and Raman Scattering 

Electromagnetic waves impinging upon samples have so far been presumed to pass 
through with their frequency unchanged. Brillouin (1922) proposed that photons 
entering a sample with energy hcuo could leave with energy h(coo — u>i) if an ex-
citation of energy Hu>\ were created in the process. Raman (1928) was the first to 
measure this phenomenon directly. The excitations responsible for changing the 
frequency of light can be phonons, magnons, or any of the more elaborate quasi-
particles such as excitons or polaritons. 

Just as for inelastic neutron scattering, two conservation laws control the in-
elastic scattering of light, and photons can either lose or gain energy depending 
upon whether an excitation is created or destroyed. Conservation of energy obvi-
ously requires that the energy change of the excitation match the energy change 
of the light. In the case where an excitation is created, conservation of crystal 
momentum requires that 

_, _, -, kf is the final wave vector of the light, ko is the 
kf = KO k\. initial wave vector, and k\ is the wave vector of 

the excitation. 
(23.52) 
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In a medium with index of refraction n, light obeys the dispersion relation u — 
ck/n, so the two conservation laws can be combined to read 

-(kf — ko) = =fUJ\ ( =F (kf — ko))- T h e m i n u s s i § n creates an excitation, while ( 2 3 . 5 3 ) 
n ^ ' t h e positive sign destroys one. o>i (k) is the 

dispersion relation of the excitation. Com-
pare with Eq. (13.93). 

Light whose frequency is reduced is Stokes scattered light, while light whose fre-
quency increases is anti-Stokes scattered light, and the frequency change is called 
the Raman shift. 

Brillouin's theory concerned the scattering of light from sound waves, so when 
inelastic light scattering creates and destroys acoustic phonons it is known as Bril-
louin scattering, while Raman's experiments involved optical phonons, and inelas-
tic scattering from these excitations is called Raman scattering. Because of the 
high photon fluxes available from synchrotrons, X-rays can be employed as well 
as visible light, leading to the technique of inelastic X-ray scattering. 

Referring to Figure 20.1, the wave number of visible photons is several orders 
of magnitude smaller than the wave number of phonons near the zone edge. For 
this reason, Raman and Brillouin scattering are only able to look at phonons near 
the zone center. Inelastic X-ray scattering, however, is able to explore phonon 
dispersion relations through the entire Brillouin zone. 

23.5.1 Brillouin Scattering 

In the case of acoustic phonons, 

(j, = cnk. cp is the sound speed of a transverse or longi- ( 2 3 . 5 4 ) 
tudinal phonon. 

Adopting the case of Stokes scattering—the minus sign in Eq. (23.53)—and taking 
9 to be the angle between incoming and outgoing light, one has 

nc (kf -ko) = Jkj + *§ - Ikfko cos 6 (23.55) c v V 
2ncp /1 — cos 6 

ko — kfXiko - \ . Because Cp/c-C 1,*/and *Ö can be set equal ( 2 3 . 5 6 ) 
C V 2 to leading approximation on the right-hand 

side. 

.LJo-u,f='?^9EPsine/2 (23.57) 

The data shown in Figure 23.9 show Brillouin scattering from longitudinal and 
transverse phonons in germanium. The phonon frequencies were already known 
from acoustic measurements, so the data were used to extract the complex dielec-
tric constant h of germanium, with the width of the peaks providing a measure of 
the extinction coefficient n. 



Photoemission 703 

a 
a 

a 

R 
_L 

- 6 - 4 - 2 0 2 4 6 

Frequency shift LO/2TTC (cm-1) 

Figure 23.9. Brillouin scattering from the (111) surface of germanium around a wave-
length of 6328 Â. The transverse (T) and longitudinal (L) frequencies, as well as multiples 
of the longitudinal and transverse phonon frequencies due to multiple phonon absorption 
or emission are visible around the central Rayleigh (R) peak. [Source: Sandercock (1972), 
p. 239.] 

23.5.2 Raman Scattering 

In scattering off optical phonons, the frequency u\ is nearly constant near the zone 
center; Raman scattering is frequently used to determine this constant. A more 
elaborate use of the technique is the measurement of the polariton dispersion re-
lation shown in Figure 23.10. Because large variations in this dispersion relation 
occur for very small wave numbers, Raman scattering has an advantage over neu-
tron scattering in this situation. 

23.5.3 Inelastic X-Ray Scattering 

The feasibility of using inelastic X-ray scattering to measure phonon spectra was 
demonstrated by Dorner et al. (1987), and their measurements of the phonon dis-
persion relation of beryllium appear in Figure 23.11. 

23.6 Photoemission 

23.6.1 Measurement of Work Functions 

As photon energies rise toward 4 eV, a new sort of transition becomes possible, one 
in which a photon not only excites an electron to a higher energy band, but ejects 
it from the sample altogether. The physics governing the ejection of electrons by 
photons is essentially the same that governs ejection by elevated temperature, as in 
the Richardson-Dushman equation, Eq. (19.8). Because a photon of frequency ui 
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Figure 23.10. Dispersion relation of polaritons in GaP measured with Raman scattering. 
The data are taken in (100) and (111) directions, and also in polycrystals. To scan through 
the dispersion relation, one frequency of incoming laser light was used, but outgoing light 
intensity was measured as a function of energy for a range of angles 9. Compare with 
Figure 22.5, where a similar dispersion relation was obtained indirectly from absorption 
measurements. [Source: Henry and Hopfield (1965), p. 965.] 
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Figure 23.11. Dispersion relation of longitudinal phonons in beryllium along the c axis, 
comparing inelastic X-ray scattering with neutron scattering. Prior to this experiment, such 
measurements with X-rays had been thought impractical; the situation changed because of 
the large photon flux possible at a synchrotron. [Source: Dorner et al. (1987), p. 182.] 
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can supply energy hu to an electron, the effect of light upon a sample is to reduce 
the work function to 0 — hu>, and when hu > </>, electrons are free to flow out, in 
proportion to the incoming photon density. A plot of photoelectron current versus 
photon energy appears in Figure 23.12, and a table of work functions measured in 
this way appears in Table 23.2. 

Figure 23.12. Electron current 
versus photon energy relative to 
energy of work function of sil-
ver at 15 K. The measurement is 
sensitive enough that the profile 
of the Fermi function is visible. 
The data are somewhat broader 
than the appropriate Fermi func-
tion; the deviation is a measure 
of divergences in the experimen-
tal system from the one-electron 
picture. [Source: Patthey et al. 
(1990), p. 8872.] 

Table 23.2. Work functions of selected metals and compounds 

Compound 
Ag 

Al 

Au 

Be 
Cu 

Fe 
Ge 

K 
Mg 
Mo 

Surface 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(0001) 
(100) 
(110) 
(111) 
(100) 
(111) 2 x 1 
(111)2x8 
(110) 
(100) 
(100) 
(110) 
(HI) 

<MeV) 
4.64 
4.52 
4.74 
4.20 
4.06 
4.26 
5.47 
5.37 
5.31 
5.1 
5.10 
4.48 
4.94 
4.67 
4.68 
4.53 
2.39 
3.71 
4.53 
4.95 
4.55 

Compound 
Na 
Nb 

Ni 

Pt 
Si 

W 

SiC 
A1N 
GaAs 
GaSb 
InP 

Surface 
(110) 
(100) 
(110) 
(111) 
(100) 
(110) 
(111) 
(100) 
( l l l ) 2 x 1 
(111)7x7 
(100) 2 x 1 
(100) 
(110) 
(111) 
(0001) 
(100) 
(110) 
(110) 
(110) 

^(eV) 
2.9 
4.02 
4.87 
4.36 
5.22 
5.04 
5.35 
5.84 
4.85 
4.50 
4.87 
4.63 
5.25 
4.47 
4.6 
5.35 
5.56 
4.91 
5.85 

Values are obtained mainly by photoemission, but also from thermal emission 
using Eq. (19.9), and by measuring currents emitted under strong electric fields. 
Source: Landolt and Börnstein (New Series) vol. 17 and Hölzl and Schulte 
(1979), p. 86. 

| 60 40 20 0 -20 -40 -60 
a. Binding energy (meV) 
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23.6.2 Angle-Resolved Photoemission 

Because of the close association of photoemission experiments with the work func-
tion and because the work function is connected with transitions between solid and 
vacuum, for a long time it was thought that photoemission could measure only 
properties of solid surfaces. It can be used very effectively for that purpose, but has 
even more important application in measuring bulk energy bands. Angle-resolved 
photoemission spectroscopy (ARPES) has become the most important experimen-
tal tool for probing the electronic properties of solids, and makes it possible to map 
out energy bands directly. 

Figure 23.13. Schematic view of angle-resolved photoemission experiment. Photons are 
incident upon a surface at angle %p, and electrons are collected at angle 0. Passing the 
electrons through a curved chamber with an electric field that sends the electrons in a 
curved path, only those in a narrow range of kinetic energies survive to impact upon the 
detector. Varying the electric field allows a measurement of photoelectron current as a 
function of kinetic energy. 

A schematic view of the experiment is presented in Figure 23.13. Photons are 
directed toward the surface of a sample at an angle ip, electrons emitted along an-
gle 0 are collected, and the amplitude of the photocurrent is measured as a function 
of the electrons' kinetic energy. There is a wide range of variables to vary; the 
angles of incoming photons and outgoing electrons, the energies of the incoming 
photons and outgoing electrons, and the Miller index of the crystal surface. A sin-
gle experiment will rarely vary all of these, and a characteristic set of data appears 
in Figure 23.14, where both electrons and photons travel normal to the crystal, 
and photocurrent is measured versus final electron energy for a range of incident 
photon energies. 

To understand the significance of this technique, it is useful to make a compari-
son with two other types of experiment, optical absorption, and neutron scattering. 
According to Eq. (20.70), optical absorption is produced by sums over electron 
transitions between a ground state and all final states compatible with energy con-
servation. Angle-resolved photoemission breaks the sum into constitutive compo-
nents by finding the transition rate to states where an outgoing electron has known 
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energy and momentum. Ideally one would like to think of the experiment as being 
entirely analogous to neutron scattering, with the photon taking the place of the in-
going neutron, while the outgoing electron takes the place of the outgoing neutron. 
Just as neutron scattering contained enough information to obtain phonon disper-
sion relations, angle-resolved photoemission should contain enough information 
to obtain electron band dispersion relations. In the spirit of Section 13.4.1, one 
can write down the consequences of energy and momentum conservation. Energy 
conservation demands 

<̂  + £ k i n - ( - £ ß ) = ^ , (23.58) 

where £#, the binding energy is the negative of the electron's energy before im-
pact by the photon, and </> + £kin, work function plus kinetic energy, is its energy 
after being ejected. Because photon momentum is negligible, crystal momentum 
conservation would demand that the final wave vector kf of the ejected electron 
be equal to its initial wave vector up to the inevitable addition or subtraction of a 
reciprocal lattice vector so as to lie in the first Brillouin zone. So Eq. (23.58) would 
become 

£ß(&final) = Hid — (f) — £ k i n , Map kf back into the first Brillouin zone if (23.59) 
necessary. 

and energy levels £ß(&finai) could be mapped out as a function of fonai- In fact this 
is almost exactly how the experiments are interpreted, but there are considerable 
grounds for worry. The old view that photoemission should be tremendously sen-
sitive to the surface was not all wrong, and the difficulty manifests itself in the fact 
that momentum of the electron in the direction perpendicular to the sample surface 
has no reason to be conserved. Right at the onset of photoemission this claim is 
very easy to understand. A photon travels into the sample and transfers energy to 
an electron that most likely already has some momentum hk± in the direction of the 
surface. On its way out of the sample the electron decelerates, and finally emerges 
with almost no momentum at all, so hkx is certainly not conserved. Momentum 
parallel to the sample surface is conserved because the symmetry that produces the 
conservation law still holds; the system remains invariant when translated through 
a lattice vector parallel to the surface. It clearly does not remain invariant when 
displaced perpendicular to the surface, so the conservation law in this direction is 
lost. 

In principle the missing information about the original momentum of the elec-
tron can be recovered by conducting experiments with different crystal surfaces, 
and then combining the information from the multiple experiments. While such 
experiments have been done, there is an easier solution in practice. A classical 
particle passing rapidly through a short-ranged force loses very little momentum. 
To be more precise, a particle traveling along x through a potential that varies by 
amount AU in a short distance experiences a change in momentum 

f dU AU 
/\p = I dt ~ Assuming that the velocity v can be taken ( 2 3 . 6 0 ) 

J Qx V ' nearly constant. 
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Photoelectron current (arbitrary units and offset) 

Figure 23.14. Characteristic raw data from a photoemission experiment, for photon in-
jection and electron emission in beryllium along [0001]. The curves show photoelectron 
current as a function of energy for a large number of photon energies Viw. The curves are 
offset from one another horizontally so as all to be visible. The upper peak, with a binding 
energy of around 2.5 eV is independent of incident photon energy and is therefore likely 
to be a surface state. The lower peak is dispersive, and likely to correspond to a bulk band. 
[Source: Jensen et al. (1984), p. 5502.] 

where v is its velocity, so the faster the particle moves the less momentum it loses. 
For this reason, angle-resolved photoemission spectroscopy is carried out with pho-
tons in the range of 10-1000 eV (ultraviolet photoemission spectroscopy, UPS) 
or above 1000 eV (X-ray photoelectron spectroscopy, XPS). A bit of uncertainty 
about k± remains, but can be resolved by identifying critical points where dEg/dk 
vanishes and changes sign with zone edges. 

Example: Beryllium. Radiation at the necessary frequencies and intensities be-
came available with the advent of the synchrotron. Figure 23.14 illustrates the type 
of data that photoemission provides. Photons impact a beryllium surface along 
[0001], and electrons are detected returning in the same direction and sorted as a 
function of their kinetic energy. There are two separate bands visible in the figure. 
The upper one is nondispersive; the binding energy is independent of the incoming 
photon energy. Frequently, such nondispersive bands are surface states. The ini-
tial momentum hk± perpendicular to the surface is guaranteed to be zero, and the 
momenta k\\ parallel to the surface can be measured without uncertainty (they too 
are zero in the present case). So the upper band is simply reporting the energy of a 
surface state at k = 0. The lower band is dispersive, and therefore it results from a 
bulk electron energy band. To a first approximation, one can assume that the final 
momentum of the electron equals Hk±, but in addition there are clues within the 
data that help improve upon this approximation. Notice that the lower band has 
maxima and minima. They should correspond to cases where k± reaches points of 
symmetry in the Brillouin zone. Referring to Figure 7.10, the minimum at hco = 35 
eV is point A, while the maximum at around 103 eV is probably I\ In this fashion 
the data provide a direct measurement of £ r as a function of k. 
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Semiconductors. Some of the most careful studies of this type have been carried 
out to investigate the band structures of silicon, germanium, and gallium arsenide. 
Figures 23.15 and 23.16 show theoretically computed band structures compared 
with photoemission data. In addition to mapping out bands below the Fermi sur-
face, inverse photoemission can be used to map out bands above the Fermi surface. 
Inverse photoemission consists in passing electrons of known energy into a sample, 
and measuring the ejected photons. The electrons must go into unoccupied states, 
which is why the information provided by inverse photoemission is complementary 
to the information given by photoemission. 

The theoretical band structures are best viewed as collaborations between the-
ory and experiment. In order to ensure that band gaps agree with experiment, in-
novative terms carrying information about electron-electron interaction are added 
to the calculations. The band structures assembled in Section 10.4 already rep-
resent complicated calculations, but the one in Figures 23.16 and 23.15 are even 
more difficult to reproduce. The validation of the one-electron picture of electronic 
structure is nevertheless remarkable. The one-electron approximation has real ex-
perimental meaning, and electronic excitations of the solid behave as theory says 
they should. 

There are many interesting complications associated with the interpretation of 
photoemission spectra. The intensity peaks always have a width of several elec-
tron volts, a width that is considerably greater than experimental resolution. The 
width is a result of many-body effects—that is, the scattering of electrons off of 

Germanium 

Figure 23.15. Theoretical energy 
bands of germanium compared with 
direct and inverse photoemission 
data. The theoretical calculations 
are due to Louie (1992), p. 79; they 
consist of density functional calcu-
lations supplemented with informa-
tion from the theory of electron in-
teraction. The photoemission exper-
iments are due to Wachs et al. (1985) 
and Straub et al. (1986). 

L A T A X 
Wave vector k 
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Silicon Gallium arsenide 

L r x U,K r L r K x r 
^ ' Wave vector k ^ ' Wave vector k 

Figure 23.16. (A) Theoretical energy bands of silicon calculated with semiempirical pseu-
dopotentials by Chelikowsky and Cohen (1976) compared with photoemission studies of 
Straub et al. (1986) and Rich et al. (1989). Notation for the symmetries of wave functions 
along T given in Table 7.4. (B) Theoretical energy bands of gallium arsenide calculated 
with semiempirical pseudopotentials by Pandey and Phillips (1974) compared with pho-
toemission studies of Chiang et al. (1980) and Williams et al. (1986). 

one another and the resulting decay of the single-particle states. There is much for-
malism to deal with this problem, but it is not easy to get practical information out 
of it. Matters are further complicated by the fact that interactions between surface 
and bulk states can move peaks around in a manner that falls outside the simple 
description used here. 

23.6.3 Core-Level Photoemission and Charge-Transfer Insulators 

Core-level photoemission is a curiously indirect technique. The incoming photons 
are much more energetic than in the photoemission experiments described so far, 
with typical photon energies on the order of 1000 eV, which places them in the X-
ray range and giving the method also the name X-ray photoelectron spectroscopy. 
The requirement of a powerful coherent source of X-rays means that experiments 
of this type did not become possible before the availability of synchrotron radia-
tion (Section 3.4.2.) The photons enter the atom, bypass the valence electrons, and 
knock out a core electron whose binding energy is approximately equal to that of 
the incoming photon. Nevertheless, the experiment is not conducted in the expec-
tation of learning anything about the core electrons. Valence electrons still provide 
the object of study. Knocking out a core electron has the effect of suddenly adding 
a positive charge e to the core of an atom, as if an extra proton had somehow been 
injected into the nucleus, and the interest of the experiment lies in discovering how 
the valence electrons nearby will respond. The spatially localized nature of the per-
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turbation naturally leads to information about the solid with a localized character. 
The type of information that can be extracted and the way it is interpreted is best 
illustrated with a particular example. 

Transition Metal Oxides. Even during the first days that the single-electron band 
theory of solids was being constructed, it was realized that there existed solids that 
violated its predictions in a qualitative way. The prototypical example is NiO, as 
discussed by Mott (1949). The transition metal oxides, from VO through ZnO, 
have many features in common. Most of them adopt the NaCl structure (Figure 
2.7). Density functional theory predicts them to be metals. In fact, they are all 
insulators, with an optical band gap of 1-4 eV, and all antiferromagnetic (Figures 
3.14 and 24.6). The difficulty presented by these compounds is particularly ev-
ident for VO, MnO, and CoO, which have an odd number of electrons in each 
unit cell. The valence bands are not filled, so one can state with certainty in the 
single-electron approximation that they must be metals. Optical absorption of CoO 
appears in Figure 23.17, which clearly shows an optical gap of 4 eV In the case of 
TiO, CrO, Fe, and NiO, the number of electrons per unit cell is even, so these com-
pounds could in principle be insulators. However, the valence bands are built from 
the 2dAs shells, which, after lending two electrons to form 0~11, are incomplete. 
Detailed calculations almost always find these compounds to be metals. Density 
functional calculations for NiO do find it to be insulating once antiferromagnetic 
ground states are explored, but the calculated gap is much smaller than the one 
measured experimentally. 

Among these transition metal compounds, CuO is both the most complicated 
and the most interesting. It stands alone in adopting a complicated crystal structure, 
which is monoclinic, and has four coppers and four oxygens in each unit cell, 
as shown in Figure 23.18. Density functional calculations of Ching et al. (1989) 
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Figure 23.17. Optical absorption of CoO. The first traces of absorption appear at 3 eV, 
but these are attributed either to impurities or to excitonic effects. The steep linear rise, 
which extrapolates back to zero absorption at 4 eV, is thought to be more significant, and 
therefore the optical gap of CoO is conventionally said to be 4eV. [Source: Powell and 
Spicer(1970), p. 2188.] 
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Figure 23.18. The structure of CuO, as determined by Âsbrink and Norrby (1970). The 
monoclinic unit cell contains 4 oxygens and 4 coppers. Stereo pair. 

unambiguously predict CuO to be metallic, but in fact it is a semiconductor with a 
gap of 1.4 eV. 

A great deal of research has been devoted to the transition metal oxides with-
out resolving the essential difficulty. The general belief is that band theory fails 
because the d electrons are rather closely localized on the nickel atoms, and the 
density functional approximation underestimates the consequences of Coulomb re-
pulsion between them. Copper oxide is on the insulating side of the metal-insulator 
transitions discussed in Section 18.3. The qualitative failure of single-electron band 
theory does not mean that there is no means to predict the results of experiments 
in CuO. A wide variety of experimental results can be described through the use of 
simple models to be described below. The use of these simple models is, however, 
predicated upon the knowledge that CuO is an insulator. They cannot predict that 
it belongs to the insulating class, nor explain why it does so. 

The models used to explain CuO are local, which means essentially that they 
view the solid as a large molecule, where most of the physics can be understood 
by analyzing a tiny cluster of atoms, and the more remote atoms provide tiny addi-
tional perturbations. The starting points of these calculations are the energy levels 
of isolated copper and oxygen atoms, and they proceed by then considering what 
happens when the atoms are brought together in pairs. There is no trace of the wide 
range of propagating states, indexed by k, that should characterize a metal. 

These observations partially provide an explanation for why such a large num-
ber of core-level photoemission studies has been devoted to the transition metal 
oxides. A probe with a highly localized character is devoted to solids where the 
excitations have a similarly localized character. X-rays directed at copper are able 
to eject electrons from the 2p core state, which because of the spin-orbit interac-
tion splits into 2p\/2 and 2p3/2 levels. In pure copper, the binding energy of 2p3/2 

is £Core = 923.3 eV. In CuO, not one but two peaks are found near this energy, 
but neither of the peaks has quite the expected energy. The differences in energies 
between the core binding energy £core and the observed peak locations are due to 
changes in state of the valence electrons, and the fact that extra peaks are observed 
is due to the existence of multiple metastable valence states. 

What are these different valence states? The answer is provided by a phe-
nomenological form of quantum mechanics in which one uses a small number of 
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matrix elements as free parameters to fit the experimental data, guided mainly by 
energy levels of isolated atoms. The phenomenology of Fermi liquid theory be-
gan with the observation that metals exist, and it supposes that the actual quantum 
states remain in one-to-one correspondence with quantum states of the free Fermi 
gas. The logic in the case of CuO is similar, except that now by observing the solid 
to be an insulator, one makes the supposition that the actual quantum states will be 
in one-to-one correspondence with states of Cu n O _ n molecules. 

Begin by considering quantum states of isolated atoms. Let \d10) and \d9) be 
the lowest-energy wave functions of a copper atom with 10 and 9 electrons in the 
d shell. In its ground state, copper has ten 3d electrons and one As electron, but 
oxygen is always able to steal at least the As electron from the copper. Similarly, let 
| 0 _ I ) , and JO-11) be oxygen wave functions where the oxygen has acquired one or 
two extra electrons. A point that particularly needs to be emphasized is that these 
wave functions are many-electron wave functions. In particular, they take fully 
into account the energetic penalties that Coulomb repulsion imposes every time an 
additional electron is added to the atom. In the single-electron picture, adding two 
electrons of opposite spin to a solid costs the same energy for each, while adding 
two electrons of opposite spin to an atom can never act in that way. 

Supposing these wave functions to be known, pass now to the CuO solid, but 
focus down on just a single adjoining copper and oxygen pair. Guess that the 
quantum states of the solid relevant for core-level photoemission are in one-to-one 
correspondence with quantum states of this molecule, and that the quantum states 
of the molecule can be constructed from linear combinations of the atomic wave 
functions. Considering only the wave functions where the total valence charge 
shared between copper and oxygen is conserved at 11 electrons, there are two 
states, \d90~11) and |J1 0O_ I). Let Ä be the Hamiltonian for the cupric oxide 
solid, and take the expectation values of the Hamiltonian in these states to be 

(d90~ll\'K\d90~11) = 0 Energies are always arbitrary up to an ( 2 3 . 6 1 a ) 
overall constant, so set this one to zero, 
corresponding to the ground-state 
energy of copper oxide. 

( r f , 0 O _ I | d < | r f 1 0 O _ I ) = A . Charge transfer energy. ( 2 3 . 6 1 b ) 

The matrix element in Eq. (23.61b) is the charge transfer energy, the energy cost 
involved in moving an electron from oxygen to copper. Denote the off-diagonal 
component of "K in these states by 

(d90-n\X\dwO-1) = (dwO-l\M\<Po-u) = T, (23.62) 

so that the low-energy excitations of CuO are given by the eigenvalues and eigen-
vectors of the matrix 

(? I). 
Problem 5 shows that the ground state is 

|*io) = cos 9i\d90~11) - sin 8i\dwO-1) (23.64a) 
where 
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2T 
t a n 2 0 • = When T is much less than A, the ground state ( 2 3 6 4 b ) 

' A ' is almost pure d9, but as T and A become 
comparable the two states mix. 

Now imagine that an incoming photon knocks a 2p3/2 electron out of the core 
of the copper, and construct again the low-lying states of the valence electrons 

/ I j9rv-II | r£>i I i 9 ^ - I I \ _ o The energy needed to eject 
{cl(TO "\\K\CLd'0 " ) = £ c o r e a core electron. ( 2 3 . 6 5 a ) 

/ ^ ' < V v - I | ' y - | ^ 1 0 n - I \ - P a . A TJ Charge transfer energy \C a <J \Ji\C a U ) = Gcore + A — Ucd- minus attraction to core (Z-5.0JD) 
hole. 

The matrix elements of Eq. (23.65) are raised by the energy £core needed to 
eject the core electron. In addition, each electron jumping onto the copper gains 
an energy Ucà through its Coulomb interaction with the positive charge in the core. 
Therefore Ucd displays in the simplest possible way the effect of electron corre-
lation. In the single-electron picture, removing an electron from the core state 
could not change the relative energies of two other states, it would just shift them 
together. 

Assuming off-diagonal terms of the Hamiltonian to be the same as before im-
plies that valence states in the presence of the core hole are given by diagonalizing 
the matrix 

c-core ■* 
T Score + A — Utf 

Denote the eigenstates by 

(23.66) 

|* / 0 ) = cos 9f\cld90~n) - sin 6f\Jd}°0-1) (23.67a) 
ysfX) = sin 6f\cld90-n) + cos 0f\cldmO~l), (23.67b) 

where the label / indicates final states of the valence electrons and 
tan 29f = T . (23.67c) 

A - £ / c d 

To make use of the eigenvectors obtained from these matrices, consider the 
calculation of transition rates for the core-level photoemission experiment. The 
rate at which the process occurs is given by Eq. (20.72). The initial state of the 
system is given by the lowest-energy eigenstate of (23.63), and the final states are 
given by the eigenstates of (23.66). The matrix elements needing to be evaluated 
are 

Because it is the core electron being ejected, the momen-
( r^ lP l r ' ) / vp -n lv f i \ turn operator acts upon the core electron, not on the va- t'y! fo\ 

lence electrons. The first matrix element places P in be-
tween core states with and without the ejected electron. 

The energy difference between the two eigenstates in Eq. (23.67) is 

AE = ^J(A-Ucd)2 + 4T2, (23.69) 

and this energy should correspond to the peak splitting of CuO in Figure 23.19. 
From Eq. (23.68) one can estimate that the ratio of the heights of the two peaks in 
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Figure 23.19 should be (Problem 5) 

|(^oifr/i)i2 

|(*,-o|*/o>|2 tan2(ö,-ö/) . (23.70) 

Figure 23.19. Core-level photoemission 
from CuO, C112O, and copper dihalides, in the 
vicinity of the 2/73/2 state. As shown by the 
gray bar, the satellite line stays fixed for all 
compounds except CU2O, where it is absent, 
while the main line jumps about. [Source: 
Ghijsen et al. (1988), p. 11 324 and van der 
Laan et al. (1981), p. 4371.] 

Completing the description of CuO consists in determining the parameters T, 
A, and Ucd that specify its low-energy excitations. This task cannot be accom-
plished through experiments on CuO alone. Core-level photoemission in the vicin-
ity of 2p3/2 appears in the upper panel of Figure 23.19. Two peaks are visible. But 
how are they to be identified? For example, how can one tell whether (c/d^O -1! 
(d10 for short) or (cId90~ïl\ (d9 for short) lies lower in energy? These questions 
can be answered by comparing core-level photoemission of CuO with core-level 
spectra of other copper compounds such as CU2O and the copper dihalides CuF2, 
CuCl2, and CuBr2. 

Begin by comparing the photoemission intensity of CuO and CU2O. The essen-
tial difference between these two compounds is that in CU2O coppers can satisfy 
oxygen's longing for two electrons by donating one each from the As states, leav-
ing the 3d10 bands intact. Only one peak appears in the photoemission spectrum 
of CU2O, and it must be identified with a predominantly 3d10 final state of cop-
per. The left-hand peak in all the other compounds must then be identified with a 
predominantly 3d9 final state. In the processes that create the left-hand peak, an 



716 Chapter 23. Optical Properties of Metals and Inelastic Scattering 

X-ray photon hits a 2/?3//2 core electron of a copper atom whose outer shell is in 
state 3d9, and the outer shell remains in state 3d9 as the electron is ejected. This 
process should be insensitive to the atoms surrounding the copper, and accordingly 
the energy of this peak changes little as one moves from compound to compound. 
For the right-hand peak, ejection of the core electron is accompanied by capture of 
an electron from a neighboring oxygen to form 3d10. This second process depends 
upon the interaction with neighbors, and therefore should vary in energy from com-
pound to compound. The rightmost peak in Figure 23.19 does in fact move about 
in energy more noticeably than the satellite. 

Having determined the nature of the peaks in Figure 23.19, there still remains 
the problem that the three parameters A, T, and Uccj cannot be determined uniquely 
from the two equations (23.69) and (23.70). Problem 6 shows how to combine in-
formation from the different compounds to provide a plausible solution. Assuming 
that T and Ucd are approximately the same for all compounds while A varies, one 
can determine that Ucd R i 9 e V J w 2.5 eV, and that for CuO, A « 1.5 eV. 

Problems 

1. Qualitative optical properties: 

(a) What is the frequency of electromagnetic radiation at which aluminum should 
become transparent, according to the Drude theory? 

(b) What is the frequency of electromagnetic radiation at which very pure sili-
con, at 300 K, should become transparent according to to the Drude theory? 

(c) Pure silicon has a silvery mirror-like surface. Provide a qualitative explana-
tion for why it is not transparent. 

(d) Draw a sketch of the absorption coefficient of silicon from UJ = 0 up to the 
visible. 

2. Optical absorption of alkali metals: The aim of this problem is to verify 
Eq. (23.48). The calculation is straightforward, except that expressions such 
as Eq. (20.70) have a very condensed notation, and it can be confusing to 
untangle them. 

(a) Verify that Eqs. (23.45) and (23.46) follow from Eq. (8.14) when one focuses 
upon a single Bragg vector K. 

(b) In the present case, one really needs to consider the 12 equivalent vectors 
(110). How should Eqs. (23.45) and (23.46) be generalized? 

(c) Show that Eq. (23.47) follows from Eq. (20.70). 

(d) Carry out the integrals needed to verify Eqs. (23.50) and (23.51). 

(e) Find numerical values for wlow and u;hlgh in the case of sodium, in units of 
Hz, and also evaluate the joint density of states in units of l/[eVcm3]. 
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(f) Referring to Figure 23.7, estimate the pseudopotential energy \Ug\ forK = 
(110). 

3. Helicon waves: Plasma oscillations constitute the sloshing back and forth of 
a cloud of electrons. In the presence of a static magnetic field, the calculation 
becomes more complicated. Assume a magnetic field BQ is present in a con-
ducting material, pointing along the z axis, and one passes an electromagnetic 
wave along the same axis. An analog of the purely classical calculation of the 
plasma frequency may be obtained as follows: 

(a) Begin with Maxwell's equations 

— 1 BR 
V x £ = — — (23.71) 

c at 

1 BE A-K -
V x ß = - | + - J , (23.72) 

c at c 
with 

j(u) = a(uj)E(uj). (23.73) 

Assume that the electric field propagates along the z axis as 

È = E0eil7-iwt (23.74) 

with 

Define 

Show first that 

Jfc=(0, 0, k). (23.75) 

ko = - . (23.76) 
c 

kxkxE0 + kleEo = 0 (23.77) 

and find an expression for the dielectric tensor e in terms of the conductivity 
tensor a. 

(b) Assuming rotational symmetry around the z axis, so that x and y are equiva-
lent, and assuming further that 

: 0 (23.78) 

because electrons move in circles in the x-y plane only, show that Eq. (23.77) 
becomes 

and find e+ and e_ in terms of exx and e xy 
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(c) Take 
/ = -nev (23.80) 

and 

mv = 
v 

E + -xB0 c 
mv 
— . (23.81) 
r 

Recall that B0 is the static field along the z axis. Solve Eqs. (23.73), (23.80), 
and (23.81) for the dielectric tensor, and as a consequence find the frequency 
of the helicon modes. You should find along the way that 

u)l 1 
exx = l - ^ M , , - . 2 1 , (23 .82) 

üüüü [1 — {Lüc/uy\ 
where 

eBn 
LÜC = —- (23.83) 

mc 
and 

w = w + i'/r. (23.84) 

(d) Find the values of LOC and LOP for aluminum in Bo — 104G. For u comparable 
to the cyclotron frequency, show that the first term on the right-hand side of 
Eq. (23.82) can be neglected. 

(e) Find the dispersion relation for helicon waves, and say whether they propa-
gate when to is less than or greater than the cyclotron frequency 

4. Landau damping: 

(a) The susceptibility of an electron gas is given by Eq. (23.33). Argue that x 
will acquire an imaginary part when the denominator of Eq. (23.33) can van-
ish, and find an expression for the smallest value of q for which it is possible. 

(b) Evaluate this expression for aluminum 

5. Core-level photoemission I: 

(a) Verify Eqs. (23.64) and (23.67). 
(b) Verify Eqs. (23.69) and (23.70). 

6. Core-level photoemission II: 

(a) For each of the copper dihalides in Figure 23.19, take T to be a free param-
eter, and using Eqs. (23.69) and (23.70), plot Ucd versus T. Make use of the 
energy gap A£ and the ratio of peak heights in order to determine A as a 
function of T. Show that the curves intersect for Ucd ~ 9 eV; therefore, give 
Ucd this value. 

(b) Find A for CuO. 
(c) The optical band gap of CuO can now be estimated based upon a property of 

the matrix (23.63). Decide what calculation should correspond to this physical 
quantity, and find the optical band gap. 
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24. Classical Theories of Magnetism and 
Ordering 

24.1 Introduction 

The ancient Greeks knew of the attraction between lodestone and iron; magnets 
receive brief mention from Plato and Aristotle. Curious statements echo back from 
antiquity, that "a loadstone rubbed with garlic does not attract iron...." [Gilbert 
(1600), p. 2], but the practical use of lodestone as a magnetic compass is also 
quite old, dating at least before 1000 A.D. Unlike electrified amber, a lodestone's 
attractive force is permanent, but strangely selective. It attracts iron, but not other 
metals such as silver or gold. A magnet split in half produces two weaker magnets. 
And "[a]pply a red-hot iron rod to a magnetized needle and the needle stands still, 
not turning to the iron; but as soon as the temperature has fallen somewhat it at 
once turns to it" [Gilbert (1600), p. 107]. 

If magnetism is the oldest great mystery of solids, it has also remained one of 
the most difficult to explain. One reason is that the origin of magnetism is relent-
lessly quantum mechanical. No solid built of charged particles could have magnetic 
properties in a world completely ruled by classical physics. Most magnetic effects 
result from quantum-mechanical interactions of electrons with one another, inter-
actions that cannot even be accommodated within the single-electron theory that 
has dominated study so far. To make matters even more interesting, magnetic ions 
interact with each other over large distances, and their response to external stimuli 
tend to be hysteretic and spatially complex. Some of the very simplest questions 
one can possibly pose in the subject of magnetism are still unsolved. 

24.2 Three Views of Magnetism 

24.2.1 From Magnetic Moments 

The macroscopic theory of magnetic media can begin with the claim that within 
the solid there lives a population of magnetic moments M, whirling loops of charge 
producing currents according to 

7mag = c V x M . (24.1) 

When one defines 
H = B-4TTM (24.2) 
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724 Chapter 24. Classical Theories of Magnetism and Ordering 

and separates ymag from other currents, the second of Eqs. (20.10b) becomes 

V x ß = 7 r ^ m a g -f 7 F- / e x t -| Currents are separated into ( 2 4 . 3 ) 
C C C Öt "external" and "magnetic." 

= 4 ^ x Ä + ^ + I ^ (24.4) 
c c ot 

^ V x H = 4 ^ + i f . (24.5) 
c c ot 

The rest of Maxwell's equations remain unchanged, featuring B as before. In a 
linear magnetic medium, the magnetic induction B and magnetic field H are related 
by 

B = fiH, (24.6) 

where \i is the magnetic permeability, and the material is called paramagnetic if 
\i > 1 and diamagnetic is ß < 1. The magnetic susceptibility is defined to be 

y = . In general, \ is a tensor. ( 2 4 . 7 ) 

When magnetic response is linear, 47r% = /U — 1, so paramagnets have x > 0, and 
diamagnets have x < 0. Because x is dimensionless in both SI and cgs systems of 
units, one must be warned that the susceptibility in SI is defined to be 4ir greater 
than the susceptibility in cgs. Unit conversions provide no warning of this conven-
tion. 

24.2.2 From Conductivity 

The magnetic dipole density M seems to be a new physical addition to the problem 
of electromagnetics, but so long as it is linearly related to B, it can be derived from 
a special case of the phenomenology introduced by Eq. (20.11) relating current j 
to electric field E. The argument has a weakness, but it is nevertheless interesting 
to watch magnetism emerge from this point of view. Working in the space of 
Fourier transform variables q and u, divide the electric field into longitudinal and 
transverse components according to 

EL = ^-^-, ÈT = Ê-ÈL. (24.8) 
<r 

Then a medium with magnetic permeability ß is one in which the relation between 
current and field is 

j=^(l--)ÈT (24.9) 
4TTILÜ V [l' 

ß j fp' / \ \ — — -> Reexpressed ' n real space, using 
= > ^ f = 1 — V x V x £ theidentity ( 2 4 . 1 0 ) 

Ot 4lT V / / / V x V x £ = V V - £ - V 2 £ . 
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= — ( l - - ) V x — From Eq. (20.10b). ( 2 4 . 1 1 ) 
4ir V n ) dt 

-f c ( 1 \ -* — -> 
=> j = ( 1 V x f ß - S o ) Bo is a time-independent field. ( 2 4 . 1 2 ) 

47T V [I' 

, \ \ - - 1 3D FromEq. (20.10b), and setting 
= > V x ß = 1 J V x ß H — B0 to zero; the need to set B0 to ( 2 4 . 1 3 ) 

^ / i ' C Ot zero is the technical flaw in this 
derivation. 

- B -* -* 1 Ö D 
= » V x - = V x # = - — . ( 2 4 . 1 4 ) 

// c o? 

24.2.3 From a Free Energy 

The weakness in deriving Eq. (24.14) from Eq. (24.8) appears in Eq. (24.12); a 
time-independent magnetic field Bo arises, and it must arbitrarily be set to zero 
to obtain the conventional form of magnetic response. In addition, the derivation 
assumes a linear relation between B and H. The goals of a proper thermodynamic 
account of magnetism are first to remove this ambiguity, and second to deal with 
the fact that many important magnetic phenomena are not linear. Without placing 
magnetism on such a foundation, it is not possible to describe some of the more in-
teresting forms of magnetic response such as formation of ferromagnetic domains, 
or superconductivity. 

Begin by supposing the existence of an energy functional 

£{ß(r )} (24.15) 

that gives the energy of a magnetic system when the magnetic induction B(r) is 
specified. In addition to isolated systems, it is often useful to consider a system 
such as the one sketched in Figure 24.1. A sample is placed within a large box, 
surrounded by current-carrying wires that constitute its only contact with the ex-
ternal world. The contents of the box do work on the outside world only if an 
electric field E arises. If so, the field does work at a rate J dr E ■ j e x t ; equivalently, 
the external world does work on the box at the rate 

J O p The integral is taken over the box containing 
/ d7 F(7) ■ 7 (~r) k"1'1 s a m P ' e ar ,d wires. The box needs to be (1A 1 ft) 
I \ J jextV )■ iarge enough that at its outer edges the inter- ^ ' ' dt action between wires and sample has become 

very small. 

Figure 24.1. A sample is placed within a 
box and influenced by the outside world only 
through currents yext that are created by wires 
passing into the box and that are physically 
separated from the sample. 
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Supposing, however, that energy £ as a functional of induction B in the box is 
known, the change in energy can be computed in another way. Define 

H(r) = 4-7T—zr—-. See Appendix B for the definition of func- (24.17) 
ÖB(r) tional derivatives. 

Then for any small change in B(r), the change in energy is 

1 f -. - -. 
8E = — / dr H(r)-SB(r). There is no need to assume that H is a linear (24.18) 

4-7T J function of B. 

In particular, 

C fdrHVxÈ (24.20) 
4-7T 
c 

A-K 
c 

4TT 

f r - - - - - - 1 Use V ■ (A x ß) 
/ dr [ £ - V x / / - V - ( / / x £ ) j =(VXÂ)-B-(VXB)-A. (24.21) 

/

The second term of Eq. (24.21) can be converted 
d7 F ■ V X H t o a surface integral of energy radiated out of the / 9 4 22^ 

box. For a large enough box, and slow enough ^ ' ' 

Comparing Eqs. (24.22) and (24.16) and requiring them to be equal for arbitrary 
fields E imposes on £ {B} the constraint 

- 4-7T -
V x H{7) = — ;ext. (24.23) 

Although H is produced by the external currents, it cannot be computed by pretend-
ing the sample to be altogether absent and finding the field that would be produced 
without it. The sample imposes boundary conditions on this equation, and the 
solution depends upon them. 

From this starting point the rest of magnetostatics can be recovered. The mag-
netization is defined by 

M{r) = ~{B{r)-H{r))- (24.24) 

for linear materials the permeability and susceptibility can be defined as before. 

Equilibrium States. An isolated system in equilibrium at temperature T and with 
specified induction B(r) will choose a state that minimizes 

5(T,B) = E(B)-TS. (24.25) 

Using Eq. (24.24), changes in the free energy can be written 

ÖJ = -SOT + f drH{?)- 5M{r) + ̂ - j dr SH2 (r). (24.26) 
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If the system is connected to the world by external currents, as in Figure 24.1, 
3~ is no longer the appropriate thermodynamic potential. By altering its magnetiza-
tion, the system can extract energy from the sources that maintain the current je]it 

fixed. Under these circumstances the thermodynamic potential to minimize is not 
3, but instead S, where 

3 = 3 " - — /drB{r)-H{7). (24.27) 
47T J 

A brief calculation to verify this claim is the subject of Problem 3. Small changes 
in external currents produce changes in S 

63 = -— I drB(r)-SH(r) (24.28) 
47T J 

= - f drM{r)-6H(r)-^- j dr H{r) ■ SH(r). (24.29) 

When the field H is employed as an independent variable, then thermodynamic 
equilibrium is given also by minima of 

S = S + ^ - / drH2{r) (24.30) 
Φ7T J 

for which 
ÖS =-SOT- f dfM-SH. (24.31 ) 

The thermodynamic potential 9, which describes an ensemble at fixed temperature 
T and field H, is a common starting point for studies of magnetic systems. 

B versus H. A source of confusion is the question of when to employ B and when 
to employ H. There are two competing considerations. As indicated in Eq. (24.23), 
the source for H is external currents. Experiments that control external currents 
therefore control H more directly than B, and they are frequently reported in terms 
of H. In particular, for a long thin cylindrical sample with its axis pointing along 
B, Eq. (24.23) implies that no matter how the sample responds to B, the field H is 
constant everywhere in space, because the component of H tangential to the sur-
face is continuous, and the normal component vanishes everywhere except at the 
ends. It is natural in this case to speak of H as the experimentally applied field. On 
the other hand, the microscopic field perceived by nuclei or localized electrons is 
clearly B. Thus experimental results should feature H, while microscopic Hamil-
tonians should employ B. The fact that this convention is not standard is probably 
due to the fact that the magnetic permeability of many metals differs from 1 only 
by parts in 105 (Table 25.4), so that in these materials B and H are equal for all 
practical purposes. 

24.3 Magnetic Dipole Moments 

The magnetic dipole moment density M is really just a convenient way of viewing 
closed loops of current, but it is worth exploring the properties of these dipoles a 
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bit further to find their energy in external magnetic fields. The magnetic dipole 
moment of a current distribution can be defined as 

f 1 
ffl = I d~p—f x j(7). In order for the magnetic moment to be inde- ( 2 4 . 3 2 ) 

J 2 c pendent of the choice of origin, the integral 
of the current over space must vanish. 

The Lorentz force on any current distribution is 

p = - j dr J(r) x B{r). (24.33) 

If the current distribution j forms a closed loop and then vanishes except in the 
vicinity of some point, say the origin, then it makes sense to expand the magnetic 
induction B as a Taylor series about that point, obtaining 

F=- [ dr J(r) x [5(0) + (r• V)fl(0) + . . .] (24.34) 

= 0 + (ffl X V) X B S e e Problem 1 to verify this claim. ( 2 4 . 3 5 ) 

= V ( m • B) S e e Problem 1 to verify this claim. ( 2 4 . 3 6 ) 

=4> [J = —ffi. B. U is the potential energy of the dipole in an ( 2 4 . 3 7 ) 
external field. 

According to Eq. (24.37), magnetic dipoles should tend to align along external 
fields to minimize their energy, and solids should all be paramagnetic. However, 

Table 24.1. Susceptibilities of insulating elements near 290 K 

Element 

Ar 
As 
B 
C 
Cl 
Ge 
H2 
He 
I 
Kr 

X 
(10~6 cm3 mole~ 
-19.18 
-5.24 
-6.70 
-5.88 

-20.18 
-7.99 
-4.00 
-1.88 

-45.68 
-28.49 

Element 
') 

N2 
Ne 
P 
S 
Se 
Si 
Te 
Tl 
Xe 

X 
(10- 6 cm3 mole"1) 
-12.04 

-7.02 
-26.63 
-15.39 
-23.69 

-3.09 
-37.00 
-43.42 
-43.33 

AU entries are diamagnetic. The data are in cgs; susceptibilities 
in SI are defined to be 4n times greater. The recorded values are 
obtained by dividing the dimensionless susceptibility x by moles 
per cm3. Source: Landolt and Börnstein (1959), vol. 2, part 9 and 
Grigoriev and Meilkhov (1997). 
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the calculation assumes that somehow the current j flowing through the dipole 
remains constant as the dipole orients itself in an external field, and it neglects the 
work involved in maintaining the current. 

In fact, a free charge circling in a magnetic field is diamagnetic. A positively 
charged particle under the influence of a magnetic field in the positive z direction 
circles in a clockwise direction, and according to Eq. (24.32), or the right-hand 
rule, it produces a magnetic moment in the negative z direction. 

Both diamagnetism and paramagnetism are possible because some magnetic 
moments really are permanent, while others arise only in response to applied fields. 
The internal current loops of electrons are fixed by quantum mechanics, and they 
cannot be altered by external fields. Therefore electrons orient their intrinsic mag-
netic moments in the direction of applied inductions and enhance them, producing 
paramagnetic behavior with fi > 1. However, placing electrons in a box and con-
sidering the magnetic contributions due to their circular orbits in the external fields 
tends to lead to diamagnetic behavior, \L < 1. Examples of diamagnetic materials 
appear in Table 24.1. 

Figure 24.2. Schematic view of 
Faraday balance. A cylindrical sam-
ple is placed within a coil whose 
windings increase in density to pro-
duce a magnetic induction with 
both constant and linearly increas-
ing components. The resulting force 
on the sample is measured as a 
change in its weight. 

Experimental Phenomena. Measuring the magnetic properties of materials usu-
ally comes down to the ability to make an accurate measurement of magnetic mo-
ments, either those that arise in response to an external applied field or those that 
arise spontaneously. One classic technique is the Faraday balance, shown in Fig-
ure 24.2. A long cylindrical sample is placed inside a coil where the density of 
the windings increases linearly in the vertical direction, so that when current flows 
through the coil it produces a magnetic induction of the form 

B7{z) = Bn ~\~ zB\. The component of the magnetic field in the ( 2 4 . 3 8 ) 
vertical direction increases linearly in the ver-
tical direction. 

The constant part of the induction, Bo, induces a magnetic moment m in the sample, 
while the gradient in the induction, dBz/dz = B\, produces a force mB\, according 
to Eq. (24.36). 
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24.3.1 Spontaneous Magnetization of Ferromagnets 

So long as the response of a solid to magnetic fields remains linear, magnetism 
is captured by Eq. (24.14). Most condensed matter specimens are either diamag-
netic or paramagnetic, particularly at elevated temperature. However, the study of 
magnetism gains new interest when it begins to focus upon a set of spectacular 
phenomena in which magnetic dipoles take on a life of their own and cannot be 
described by any function of the instantaneous magnetic field, let alone a linear 
one. 

Below a critical temperature Tc of 1042 K, iron develops a spontaneous mag-
netization, which rises continuously to a maximum value at very low temperatures. 
This magnetization can be measured by conventional means, such as the Faraday 
balance, but it is also possible to measure directly the intense magnetic fields seen 
at each iron nucleus that are a signature of the magnetic order. Two separate ex-
perimental techniques are employed. The first is the Mössbauer effect, and data of 
this type from which the internal magnetic fields were extracted appeared in Figure 
13.20. The second is nuclear magnetic resonance (NMR), the analog of electron 
spin resonance discussed in Section 22.4.3. The magnetic field at the nucleus is de-
duced by using the known magnetic moment m/ of the nucleus and then searching 
for resonant absorption of oscillatory radiation when the nucleus is driven between 
two spin states in a static magnetic field. Because the mass of nuclei is much larger 
than the mass of electrons, the characteristic frequency for resonant absorption is 
in the megahertz for nuclei, as opposed to gigahertz for electrons, but the principle 
of the two resonant absorption experiments is the same. Resulting measurements 
of the internal field in iron versus temperature appear in Figure 24.3. 

The natural unit for discussing magnetic moments is the Bohr magneton 

eH 
ßB = ^ , (24.39) 

2mc 
whose value is 

9 .27-10- 2 1 e rgG _ 1 . (24.40) 

Figure 24.3. Internal magnetic 
fields in iron, with temperature mea-
sured in terms of the Curie tem-
perature Tc — 1042 K, and internal 
fields in terms of their room temper-
ature value HQ. The magnetization 
falls off in a similar but not identical 
fashion, disappearing at the same 
temperature. [Source: Preston et al. 
(1962).] 

Temperature T/Tc 

21, //ß = 9 .27-10 _ z l cmesu 
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Magnetic moments for selected elements and compounds appear in Table 24.2. 
Ferromagnets exhibit a specific heat peak in the vicinity of the critical tempera-

ture Tc where ferromagnetism first appears, called the Curie temperature and shown 
in Figure 24.4(A). This peak is characteristic of second-order phase transitions, and 
will be discussed further in Section 24.6. Above the transition temperature, they 
are paramagnets with magnetic susceptibility, as shown in Figure 24.4(B) obeying 

X^Y~Q] (24.41) 

0 is sometimes called the Curie-Weiss temperature, and is intended to provide an 
accurate description of susceptibility at high temperatures. It does not necessarily 
coincide with the Curie temperature, although the two are always of the same order 
of magnitude. 

. i . i . i . i . 

50 100 150 200 250 300 

Temperature T (K) 

Figure 24.4. (A) Specific heat of iron attributed to magnetic effects in the vicinity of the 
ferromagnetic transition temperature. [Source: Hofmann et al. (1956) p. 53.] (B) Magnetic 
susceptibility \ °f EuO. l/x is plotted and is linear, showing that \ c* l / ( ^ — Tc), and the 
Curie-Weiss and Curie temperatures coincide. Source: Matthias et al. (1961), p. 160.] 

Iron's neighbors in the periodic table, nickel and cobalt, are also ferromagnetic. 
The outermost electrons of these elements are two As electrons forming a conduc-
tion band. Right below them in energy is an incomplete d shell, the electrons 
of which group together to produce a large magnetic moment. The interatomic 
interactions are large enough that the d electrons form a narrow band of mobile 
electrons, but simultaneously they display features of localized moments. Sections 
26.4 and 26.7 will introduce some of the theoretical models used in such cases. 

Several of the rare earths are also ferromagnetic, but the localization of the 
associated moments is more complete, so the difficulties in understanding these 
elements are less severe than it is for the transition metals. 

24.3.2 Ferrimagnets 

While the magnetization of iron drops smoothly and continuously to zero as tem-
perature T approaches Tc from below, some rare earth magnets have a more compli-
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Table 24.2. Properties of magnetically ordered materials 

Compound Tc 9 mi Compound Tc mi 
(K) (K) (fjLB) (K) M 

Cr 
CoO 
CuO 
Mn 
MnO 
NiO 
o2 
Co 
Dy 
Eu 
Fe 
Gd 
Ho 
Ni 
Tb 

a 
a 
a 
a 
a 
a 
a 
f 
f 
f 
f 
f 
f 
f 
f 

312 
291 
230 
100 
122 
523 

23.9 
1394 

85 
289 

1043 
302 
20 

628 
20 

- 3 3 0 
- 7 4 5 

- 6 1 0 
- 2 4 7 0 

1415 
157 
108 

1100 
289 

87 
650 

87 

0.59 
3.8 
0.5 
0.5 
5 
2 
2 
1.72 
10.65 
7.12 
2.2 
7.97 
10.9 
0.6 
10.9 

FeFe2Û4 
(magnetite) 

FeNiFe04 
FeLiFeC>4 
FeCuFe04 

FeCoFe04 

fi 

fi 
fi 
fi 
fi 

858 

858 
943 
728 
793 

4.1 

2.3 
2.6 
1.3 
3.7 

The symbols a and f refer to antiferromagnets and ferromagnets, and the ferrites la-
beled fi are ferrimagnetic. mj refers to magnetic moment per atom and is measured 
in units of the Bohr magneton, /xfl = eh/2mc [Eq. (24.39)] at 0 K. The rare earth 
ferromagnets do not become paramagnets at their ferromagnetic Curie temperature, 
but instead make a transition to antiferromagnetism, and become paramagnets above 
a second critical temperature. Source: Landolt and Bernstein (1959), vol. 2, part 9, 
Slick (1980), and Grigoriev and Meilkhov (1997). 

cated behavior, shown in Figure 24.5. At a compensation temperature, the magne-
tization reaches zero, but it passes through this value and out the other side before 
eventually reaching zero for good at Tc. The interpretation of this behavior is that 
unit cells contain magnetic moments pointing in competing directions, and tending 
to diminish as temperature increases at different rates. This view is confirmed ex-
plicitly by neutron scattering. Materials of this type are called ferrimagnets; at the 
compensation temperature the two moments exactly balance. 

The magnets known through the centuries such as magnetite (lodestone) are 
of this type. The thermodynamics of ferrimagnets is different from that of ferro-
magnets. In the high-temperature paramagnetic phase, the magnetic susceptibility 
is observed to behave as 

■y = . That is, ferrimagnets are distinguished by a ( 2 4 . 4 2 ) 
T + 101 negative Curie-Weiss temperature. 

The idea of compensating magnetic moments within each unit cell is due to 
Néel (1948), and the magnetic transition temperature Tc of ferrimagnets is called 
the Néel temperature. 
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Figure 24.5. Spontaneous magnetization of rare earth iron garnets 5Fe2Û3 R2O2, where 
R stands for one of the rare earths in the figure. The spontaneous magnetization passes 
through zero at the compensation temperature, below the temperature where magnetic or-
der disappears altogether. Experiments actually measure only the absolute value of the 
magnetization; the magnetization is shown becoming negative to make the slope of the 
magnetization curve continuous. [Source: Bertaut and Pauthenet (1957), p. 262.] 

24.3.3 Antiferromagnets 

A particular type of ferrimagnet is the antiferromagnet, where competing moments 
within a unit cell cancel each other out entirely. Chromium and manganese are 
elemental antiferromagnets. The oxides of the transition metals also tend to be 
antiferromagnets. The existence of antiferromagnets was deduced by Néel on the 
basis of the temperature dependence of the susceptibility, Eq. (24.42), well before 
the neutron scattering data in Figure 3.14 revealed extra lines. One possible ar-
rangement of spins in antiferromagnetic compounds is illustrated in Figure 24.6. 
Magnetic ordering in rare earth alloys can become even more complicated. It is 
possible to have interesting helical arrangements, also known as canted. 

Figure 24.6. Spin structure of tran-
sition metal oxides such as CoO 
or NiO. The structures are deter-
mined by neutron scattering, as in 
Figure 3.14. Spins point along and 
against [110] directions, and they 
are aligned within (111) planes. 
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24.4 Mean Field Theory and the Ising Model 

The simplest model of ferromagnetism, of the transition between order and disor-
der, is the Ising model, created by Ising's adviser, Lenz. Consider a collection of 
spins located at sites on a regular lattice. Ferromagnets tend to be anisotropic; there 
is an easy axis along which the energy is lower than in other directions. In the Ising 
model, this tendency is taken to extremes, and the spins can point only along this 
direction, either up or down. The spins are, however, classical and are represented 
by the integers ± 1. Neighboring spins interact through a coupling constant J, and 
the energy of the collection of spins is 

£ = - Y. 3°RaR> ~ E H^a«> <24-43) 
(RR'} R 

(RR'} means that one should sum over all distinct nearest-neighbor pairs. The 
variables a^ are integers taking values ± 1. The strength of the interaction with 
the magnetic field is proportional to the Bohr magneton ßß-

so the probability of a certain spin configuration at temperature T is 

7(an) oc exp ^ ß ^ JaRaä,+ß ^ HfiBaä 

(RR') R 

(24.44) 

Ising computed the free energy and magnetization of spins obeying Eq. (24.43) 
for a one-dimensional array. His results were disappointing, for there is no phase 
transition, and the average magnetization vanishes at all temperatures in the one-
dimensional chain. Therefore, following Ising's calculation, the question was still 
open as to whether statistical mechanics could explain phase transformations. At 
a conference on statistical mechanics held in 1937, experts were evenly divided 
when asked to vote on on the question, "Does the partition function contain the 
information necessary to describe a sharp phase transition" [Pais (1982), p. 432]. 
The matter was settled definitively by Onsager (1944). He found an analytical solu-
tion of the two-dimensional version of Ising's model, with a phase transformation 
between order and disorder at a temperature Tc obeying tanh[J / kßTc] = \/2— 1. 
Below this temperature, there is long-range ferromagnetic order, with all spins 
pointing on average in the same direction. Above this temperature, the average 
magnetization vanishes. Techniques similar to those found by Onsager have per-
mitted the complete solution of a small number of additional models, discussed by 
Baxter (1982), but do not, unfortunately, constitute a general approach to order-
ing problems. For example, it has not proved possible to extend such methods to 
dimensions higher than two, and the Ising model still has no complete solution in 
three dimensions. 

Mean field theory, first introduced by Weiss (1907), provides a valuable ap-
proximate solution to ordering problems. It has the advantage of simplicity and 
clarity, even accuracy for certain ranges of temperature, despite the disadvantage of 
producing qualitatively incorrect answers right where the problem becomes most 
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interesting, in the vicinity of the phase transition. The idea is to replace a sys-
tem of interacting spins by a single spin sitting in the mean, or average, magnetic 
field produced by all its neighbors. This average magnetic field is calculated self-
consistently by asking what magnetic field the single spin must produce when it 
sits in a uniform external field and by demanding that the two fields agree. The 
qualitative error in this calculation is the neglect of correlations. For example, 
near a phase transition, magnetic spins aggregate into blobs of spins pointing in the 
same direction, while different blobs point in different ways. The average magnetic 
field may be zero while simultaneously the chance of a spin and its near neighbors 
pointing in the same direction is very high. Mean field theory cannot correctly 
characterize this situation, because if the average field is zero, mean field theory 
predicts no correlation between a spin and its neighbors. 

Formally, mean field theory proceeds by observing that the difficulty in com-
puting a partition function resulting from Eq. (24.43) lies in the products of spins 
cr̂ cr̂ ,, and that the partition function could immediately be summed if only a single 
power of the spin appeared. Write 

°R = a + \?R ~ v) a is the average spin. (24.45) 

and treat (er̂  — a) as formally a small quantity. Then, keeping up to first order in 
this supposedly small quantity, one obtains 

aRaR' = W + (UR - u)\ Ier + (°R> ~ cr)] -o{an + aä,)-a - 2 (24.46) 

Let z, the coordination number, be the number of nearest neighbors with which 
each spin interacts, and N be the total number of spins. Then 

- E JaRaR> - E H^aR ~ NzJ(J2/2 -Y^{H + H)ßBaä (24.47) 
W) R 

Use Eq. (24.46) for cr^a^,. H is the mean field seen by each spin, produced by 
its neighbors.The factor of 1/2 in the first term comes from the restriction to 
distinct nearest-neighbor pairs. 

with 
H = zJu 

Ms ' 
The partition function Z for the spin system can therefore be written 

Z « J2 exP \-ß{NzJ(T2/2-Y,{H + H)ßBcjli) 
a\...ON 

-ßNzJä2/2 exp[ß{H + H)iiB] + exp[-ß(H + H)/iB} 

(24.48) 

(24.49) 

(24.50) 

^J=-kBT In Z = NzJâz/2-NkBT ln[2 cosh ßßB{H + H)}. (24.51) 

To close the mean field theory, one has to determine the mean field H, or equiva-
lent^ the mean spin ä. The mean spin is 

^ = 7 E 7 ? E aR> exp[-/3£ WR}} Z ^ N' 
O\...UN RI 

(24.52) 
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= - V — — — e x p [ - / 3 £ {a A] See Eq. (24.43). (24.53) 
Z ^ ßNuBdH FL H x RIS 

= Because 3r=-kBTlaZ. (24 54) 
N fiBdH 

= tanh/3/iß ( / / + / / ) Employing the approximation of Eq. (24.51). (24.55) 

=>■ ä = tanh ß[zJä + ßBH}. (24.56) 

The solutions of Eq. (24.56) are best illustrated by the graphical construction 
of Figure 24.7. For external field H = 0, solutions of Eq. (24.56) divide into two 
regions. 

High-temperature phase. For kßT > zJ there is no net magnetization, a — 0 is 
the only solution. If one plots a graph of free energy versus magnetization, 
there is a single minimum at a = 0. 

Low-temperature phase. For kßT < zJ Eq. (24.56) has three solutions. One of 
these is still ä = 0, while the other two are at values that approach ±1 as 
the temperature approaches zero. Now, the free energy has three extrema and 
two minima, as in Figure 5.5. The free energy of the solutions with ä / 0 is 
lower than the free energy of the solution with a = 0, so they are preferred in 
thermal equilibrium. In magnetic systems, these two solutions are related by 
symmetry and are degenerate; the system chooses between them randomly in 
a process of spontaneous symmetry breaking. 

Figure 24.7. One solves Eq. (24.56) graphically by drawing a and tanh ßzJä on top of 
one another and looking for where they cross. For ßJz < 1, the only crossing is at ä = 0. 
However, for ßzJ greater than the critical value of 1, there are three crossings. 

24.4.1 Domains 
The lessons of this simple calculation are somewhat puzzling when one applies 
them to the transition metal ferromagnets. As shown in Table 24.2, iron, nickel, 
and cobalt have transition temperatures Tc = zJ/kß on the order of 1000 K. Taking 
the case of iron, with z = 8, one estimates an exchange coupling J « 0.01 eV and 
a mean field H, from Eq. (24.48), at each ion to be 7 • 106 G. Direct measurements 
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of the field were discussed in Section 13.5, and they are in fact about 3 • 105 G. But 
even after adopting the smaller number, such fields seem exceptionally large on two 
counts. First, the magnetization of iron can be made to alter through application of 
external fields that are comparatively small, only on the order of 1 G. It is hard to 
understand how iron could be affected by such small fields when vastly larger ones 
are operating internally. Second, referring back to Section 22.2, it is somewhat 
hard to see how spontaneous magnetization is supposed to arise at all. According 
to the calculations of that section, in a spherical region filled with a cubic array of 
dipoles, the net field acting upon each dipole due to all the other dipoles is zero. The 
arguments referred to electrical dipoles, but nothing changes if magnetic dipoles 
appear instead. Ferromagnetic order is supposed to arise because of interactions 
between nearby spins, but if the interactions have the form of dipole fields they 
cancel each other out completely. 

The explanation of these two puzzles is that two rather different types of forces 
operate between magnetic moments. At very short distances, on the order of atomic 
spacings, magnetic order is induced by powerful exchange forces that arise quan-
tum mechanically from the competition of Coulomb repulsion with Fermi statis-
tics. This local ordering can be ferromagnetic, antiferromagnetic, ferrimagnetic, or 
of a more complicated canted type. Simultaneously, at distances large compared 
with atomic spacings, magnetic moments interact as dipoles, with an energy that 
falls off as 1 /r2 between any two dipoles, but that can diverge if one sums over all 
the interactions between a large population. 

In order to accommodate these two competing interactions, ferromagnets or-
ganize into domains, as depicted in Figure 24.8. The first theory for the size and 
shape of the domains is due to Landau and Lifshitz (1935). The simplest context 
in which to study them is a model similar to the Ising model. In the Ising model, 
spins can point only along the easy axis, a condition too restrictive to permit the 
study of domains. However, domain structures, as shown in Figure 24.8(B), can be 
captured by spins pointing along four directions, x, —x, y, and —y. Suppose that 
the easy axis is still present, and also suppose that spins pointing along ±x have an 
energy a per spin greater than spins pointing along ±y. Finally, because domains 
emerge from the competition between long- and short-range forces, the magnetic 
induction B created by all the spins needs to be included as well. The energy of the 
spins is therefore 

£ = - J2 J°R-VR> + Y1 [a(o"s-x)2-fiBB-ââ +— j drB-fl. (24.57) 
(RR1) R 

a = ±x or ±)>, and B is the spatially varying magnetic induction created by the 
magnetization M = /xg<r. 

Because H = B-4TTM, ATZ SE./SB = H as it should according to Eq. (24.17), 
if the sum over R is interpreted as an integral for the purposes of computing the 
functional derivative. 

Depending upon the size of the coupling constant J, the system will minimize 
its energy in different ways. When the coupling constant J is large and the system 
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is sufficiently small, it is favorable for all spins to point in the same direction. The 
sample will create an overall induction B extending outside it, because the price 
to be paid for this field is less than the cost of creating an interface between spins 
pointing in opposite directions. 

In the opposite limit of large samples and small coupling J the system is willing 
to create many interfaces in order to eliminate the energy penalty of the magnetic 
induction. To leading approximation, in this limit, energy is minimized by requir-
ing 4irô£/ÔB = H = 0. Because V • B = 0 is one of Maxwell's equations, one must 
have V • M = 0 within the sample, and h • M = 0 at the boundaries, where « is a unit 
normal. Figure 24.8(A) shows an arrangement of spins that obeys these conditions. 
Magnetic field lines within the sample follow the spins. All trajectories created by 
integrating along the spin vector field form closed loops inside the sample; no mag-
netic field leaks out. To ensure that V • M equal zero, it is enough to require the 
normal component of M at the interfaces between domains to be continuous. 

The scale of domains in Figure 24.8(A) is determined by noting that the energy 
cost of forming interfaces of horizontal length L is JL/la per length along y, where 
a is the spacing between spins. If L 3> /, the cost of forming the extra triangular 
interfaces is small, but the anisotropy energy cost of forming the regions with hor-
izontal magnetization is al1 /la2 per length along y. As a function of /, the domain 
energy is 

This is energy per length in the y direction. ( 2 4 . 5 8 ) 

( 2 4 . 5 9 ) 

The value of / that minimizes £. ( 2 4 . 6 0 ) 

This is energy per area. ( 2 4 . 6 1 ) 

The domain scale / depends upon the macroscopic scale of the sample, as well as 
on the ratio between the coupling J and the anisotropy energy a. Assuming J and 
a to be roughly the same order of magnitude, Eq. (24.59) predicts that the size 
of domains will be given by the geometric mean of the sample dimensions and 
the lattice spacing. The energy of the system per volume is smaller by a factor of 
\jLfa than the scale set by J and a. 

In cubic crystals such as iron, the form of magnetic anisotropy described by 
Eq. (24.57) is too simple, because the anisotropy shares the symmetries of the cubic 
system. In real crystals the pattern of domain magnetizations frequently resembles 
Figure 24.8(B) rather than Figure 24.8(A), or it forms even more elaborate patterns 
when the edges of the sample do not coincide with symmetry axes. 

Dynamical problems in which magnetic spins evolve while interacting with 
each other and with external fields belong to the study of micromagnetics. An 
introduction is provided by Aharoni (1996). 
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(A) 

(B) 

Figure 24.8. (A) Domain formation in a rectangular bar magnet. Notice that the flux 
lines form closed loops, so no flux escapes from the bar, because the normal component of 
the magnetic induction is continuous across the domain boundaries. (B) In an anisotropic 
crystal, domain structures become more complicated. While domains orient themselves so 
as to reduce the amount of flux that escapes the crystal, they also follow crystalline axes, 
and some small domains produce magnetic fields outside the sample. 

24.4.2 Hysteresis 

As shown in Figure 24.9, changing an external magnetic field by 0.05 G can alter 
the induction of a ferromagnetic sample by 0.1 T. Compared to internal fields of 
300 kG, the applied field seems negligible. The reason for the large measurable 
effect is that external fields cause changes in the sizes and orientations of domains, 
rather than ripping apart the local magnetic order. The dynamics of the domains 
are complicated, and their states depend in detail upon the particular history of 
fields that has been applied to them. Figure 24.9 illustrates the hysteretic relation 
between B and H as an applied field is increased or decreased in various ways. 

An interesting phenomenon illustrated in Figure 24.9 is return-point memory. 
If H is increasing and then the direction is reversed at H\, the magnetic field B 
decreases along a shallower path than it had during the initial rise. Reversing H at 
H2 so that it rises again, B follows yet a third path until H reaches H\ again, where 
B changes slope to follow the original curve. One explanation for this phenomenon 
appears in Problem 8. 
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Figure 24.9. Hysteresis in the magnetization curve of Permalloy. Discrete steps are visible 
in the magnetization curve only when it is traversed slowly; each of the steps in fact consists 
of hundreds of smaller discrete events, down eventually to minute level at which individual 
magnetic domains reverse. [Source: Bozorth (1951), p. 542.] 

24.5 Other Order-Disorder Transitions 

24.5.1 Alloy Superlattices 

The appearance of ferromagnetic order at a definite temperature is an example 
of the competition between energetic advantages of placing spins in their ground 
state, and the entropie advantage of randomizing them. The same conflict between 
two basic impulses is the same in the ordering of alloys, or in the transformation 
of solids into liquids. Therefore, all of these processes can be described at the 
conceptual level by Ising models. To demonstrate the generality of this approach, 
and to show how mean field theory may be extended to deal with increasingly 
complicated circumstances, the discussion will now focus upon the ordering of 
alloys into superlattices. 

The superlattices described in Section 5.3.3 undergo an order-disorder transi-
tion at temperatures on the order of 400°C. At first the problem appears to bear 
little resemblance to the ordering of magnetic spins, but in fact the two problems 
are almost identical. A description of the superlattice problem in the grand canon-
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ical ensemble is indistinguishable from a description of the magnetic problem in 
the canonical ensemble. 

To show why, begin with two species of atom occupying every site of a lat-
tice. The essential features of the superlattice transformation are contained in 
models where the energy of the system depends only upon interactions between 
very nearby atoms, and in the simplest models, only interactions between nearest 
neighbors are retained. 

Suppose that when atom A is next to atom B the energy of interaction between 
them is EAB < 0, and also suppose that the interactions of atoms A and B with 
neighbors of their own kind are EAA and EBB respectively. Because every site of 
the lattice is occupied by one type of atom or the other, the state of the system is 
completely specified by creating a variable a^, which adopts values ±1 at every 
lattice site. When a^ = —1, an atom of type A is at site R, and when a^ — 1, an 
atom of type B is there. To express the energy of the system in terms of ag, one 
needs to find a function / of two variables such that 

f(-l,-l) = eAA, / ( l , - l ) = / ( - l , l) = eAB, and / ( l , 1) = eBB. (24.62) 

A simple choice is 

f(aR ' aR' ) = C l + C2 (<7jj + 0> ) + C3 O$0ft, (24.63) 

leading to 

r, N £BB + £AB, . s 
J{VR, VR>) = ~ K^R + ^R'l-^AB^Rfrft- (24.64) 

In order to obtain this expression, require Eq. (24.63) to satisfy Eq. (24.62), 
obtaining three equations in three unknowns, for C\, C2, and C3. In addition, 
because energies are always arbitrary up to an overall constant, set C\ = 0 =S> 
£A4 + 2EAB + ess = 0 to simplify the result. 

Experiments are carried out with the overall composition of the alloy fixed. How-
ever, technical features of the statistical mechanics are simpler if one allows the 
relative concentrations of atoms to vary and adopts a grand canonical ensemble 
and chemical potential ß instead. The probability 7 of encountering some config-
uration a^ is therefore 

. . ß is the chemical potential 
9(<Tg) = exp i ßa V ag - ß V f(aS, a'B) } for replacing an atom of (24.65) \ RJ r \ r r /_^ R ^ J \ RI R) i type A with an atom of type 

where 

type A with an atom of type 
R (ÜR1) I B; the total number of 

atoms remains fixed. 

exp < ßßBH Y^aR + ßJ Yl aRaR' 
R (M') 

> Sum over distinct _ (24.66) 
nearest-neighbor pairs RR'. 
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[iBH = [i z and J = eAB. (24.67) 

HB is the Bohr magneton, not to be confused if possible with the chemical po-
tential ß . z. is the coordination number—that is, the number of nearest neighbors 
of each atomic site. 

Equations (24.67) and (24.44) are identical. Nevertheless, the path through 
mean field theory needs to be traced through again because of some differences 
in the underlying physical problems. Superlattice ordering occurs because it is 
favorable for atoms of different types to be neighbors. Thus CAB and therefore J 
are negative. The superlattice is like an antiferromagnet, not a ferromagnet. In 
addition, the relative concentration of atoms A and B is specified experimentally, 
so the chemical potential (equivalently the field H) must be adjusted at the end of 
the calculation to ensure that the proper concentration has been obtained. 

Bragg and Williams (1934) showed how to address these problems. Mean field 
theory requires one to anticipate some features of the solution, using a guess about 
the most likely configurations of a^ in order to calculate estimates of (24.66) in a 
self-consistent fashion. Take, for example, the case of CuZn in one-to-one ratio (ß-
brass). Experiment indicates that when this alloy forms a superlattice, every atom 
tends to be surrounded by near neighbors of the opposite type, in the CsCl structure 
(Figure 2.8). The atoms are segregated into two sublattices. This observation leads 
to the guess that for all those configurations a^ that have high probability according 
to Eq. (24.66), almost all neighbors of a$ = 1 will have a^, = — 1, with occasional 
exceptions that grow in number as one approaches the transition temperature of 
400°C. 

The formal way to employ this idea is to write 
Think of aA and <xg as values close to — 1 and 

\ In rr \ rr n -i-( rr rr \ '■ respectively. They will equal the mean val-
0RA—°^^~\°RA °^>^0RB—°B^-\0RB ° ß ^ ues of the alloy variable a on the/I and ß 

sublattices. 
(24.68) 

and to treat the cross-term (a^ — aA)(a^ — &B) as negligibly small in Eq. (24.66). 
With this approximation, (24.66) becomes 

7 = exp {ßpBH ^a^ + ßJ ^ {°AG$B + aBaRA ~ °AOB)}, (24.69) 
R {RARB) 

Here RA ranges over all sites on the A sublattice, and RB ranges over all neigh-
bors of RA on the B sublattice. 

Yl exp lyßiißHa^ +ßJz(aBoR-A -aAaB/2)j 
HA 

z is the coordination 
J ] exp {ßnBHah + ßJz(aAaäe - aAaB/2)} . number- (24.70) 
RB 

The probability of any configuration is therefore given approximately by multiply-
ing the independent probabilities of all the individual variables a^. Because aA and 
OB are the mean values of a on the two sublattices, one can use (24.70) to calculate 



Critical Phenomena 743 

them self-consistently. For example, the mean value of any variable a^ is 

e{ßßBH+ßJzaB} _ e{-ßpBH-ßJz<TB} 
- \ = The probability that as = 1 times 1 plus the 
RA / e{ßßBH+ßJzaB} + e{-ßmH-ßJzaB} ■ p r o b a b m t y j t e q u a l s _«j> [ i m e s _ L 

(24.71) 
Thus 

a A = tanh [ß^BH + ßzaBJ] (24.72a) 
aB = tanh[ßßBH + ßzaAJ]. (24.72b) 

The chemical potential JJL is determined by the requirement that atoms A and B 
be present in equal proportion, which implies that 

_ If NA and NB are the numbers of A and B 
<JA+&B = U. sublattice sites, then J2R aR = NB ~ NA = ( 2 4 . 7 i ) 

J2RA
 aR + E R 8

 aR =NA°A+ NBaB. 

One can only achieve Eq. (24.73) if [xBH = /i — z(eBB + CAB)/2 = 0, so finally one 
has 

<JA = — tanh( ßJzCTA) = tanh(ß\ J\ZCTA). Remember that superlattice ordering only hap- ( 2 4 . 7 4 ) 
pens when J = eAB < 0. 

Because Eq. (24.74) is identical to Eq. (24.56), it can be solved by the method 
indicated in Figure 24.7. 

24.5.2 Spin Glasses 

Spin glasses were discovered by Jacobs and Schmitt (1959). They occur when the 
interactions between spins have random sign or magnitude. There are typically 
huge numbers of nearly degenerate states separated by energy barriers of many 
different sizes. Edwards and Anderson (1975) wrote down the analog of the Ising 
model for these systems, and it was solved by Parisi (1987). 

24.6 Critical Phenomena 

Mean field theory is a crude approximation, but it describes the physics of phase 
transitions rather well, except near one special location on the phase diagram, the 
critical point, sketched in Figure 24.10. What makes this point so critical? As 
particularly emphasized by Fisher (1974) a comparison of phenomena applicable 
to magnets and to fluids provides some explanation. 

• The critical point is a unique location in the phase diagram. In a magnetic 
system, the critical point occurs for zero external magnetic field and at the 
critical temperature Tc, which is the lowest temperature at which the spon-
taneous magnetization vanishes. In a fluid, for any given pressure there is a 
temperature below which fluid and gas can coexist, and above which fluid and 
gas merge into a single phase. The critical point occurs at the pressure for 
which this critical temperature is as high as possible. In CO2, for example, 
the critical point is at 72 atm and a temperature of 31.04°C. 
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Figure 24.10. (A) Schematic phase diagram for a ferromagnet. The critical point lies at the 
highest temperature where there is spontaneous magnetization in zero field. (B) Schematic 
phase diagram of liquid-gas system. Beyond the critical point, fluid and gas phases merge 
and cannot be distinguished as pressure varies. The two phases of the magnet are related 
by symmetry, but this is not true in the liquid-gas system. 

• The specific heat both of magnets and fluids diverges approaching the critical 
point. The divergence takes the form of a power law. 

• The magnetic susceptibility diverges in magnetic systems, and the compress-
ibility diverges in fluids. These divergences also take the forms of power laws. 

• The divergences result from large fluctuations: large correlated domains of 
spins flipping back and forth in magnets, and large regions altering between 
one density and another in fluids. Fluids that normally are transparent become 
milky, displaying critical opalescence. 

Investigating these phenomena led to two important ideas: 

Universality. Divergences near the critical point are identical in a variety of ap-
parently different physical systems and also in a collection of simple mod-
els. Systems group into a small number of universality classes. For example, 
ferromagnetic salts, carbon dioxide, and the Ising model all behave identi-
cally near the critical point, and belong to the same class. However, two-
dimensional magnetic films are essentially different from three-dimensional 
magnetic systems, and they belong to a different class. 

Scaling. The key to understanding the critical point lies in understanding the rela-
tionship between systems of different sizes. Scaling functions, such as those 
used to describe localization in Section 18.5.2, are the key to encoding the 
universal features of the critical point. Formal development of this idea led to 
the renormalization group of Wilson (1975). 

24.6.1 Landau Free Energy 

In order to see that mean field theory fails near the critical point, it is necessary 
to analyze its predictions and compare them with experiment. This task could 
be carried out by starting with Eq. (24.56). However, it is preferable to adopt a 
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framework developed by Landau (1937) that exhibits clearly the minimal set of 
assumptions needed to obtain the results of mean field theory. 

Suppose that the free energy of a magnetic system is analytic in the vicinity of 
the critical point, and that all physical quantities can be expressed as a Taylor series 
in the magnetization and temperature. This assumption seems reasonable, because 
the magnetization vanishes right at the critical point, and one only needs to know 
how the free energy depends upon it when it is small. So 

3{M, T) =A0(T)+A2(T)M2 +A4(T)M4 +HM. The coupling between the small magnetiza-
tion M and the external field H is given by 
Eq. (24.26). 

(24.75) 
The coefficients AQ(T) . . . A4(T) are undetermined functions of temperature. The 
reason that only even terms in M appear is that the system must be invariant under 
M —> —M, H —► —H; terms odd in M alone must vanish. 

c 
3 

cd 

l-i 

f-i 

g» 
0 

M (Arbitrary units) 
Figure 24.11. Form of Landau's free energy, Eq. (24.75), for A2 > 0, Ai = 0, and A2 < 0. 
Energies are measured relative to An. 

Let Tc be the critical temperature, and define the reduced temperature 
T-Tr c 

Tc 
(24.76) 

which is a dimensionless variable designed to vanish right at the critical temper-
ature. Phase separation begins when 5" develops a concave structure. A4 must 
always be positive or else 3" is minimized by sending M to infinity. AQ sets the zero 
of energy and has little significance. Therefore the onset of nonzero magnetization 
is governed by A2(T). As shown in Figure 24.11, the shape of 3 changes when 
A2 passes through zero, so the critical point must be the place where A2 vanishes. 
Measure energies relative to AQ(TC), and let ai and 04 be constants. The form of 
the free energy in the vicinity of the critical point must be 

3" = a2tM2 + a4M4 + HM. (24.77) 

Spontaneous Magnetization. The equilibrium magnetization is determined by 
minimizing the free energy. Therefore, it must satisfy 

H + 2ta2M + 4a4M3 = 0. (24.78) 
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When H = 0, M = 0 always satisfies Eq. (24.78). However, for t < 0 there are two 
more solutions: 

, /2|f|<22 r 
M=l ^ \ l 2 f o r î < 0 Figure 24.11 shows that for! < 0 these val- ( 2 4 . 7 9 ) 

I y 4^4 u e s 0f M give a lower value of the free en-
l. 0 fo r t > 0 . erêy m a n M = 0, and therefore correspond to 

equilibrium. 

Specific Heat. With the behavior of M in hand it is possible to evaluate a collection 
of other quantities. The specific heat is determined by the identity 

<9£ d 003^ ^ o r a derivation from thermodynamics, see for ex-
C v = = — ample, Landau and Lifshitz ( 1980) pp. 47^18. The ( 2 4 . 8 0 ) 

QT QT dß relation for £ also is easily derived by writing out 
the expression for £ in the canonical ensemble. 

1 d d ( 5" \ 
( l + O ^ f r r r ) UseEci-(24-76)- (24.81) 

Focusing on small t. (24.82) 

Tcdty ' dt \l+t 
1 d23 
Tc dt2 

1 al 
Tc 2a4 ° r ? K Insert Eq. (24.79) into Eq. (24.77). ( 2 4 . 8 3 ) 

0 for t > 0. 

Magnetic Susceptibility. Turning on an external field H changes the equilibrium 
magnetization. For t < 0, take 

2\t\a2 M=sl^±+qH, (24.84) 

where q is to be determined. Placing Eq. (24.84) into Eq. (24.78) and expanding to 
first order in H, one finds that 

1 (24.85) 
4a2k| 

Expanding similarly about M = 0 for t > 0 gives 

1 
dM 
~dH 

for t < 0 

for t > 0. 

4 I { I 0 2 (24.86) 

2/Û2 

Critical Isotherm. Finally, right on the critical isotherm at t — 0, one has that 

H + 4a4M3 = 0^M(xHl/3. (24.87) 

The suppositions of the Landau theory are entirely reasonable, yet experiments 
prove them wrong. The assumption that fails is the assumption that the free energy 
can be expanded in a Taylor series about the critical point. 
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Correspondence between Liquids and Magnets. Experiments on critical point 
phenomena have been conducted both in magnets, and in liquid-gas systems. The 
two systems act almost identically in the vicinity of the critical point, once corre-
sponding variables have been identified. 

A correspondence between magnetic and liquid-gas systems can be constructed 
in a manner similar to that used for superlattices in Section 5.3.3. Imagine that the 
material of type A in that section is a fluid, while the material of type B is gas. 
Then the equations describing the superlattice can immediately be interpreted as 
describing liquid-gas phase transitions. At temperatures below the transition, fluid 
prefers to group with fluid and gas prefers to group with gas, meaning that the en-
ergy €AB is positive, and the fluid-gas system corresponds to a ferromagnet, with 
positive J in Eq. (24.43). Above the transition temperature, fluid and gas mix to-
gether, forming a single homogeneous phase, while below the transition, gas and 
liquid phase separate. 

Based on this discussion, one forms the following correspondence: The mag-
netization M corresponds to the difference in particle density An between liquid 
and gas. The thermodynamic variable conjugate to M is the magnetic field H, so 
the variable conjugate to An, which is the chemical potential /J,, must correspond 
to magnetic field. The chemical potential is hard to measure directly. However, 
according to the Gibbs-Duhem relation 

dP = sdT + ndß, See Landau and Lifshitz (1980), p. 72; s is the ( 2 4 . 8 8 ) 
entropy per volume. 

o 
D 

"X 

CuK2Cl4 • 2H20 
Cu(NH4)2Cl4 • 2H20 
CuRb2Cl4 • 2H20 
Cu(NH4)2Br4-2H20 

• 

1 
• 

• 
u 

wrt*i* . . . . i 

• 

-

•o«<» 
| f j I VVI ^ ^ I I I I I I I 
' 0.0 0.5 1.0 1.5 2.0 

T/Tc 

Figure 24.12. Molar heat capacities of four ferromagnetic copper salts versus scaled tem-
perature T/Tc. [Source Jongh and Miedema (1974).] 
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so that if temperature is fixed, pressure is proportional to chemical potential, and 
pressure can therefore be used instead of chemical potential as the analog of mag-
netic field. 

Six exponents are conventionally defined to characterize various quantities that 
become singular near the critical point. 

Specific Heat—a. The specific heat both in fluids and in magnets diverges as 

Cv(f) ~ \t\~a; (24.89) 

data for magnets appear in Figure 24.12. Mean field theory predicts a discontinuity 
in the specific heat, not a divergence. 

Magnetization and Density—ß. Figure 24.13(A) displays experimental measure-
ments of temperature versus magnetization near the critical point. According to 
Eq. (24.79), T should approach Tc as M2. The data however show that T ap-
proaches Tc as M3. Figure 24.13(B) shows that temperature versus density at con-
stant pressure for a collection of liquid-gas systems is characterized by the same 
exponent. So 

M~\tf and An~\t\ß. (24.90) 

Letting nc be the density at the critical point, one can take An to be «liquid — nc, 
nc — «gas> Or H|iqUid «gas-

Compressibility and Susceptibility—7. The isothermal compressibility of fluids 
diverges near the critical point: 

^ = 1^~1^~l'l"7" (24-91) 

n aP nc oP 

The analogous divergence for a magnet is 

dM 
ä/7 = x~kr7- (24-92) 

Mean field theory predicts 7 = 1 , but the measurements find a slightly larger expo-
nent. 
Critical Isotherm—8. A next critical exponent occurs by making measurements 
right at Tc on the critical isotherm 

P~\ÙM\S, (24.93) 

and for a magnet 
\M\~\H\X,S. (24.94) 

The mean field prediction is 6 = 3, but the measurements find ö ~ 5. 
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Figure 24.13. (A) Temperature versus magnetization, measured using nuclear magnetic 
resonance by Heller and Benedek (1962) for the antiferromagnet MnF2, near the critical 
temperature T = 67.336 K. The data are fit well by T/Tc = 1 -A|M|3. (B) Coexistence 
curve for eight fluids, measured by Guggenheim (1945). The data can be fit reasonably well 
by curves of the form T/Tc = 1 —A±\n/nc— 1|3, where A1*1 is a constant taking different 
values depending on whether n is greater or less than nc. The best quadratic fit is also 
shown, but it suits the data less well. 

Correlation Length — v. A final pair of exponents relates to light scattering 
experiments that probe the correlation function of fluids. According to Eq. (5.48) 
the two-particle correlation function g is closely related to the scattering function 
S. Near the critical point, g(r) is observed to behave as 

g(r) — 1 ~ e~r'^ There are power-law corrections given in Eq. (24.99), ( 2 4 . 9 5 ) 
so exp[—r/£]/ri+rl is more accurate. 

where £(T) is called the correlation length. The implication for scattering experi-
ments is that 

S(q) -l=nf dr S* [g{r) - 1] (24.96) 

~ / dr e-r/t+i*7 ~ 1 K . . (24.97) 

The correlation length £ diverges approaching the critical point, with 

£~|f | - , / . (24.98) 

This divergence can be measured by plotting l /S(q) versus q2 

Power-Law Decay at Critical Point—77. Right at the critical point, the correlation 
function g decays as a power and not as an exponential. The rate at which it decays 
is 

g ( r ) ~ r - 1 " ^ , (24.99) 
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discontinuity 
l 
2 
1 
3 

0.11-0.12 
0.35-0.37 
1.21-1.35 
4.0-4.6 
0.61-0.64 
0.02-0.06 

0.110 
0.325 
1.241 
4.82 
0.63 
0.032 

Table 24.3. Summary of critical exponents, showing correspondence between 
fluid-gas systems, magnetic systems, and the three-dimensional Ising model 
Exponent Fluid Magnet Mean Field Theory Experiment 3d Ising 

~ä Cv ~ |/|~Q Cv ~ \t\~c 

ß An~|f|" M~\tf 
7 ÄV ~ |f |—' x ~ k l - 7 

Ö P~\An\s \H\~\M\6 

v Z~WV__ Z~\t\~v_ 
V g{r) ~ r ' v g(r) ~ r ' 

Source: Vicentini-Missoni (1972) p. 67, Cummins (1971), p. 417, and Goldenfeld 
(1992) p. 384. 

and this equation defines the exponent r\. 
Table 24.3 presents a summary of the six exponents and gives their values in 

mean field theory and experiment. 

24.6.2 Scaling Theory 

The Landau theory of phase transitions makes no assumption more severe than 
that the free energy could be expanded as a Taylor series in the neighborhood of 
the critical point. Because the Landau theory fails, this assumption must fail, and 
the question is what should replace it. 

A full theory of the critical point is extremely elaborate. The concept of univer-
sality makes it possible to construct a theory by focusing upon simple models, such 
as the Ising model, whose critical behavior is identical to that of the experimental 
systems. Yet even for these model systems, the analysis is extremely involved. The 
most accurate determination of critical behavior for the Ising models is given by 
power-series expansions of the partition function, discussed by Domb (1974). 

Rather than developing the theory, the discussion will focus upon developing 
the language needed to describe experimental observations. The basic observation 
is that near the critical point, physical quantities behave as power laws, that these 
power laws are universal, but that the exponents are far from obvious. It has be-
come commonplace to claim that natural phenomena behave as power laws, but the 
standard set in the field of critical phenomena, where precise power-law scaling is 
observed over many decades, has rarely been matched. 

Widom (1965) showed that many experimental observations could be described 
by assuming a particular type of scaling relation between thermodynamic variables. 
The scaling theory can take a number of different forms, one of which is to make 
an hypothesis about the manner in which variables appear within the free energy. 

Consider the power-law divergence of the specific heat, shown in Figure 24.12. 
Because the specific heat is obtained from the free energy as in Eq. (24.80), the 
free energy 5(T, H) must have a singular piece. Separate the singularity out in the 
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form 
—3— = \t\x>G(t,H), (24.100) 
VkBT " v ' y' v ' 

where the exponent x\ has been chosen so that when H = 0, G is a smooth function 
of r. At / / = 0 the specific heat must diverge as \t\~a, so one has that 

Cv~~äT~f)R~~t (24.101) 
u l USJ Notice that differentiating by T lowers the power 

_v y _ 9 _ rv oft, but multiplying by T does not raise the ( 2 4 102^ 
1 ' power off; it multiplies by the constant Tc. ^ ' ' 

Scaling Form for Free Energy. The main difficulty posed by a form such as 
Eq. (24.101) lies in the experimental fact that when H ^ 0, there are no singular 
quantities as t passes through zero. The specific heat is only singular right at the 
critical point. With a nonzero magnetic field, the specific heat displays a peak as 
a function of temperature, but varies smoothly. Choosing a form for G in accord 
with this experimental observation proceeds in two steps. 

First, assume that the magnetic field and temperature enter G only in the com-
bination 

G(t H) = G ( I . ^o is some constant, and A is some exponent. ( 2 4 . 1 0 3 ) 

One way to express the idea behind this functional form is to say that the impor-
tance of the magnetic field to the free energy can only be judged by comparing it to 
some reference value, and it is supposed that this reference value scales as a power 
law with the reduced temperature. 

Second, assume that G itself behaves as a power when its argument becomes 
extremely large: 

lim G ( v ) ~ / 2 . (24.104) 
y—>oo 

Making this assumption, one has for small \t\ but nonzero H that 

A2~a (T4TKY2 ~ \t\2~a~Ax2- (24.105) r^/ 
VkBT ' ' \H0\t\A 

Thus the free energy can be made nonsingular whenever H ^ 0, provided that 

x2 = ^ . (24.106) 

The exponent A can be expressed entirely in terms of exponents that have 
already been defined by examining the spontaneous magnetization. One has 

- M = — = l?|2"Q G' I I See Eq. (24.31). 

( 2 4 . 1 0 7 ) 



752 Chapter 24. Classical Theories of Magnetism and Ordering 

When H —> 0, the magnetization must vanish as \t\&, so 

\t\2-a-A~\tf 
^A = 2-a-ß. 

(24.108) 
(24.109) 

Notice one peculiarity. Above the critical temperature, the spontaneous magnetiza-
tion must vanish, yet it is predicted to have the same power law divergence above 
as below. These two facts are consistent if one observes that the coefficients of 
the power-law can be different above and below Tc: the coefficient above Tc is just 
zero. 

Relations Among Exponents. Having determined the singular parts of the free 
energy in terms of the exponents a and ß, it is possible to continue calculating 
the various singular quantities that are found experimentally. All the remaining 
singularities can now be related to the ones that have already been found. 

For example, the magnetic susceptibility is 

dM 
dH 

\f\2—a 

H=O~X ' H2\t\2A 

? | 2 - a - 2 A _ | , | - 7 

=>7 = a + 2A-2 . 

G"( H 
Ho\t\A' H=0 

Combining Eq. (24.112) with Eq. (24.109) gives 

2 = a + 2/3 + 7. 

(24.110) 

(24.111) 
(24.112) 

(24.113) 

This relation among exponents, the Widom relation, is a consequence of the scaling 
assumption, and it is obeyed in all known cases. 

The exponent S describes the relation of the magnetization to the magnetic field 
on the critical isotherm. As t —> 0, 

M 
1 2 - Q H 

H0\t\Al1 \H0\t\A 

~HX2~l
 = / / ( 2 - « - A ) / A 

1 2 — a — 7 
S = 

x2-l 

^6=1 + 

2 —a + 7 
7 
ß' 

Use Eq. (24.113). 

(24.114) 

(24.115) 

(24.116) 

(24.117) 

which is the Rushbrooke relation. 
The final exponents, v and r\, relate to properties of the correlation function 

g(r), so the connection between the correlation function and the free energy needs 
to be determined. The relation is provided by observing that fluctuations in particle 
number are related to the compressibility Kj through 

'AN2 kBTN2 dV 
keTn2VKT See Landau and Lifshitz(1980), p. 342. (24.118) 
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/ � drdr1 (n(r)n(rf)) j - (N)z (24.119) 

{ /• Ï Follows steps similar to those 

\+n / dr{g(r)-\)\. around Eq. (3.51), and use ( 2 4 . 1 2 0 ) 
J V 6 W 'j Eq. (5.45) for g. 

Because near the critical point 

one has r 
KT~ drg(r). (24.122) 

Changing variables to s = r/£ and using Eq. (24.121), one obtains 

KT^^C1'71 Jds^ (24.123) 
~ £ 2 - ^ | , p ( 2 - r , ) _ (24.124) 

However, the compressibility must diverge as |?|~7, so 

(2-77)1/= 7 ) (24.125) 

the Fisher-Essam relation. Finally, there is an apparently improbable argument 
that because G = S/kgTV has dimensions of inverse length to the third power, but 
the only length in the system that should be important near the critical point is the 
correlation length £, one must have that 

r - ! ^ ~ k i 2 - Q ~ r 3 <24-126) 
kBTV 

=>2-a = 3v, (24.127) 
the Josephson or hyperscahng relation. All of these scaling relations are obeyed 
within a few percent by the experimental values listed in Table 24.3. 
Scaling Form for Magnetization. Some of the most detailed experimental results 
are expressed using an alternate form of the scaling hypothesis, one that relates the 
magnetic field and magnetization through 

m = m&h iwiß) ■ (24-128) 

The function h can be measured by choosing temperature T and field H, measuring 
M, and then constructing the ratio | / / | / |M|5 and plotting it versus the variable 

X=W*- (24-129) 

When the external magnetic field H vanishes, h(x) must vanish. Because \M\ ~ t@ 
for H = 0, the conclusion is that in vanishing field x = t/\M\ xl@ = —XQ is a constant, 
and h{— XQ) = 0. 



754 Chapter 24. Classical Theories of Magnetism and Ordering 

O 

0 -

0 1 2 
l og io(xAo+l) 

Figure 24.14. Log-log plot of scaling function h = I^I/IMI"5 versus x = t/lM}1^, using 
ö = 4.32, ß — 0.364, and xo = 0.596 for CrBr3. The exponents and the critical temperature 
Tc = 32.841 K are determined together as part of the process of trying to ensure that data 
taken at different temperatures lie on top of a single scaling curve. [Source: Vicentini-
Missoni(1972), p. 68.] 

If the scaling hypothesis is correct, then measurements of | / / | / | M | 5 versus x + 
XQ should fall on a single line. As shown in Figure 24.14, the data do collapse in 
this way, and furthermore the function h takes the form of a power law over a large 
range of temperature near the critical point. 

Problems 

1. Magnetic dipole moment: Consider a small loop of wire in the x-y plane 
with area A, and current J flowing through it. Show that the vector potential 
A far from the loop is given by 

mx r (24.130) 

where r is a vector from the middle of the loop of wire to an observation point. 

2. Magnetic dipole energies: Verify Eqs. (24.36) and (24.37): 

(a) Consider a distribution of current j(r) that is localized and is in steady state, 
which means that V ■ j = 0. By considering 

dr rarßV ■ j = 0, (24.131) 
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show that 
J dr(rajß + rßja)=0. (24.132) 

(b) Using Eq. (24.132), show that for any vector C, 

J dr]r-C=X-J dr[rxj\xC. (24.133) 

(c) Verify Eqs. (24.36) and (24.37). 

3. Thermodynamic potential: Show that Eq. (24.27) describes the thermody-
namic potential appropriate for a system where external currents j&xt(r) rather 
than magnetic induction B(r) are specified. Write B as the curl of a vector 
potential. Show that for fixed temperature, any changes in S can be written 
as an integral over changes in jexti^), and find the thermodynamic variable 
conjugate to Jext. 

4. Mean field theory: Consider a two-dimensional Ising model on a square 
lattice. Suppose that 

£ = - E JaRaR' - E H^aR (24-134) 
(RR') R 

and that J is negative. 

(a) Let the mean value of spins on alternating sites be denoted by cr-p and a j . 
Find the free energy corresponding to this Hamiltonian within mean field the-
ory. 

(b) Find the self-consistent equations that determine the mean spins a-\ and <7j 
within mean field theory. 

(c) Above the transition temperature, <T| = ay. Find the high-temperature form 
of the magnetic susceptibility, reproducing an equation in this chapter. Relate . 
the unknown quantity in that equation to J. 

5. One-dimensional Ising model: The goal of this problem is to analyze the 
statistical mechanics of the one-dimensional Ising model. 

(a) Let /(<7i, (72) = exp[/3/<7i<72]- Show that 

f(cru a2) = cosh ßj + u\u2 sinh ßJ. (24.135) 

(b) The partition function for an Ising chain with N spins is 

T V — 1 

j 2 n f^ CT'+I)- <24-136) 
CTl...crjve{-l,l} '=1 

Inserting Eq. (24.135), show that only one term survives the sum over o\. . .a^. 
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(c) Evaluate the free energy, and establish that it is a smooth, analytic function, 
ruling out any phase transition. 

(d) What is the thermal average of o\ as a function of temperature? 

6. Superlattices: Consider a 3:1 mixture of atoms A and B in the structure 
depicted in Figure 5.4. 
Construct a mean field theory analogous to Eq. (24.72) for atoms in this ge-
ometry. 

(a) Find two self-consistent equations for oA and aB. One of the equations 
should be 

aA = ta.nh(ßnBH + eABß[4aB + 8aA}). (24.137) 

(b) Write down the simple linear relation between aA and aB which follows from 
requiring atoms A and B to be in 3:1 ratio. 

(c) Inverting the tanh in the two equations and subtracting them to eliminate H, 
obtain a single self-consistent equation for aA. 

(d) Draw a picture illustrating the solution of this equation. Carefully trace out 
the solutions as a function of temperature, looking closely at the onset of 
order. According to mean field theory, is the transition first or second order? 

7. Properties of scaling function h: Consider the scaling function h defined in 
Eq. (24.128). 

(a) Send T —> Tc. What is the behavior of h(x) in the vicinity of x = 0? Does it 
have some type of singularity, or not? 

(b) While holding t fixed away from zero, send M toward zero. How must h(x) 
behave in this limit? 

(c) Obtain the Rushbrooke relation, Eq. (24.117), employing h. 
(d) h(x) vanishes as a power of x + xo for X + XQ close to but greater than zero. 

Find the power. 

8. Preisach model: The Preisach model views a magnet as a large collection 
of noninteracting hysteretic domains. Each domain can be described by the 
hysteretic function HH,,H2(H). The way /x works is this: If /i = 0, it remains 
so until H exceeds //T. Then // jumps to [iB. It remains at [iB until H drops 
below H\, at which point it returns to 0. If N is the probability density of 
domains with lower and upper fields H\ and H2, then the total response of a 
ferromagnet is given by 

/

oo /•oo 

dHx / dH2^{Hx,H2)liHuH1{H) (24.138) 
-oo JHt 

Argue that any magnet described by Eq. (24.138) exhibits return-point mem-
ory, as shown in Figure 24.9. That is, suppose field H is changed as follows: 
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• H is initially made large and negative. 
• H increases monotonically to some value Ho, where the magnetization is Mo. 
• H next decreases below Ho. 
• Finally, it increases back up to Ho- What needs to be argued is that the 
magnetization has returned to MQ. 
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25. Magnetism of Ions and Electrons 

25.1 Introduction 

As late as the first quarter of the twentieth century, the magnetism of solids re-
mained a great mystery. The assumption that magnetic solids were assemblies 
of vast numbers of smaller magnets was an hypothesis that could successfully be 
studied from mechanical and statistical points of view. However, the origin of the 
microscopic magnets was not explained. 

The greatest difficulty was presented by a theorem of Bohr (1911) and van 
Leeuwen (1921), which stated that if one considers a collection of classical charged 
particles interacting with each other and with external potentials, their partition 
function must be completely insensitive to the presence of any applied magnetic 
field. The simple proof of this statement is the subject of Problem 2. Therefore, no 
solid in thermal equilibrium should have any magnetic properties. Indeed "when 
one attempts to apply classical statistics to electronic motions within the atom, the 
less said, the better" [van Vleck (1932), p. 104]. 

If one thinks of a collection of electrons in a box, moving with various veloci-
ties, this result at first seems strange, because upon introduction of a magnetic field 
the electrons will begin to circle in orbits and thus generate magnetic moments. 
However, the magnetism of electrons turning in circles in the middle of a sample 
is exactly compensated by electrons at the boundaries, as illustrated in Problem 
1. Only with the appearance of quantum mechanics could one explain how solids 
could have magnetic properties at all. 

In part, the answer given by quantum mechanics is the simple assertion that 
electrons possess a magnetic moment of strength /xg, together with the directive 
that one must not question its origin in classical terms. The magnetism of solids 
does not end, however, with the primitive magnetic moments of the elementary 
particles, but continues to emerge in new ways from assemblies of particles. The 
unfilled inner shells of the transition metals and rare earth metals have a strong 
paramagnetic response. They sometimes have permanent magnetic moments, and 
even filled atomic shells are weakly diamagnetic. An ensemble of free electrons in 
a box is diamagnetic. 

The existence of magnetism is due to quantum-mechanical restrictions on the 
orbits of charged particles that prevent the perfect classical cancellation from oc-
curring. Many details of how the magnetic response works out are best viewed as 
attempts by tightly packed electrons to minimize Coulomb repulsion. Two elec-
trons circling a nucleus reduce their Coulomb interaction by adopting an antisym-
metric wave function that vanishes whenever they come near each other. The Pauli 
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760 Chapter 25. Magnetism of Ions and Electrons 

principle demands that the overall wave function be antisymmetric, so the spin 
wave function must be symmetric. That is, the electrons lower their energy by 
adopting the same spin state and developing a local magnetic moment. This ten-
dency to develop ferromagnetism fights against other energies that tend the oppo-
site way and that are of the same general size. The helium atom does not have a 
ground state with total spin S = 1, but instead has S = 0. The reason is that the 
lowest-energy state for a single electron is a nondegenerate n = 0, / = 0 state. To 
build a spatially antisymmetric wave function, there is no choice but to have at least 
one electron in an excited state, n = 1, / = 1, and this excited state costs enough in 
energy to outweigh the benefits of antisymmetry. In fact, it can be proved in gen-
eral that the ground state of any two-electron system has total spin 5 = 0, which 
shows that filling atomic shells in the proper order is the most important first step 
in placing electrons in their ground state. 

No general statements will be true in all cases because magnetism results fre-
quently from competition between delicately balanced competing effects. How-
ever, it may be helpful to indicate some of the energies that are likely to be in-
volved. 

Shell energies 1-10 eV: To good approximation, electrons fill up each atom with 
ascending values of index n and angular momentum quantum number /, as de-
scribed in the periodic table, and rarely employ states with quantum number n 
until all states with number n — 1 have been filled. The closed inner shells of 
the atoms have no net magnetic moment and are weakly diamagnetic. Excep-
tions to this rule in the transition metals and rare earths can produce metals 
with spontaneous magnetic moments. 

Hund's rules 1-10 eV: Within an incompletely filled atomic shell, electrons try to 
minimize Coulomb repulsion by choosing total spin and angular momentum 
in accord with Hund's rules, to be described in more detail below. For unfilled 
/ shells of the rare earth solids, the energy to be gained from Hund's rules 
overrides any interaction with neighboring atoms. 

Band energies 1-10 eV: In Fe, Ni, and Co, delocalized electrons acquire a net 
magnetic moment, essentially also as a means of reducing Coulomb repulsion. 

Crystal field splitting 0.1-1 eV: The presence of neighboring atoms in a crystal 
breaks the spherical symmetry of the individual atomic nucleus. For iron 
compounds, this effect is often large enough that Hund's rules no longer apply, 
and the total spatial angular momentum L equals 0. 

Interatomic exchange 10~2-0.1 eV: Just as the combination of Coulomb repul-
sion and Fermi statistics produces magnetic correlations within the atom, it 
also creates them between neighboring atoms. Whether the effect produces 
ferromagnetic or antiferromagnetic correlations is extremely difficult to cal-
culate or predict, because it typically results from the near cancellation of 
terms whose energy might be ~ 1.0 eV. 

Indirect exchange, superexchange 10 2—0.1 eV: Magnetic atoms can induce mag-
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netic moments in their surroundings, and the induced moments can interact 
with other magnetic atoms, producing a net indirect interaction. The sur-
rounding might include a sea of otherwise nonmagnetic conduction electrons 
or neighboring nonmagnetic atoms. 

Interaction with magnetic fields 10~4-1020 eV: The energy of a single magnetic 
moment in a 1-T magnetic field is only around 10 - 4 eV. The interaction en-
ergy of magnetic moments with the magnetic fields produced by other mo-
ments therefore appears to be small. However, the interaction is so long 
ranged that the number of relevant interactions is enormous, and it effectively 
grows without bound as samples grow in size. For this reason, magnetic sam-
ples spontaneously develop elaborate domain structures in which magnetic 
correlations on large scales are quite different from the magnetic correlations 
on short scales. It is also for this reason that magnetic fields of a strength 
achievable in the laboratory are able to flip the moments in permanent mag-
nets. 

25.2 Atomic Magnetism 

Isolated atoms have magnetic properties, and the goal of this section is to lay out the 
combination of semiempirical wisdom and quantum mechanics that permits them 
to be calculated. Speaking of isolated atoms may raise thoughts of dilute gases, 
but magnetic experiments on dilute vapors of rare elements are difficult and rarely 
performed, partly because magnetic measurements so often rely upon measuring 
torques or forces created when magnetic fields are applied to large solid samples. 
What is referred to theoretically as an isolated atom is more likely a rare magnetic 
atom dissolved in a largely nonmagnetic host, in which case the possibility that the 
magnetic atom is influenced by the host has to be considered. Nevertheless, the 
discussion begins with the assumption that any desired atom can be isolated and its 
magnetic properties can be measured. 

The interaction of isolated atoms with external magnetic fields occurs in two 
ways. First, there is the interaction of the orbital magnetic momentum with the 
magnetic induction. This contribution is found by including the vector potential 
A in the momentum operator for the electron motion. Second, one must include 
the interaction of B with the electron spin. One has therefore a Hamiltonian of the 
form 

The factor of 2 sitting in front of ßa is a con-
sequence of Dirac's relativistic theory of the 
electron. The positive sign of the term results 
from the negative charge of the electron, the 
convention that e be positive, and the interac-
tion energy (24.37). 

(25.1) 
where /xg is the Bohr magneton defined in Eq. (24.39). 

The sum is taken over all electrons in the atom. Two additional comments are 
in order. The first is that all of the magnetic interactions involve the inverse of 

2m 
Pi + -A(Ri) c + 2fiBBSf, 
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the electron mass. This fact is significant, because it demonstrates why nuclear 
contributions to magnetism can be ignored in this context. These would involve 
the inverse of the nuclear mass instead and are therefore negligible by comparison. 

In order to obtain definite results from the Hamiltonian, assume that 

A(R) = --RxBz, (25.2) 

which describes a uniform induction B, taken to point in the z direction. Define the 
angular momentum operator 

hL^^RjXPj (25.3) 
i 

, p 7 _ p D y. 3 _ 3 D v p R and P can be treated here as commuting ,-^r A \ 
=^> 'j - / 1 ~" 2 J 2 operators, because the cross product always W-'-^V 

multiplies different components together. 

^^=2]nEPf + ̂ {L + 2s)-B+^-2B^^j + yl)- (25-5) 
' j 

L and S denote the total orbital and spin angular momenta of the atom, and have in-
teger and half-integer eigenvalues respectively. If the states |/) index the electronic 
orbital states in the absence of the magnetic interaction, then keeping all terms up 
to quadratic order in the induction B, perturbation theory to second order gives 

V+l l j 
(25.6) 

The first term on the right hand side of Eq. (25.6) is linear, and it dominates mag-
netic response unless the relevant matrix element vanishes. The reason is that the 
natural dimensionless parameter in terms of which to discuss the strength of the 
magnetic interactions is the ratio of a typical magnetic to a typical atomic energy. 
The typical magnetic energy is 

ßBB = 5.79 • 10_5[5/Tesla] eV. (25.7) 

On the other hand, a typical separation between atomic energy levels is on the order 
of 1 eV, so the magnetic energies are small by comparison. 

25.2.1 Hund's Rules 

In order to determine whether the first term of Eq. (25.6) vanishes or not, it is nec-
essary to find the properties of the atom in its ground state. The ground states are 
described for all but the very heaviest atoms by Hund's rules, which originated in 
spectroscopic observation. They are easy to describe, but could only rigorously 
be justified by full solution of the quantum-mechanical problem of many electrons 
circling the nucleus. In order to express the rules, it must first be observed that 
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electrons organize themselves into shells. The filled shells are relatively inert, and 
Hund's rules concern themselves only with the organization of electrons in incom-
pletely filled shells. Electrons in these shells can be indexed by quantum numbers 
L, Lz, S, and Sz. In fact, only J = L + S is a true constant of the motion. Use of 
L and S as independent quantum numbers is predicated upon assuming that spin 
and angular momentum do not interact strongly with one another, which means 
that the atom does not interact strongly with the magnetic field it generates itself. 
Formally, the spin-orbit coupling, proportional to S ■ L, needs to be a small pertur-
bation. Given this assumption of Russel-Saunders coupling, Hund's rules are as 
follows: 

1. Electrons in the incomplete shell first choose to maximize the total spin S. 
For example, for an atom with two valence electrons in a shell with / > 1, the 
electrons can choose either to occupy the same Lz state, in which case they 
must have opposite spins, or different Lz states (all degenerate in energy), in 
which case the spins can do what they want. If the electrons occupy differ-
ent orbitals and adopt a triplet spin state, which is symmetric, then they may 
also have an antisymmetric spatial state. The Coulomb repulsion between the 
electrons is then reduced because the wave function automatically vanishes as 
they approach each other. For this reason, the two electrons prefer to stick to 
different orbitals, and they take the triplet over the singlet state. One can think 
of this rule as specifying that atoms on a single site develop ferromagnetic 
correlation and want their spins to point together. 

2. Once S has been determined, the electrons choose the largest value of L con-
sistent with putting electrons in different orbitals whenever possible. For ex-
ample, when the shell is half full, all possible values of lz are occupied, and 
the total L must be zero. This rule may be understood classically as a second 
consequence of the desire to reduce Coulomb interactions. If one were re-
quired to set two electrons spinning about an atom with the same total angular 
momentum, but otherwise as far apart as possible, one would put them in the 
same orbit, but 180° out of phase. In this case, the electrons would actually be 
in the same state quantum mechanically, just differing by a phase factor; the 
Coulomb repulsion between them would be enormous, and such a state is not 
favored. The electrons have to be in states of different Lz. So the next guess 
is that they rotate classically in the same direction, and about axes that differ 
as little as possible. If, for example, they were to rotate in opposite directions, 
they would encounter each other twice per orbit. 

3. Once L and S have been determined, the space of (2L + 1)(25+ 1) states 
is split by the spin-orbit interaction, which has a magnitude on the order of 
electronic orbital energies times (ZQ) 2 , where Z is the atomic number and a 
is the fine structure constant. The electrons choose as the ground state 

J=\L-S\ (25.8a) 

if the shell is less than half full, and they choose 
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J — L + S See Landau and Lifshitz (1977), p. 267 for a ( 2 5 . 8 b ) 
discussion. 

if the shell is more than half full. When the shell is half full, L = 0, so there is 
no jump in J at half filling. For a shell that is one electron shy of half filling, 
one has S = L, which implies 7 = 0 (see Figure 25.1). 

Figure 25.1. Hund's rules for d and / shells predict values for spin angular momentum S 
and orbital angular momentum L as indicated. 

The groundwork has now been laid to calculate the matrix elements constitut-
ing the first term on the right-hand side of Eq. (25.6), 

(l\Lz + 2Sz\l). (25.9) 

The reason to refer to "elements" is that the state |/) is always degenerate, so one 
must use first-order degenerate perturbation theory. Hund's rules first specify S, 
then L, and finally J, but this subspace is still 2J + 1-fold degenerate in the absence 
of applied magnetic fields. A more detailed description of the quantum numbers 
involved in these states is provided by writing 

(JLSJZ\LZ + 2SZ\JLSJZ). (25.10) 

A physical description of what is involved in calculating (25.10) appears in 
Figure 25.2. The magnitude and direction of J are conserved, the magnitudes of L 
and S are conserved, but not their directions, and L + 2S needs to be calculated. Its 
expectation value lies along J. 

The formal evaluation of Eq. (25.10) is made possible by the Wigner-Eckart 
theorem, according to which the matrix elements of any vector operator V are 
proportional to the matrix elements of J: 

{JLSJZ\V\JLSJ'Z) = g(JLS){JLSJz\J\JLSJ'z), (25.11) 

where g is independent of Jz and J'z, although it depends upon everything else, in-
cluding the operator V. The particular application needed in the case of magnetism 
is 

(JLSJZ\LZ + 2SZ\JLSJ'Z) = g(JLS)(JLSJz\Jz\JLSJz) (25.12) 
= g(JLS)JzôjzJ,. (25.13) 
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Figure 25.2. View the spin and orbital angu-
lar momentum of an atom as two gyroscopes, 
linked end to end. The total angular momen-
tum J = L + S is conserved, but L and S pre-
cess about one another. The expectation value 
of L + S lies along 7. 

Evaluation of g(JLS). The problem of finding the splitting induced by the 
magnetic field is therefore reduced to the problem of finding the Lande g factor 
g(JLS). A trick enabling the evaluation begins by considering 

{JLSJZ \L + 2S\JLSJ'Z) = g(JLS) (JLSJZ \J\JLSJ'Z) (25.14) 
=> {JLSJz\L + 2S\j'L'S'Jz)=g(JLS){JLSJz\J\J'L'S'Jz) (25.15) 

Both matrix elements vanish unless J = J' and Z, = L' and S = S'. 

=> Y, {JLSJZ\L + 2S\J'L'S'J'Z) ■ (J'L'S'J'Z\J\J"L"S"J'1) 
L'J'S'J'. 

= g(JLS) Y, (JLSJZ\J\J'L'S'J'Z) ■ (J'L'S'J'Z\J\J"L"S"J'Z'). (25.16) 
L'J'S'J', 

Because the sum in Eq. (25.16) is taken over a complete set of states, it becomes 

(JLSJZ\(L + 2S)-J\JLSJ'Z) = g(JLS)(JLSJz\J2\JLSJ'z). (25.17) 

All of the matrix elements in (25.17) can be evaluated because 

S2 = (J-L)2=ß + L2-2L-J (25.18) 

L2 = {J-S)2 =J1 + S2-2S-J. (25.19) 

Therefore 

^ = i w i ! a i « i a . (2,20) 
The final result is that an external magnetic field splits the 27 + 1-fold ground 

state of an isolated atom into 2 7 + 1 separate levels, and the energy difference 
between them is 

M g g [ 3 7 ( 7 + l ) - L ( L + l ) + 5(5+l)] 
2 7(7+1) ' { ' 
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25.2.2 Curie's Law 

Room temperature corresponds to an energy of 0.025 eV, much larger than the 
basic energy scale of magnetic ions given in Eq. (25.7). Therefore magnetic spins 
at room temperature find themselves in a statistical distribution of states. States 
with spin up and spin down are almost equally populated, so the net magnetic 
moments are fairly small. 

It is usually, although not always, adequate to assume that only the lowest-lying 
spin multiplet contributes to statistical mechanical sums. Making this assumption, 
the partition function for a single magnetic ion is given by 

j 

Zion= Y) e-^»BJi (25.22) 
JZ=~J 

aBB{J+l/2) _e-ßgßBB{J+l/2) 

eßg/J,BB/2 _ e-ßgfJ,BB/2 (25.23) 

The free energy is 

7 = -kBT In Zjon + 
i /. In this thermodynamic ensemble, the energy 

/ j-p D 2 of the external field must be included. If the / 9 S 0A\ 
<t~ I ' potential S were used instead, the integral over ^ ' ' 

the external field could be omitted 

According to Eq. (24.26), with a density of n magnetic ions in a volume V, one 
can now find the magnetization from 

„ ^d? w B 19J „ e ^ 
H = YTB^M = A-,-VTB (25-25) 

^M = nkBT-- In Zion (25.26) 
dB 

= nnBgJ'Bj(ßtiBgJB), (25.27) 

*M=^ H* (^'h-h **(£)■ (25-28) 
where 

So long as [iBB <S kBT, one has 

cothx«- + J + . . . (25.29) 
x 3 

^'BJ = ̂ ^ji-ßßBgJB, (25.30) 

so that 

M W ( M B ) 2 - ^ ^ ± H . (25.31) 
kBl 5 

Equation (25.31) is Curie's law. It holds so long as the magnetic ions may be treated 
as noninteracting and in isotropic environments. The law breaks down once inter-
actions between the different ions become important; even at high temperatures, 
interacting ions are better described by Eq. (24.41). 
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Comparison with Experiment. Curie's law can be tested for a variety of magnetic 
ions in nonmagnetic hosts. The comparison is particularly successful for lanthanide 
compounds, where a rare earth ion sits in a nonmagnetic host. For example, cerium 
compounds include CeCi3, CeF^, and Ce2Mg3(NC<3)i2 -24H20. Properties of a 
magnetic ion vary by around 5% from one host to another. 

Comparison with experiment is accomplished by writing the susceptibility in 
the form 

X = n3^f^ ( 2 5 3 2 ) 

where according to Eq. (25.31), 

Meff = g(JLS) JJ{J +l).flß F o r d i l u t e m a g n e i i c systems, ignore the dif- ( 2 5 . 3 3 ) 
ference between B and H. 

Equation (25.33) is to be compared to an experimental measurement of 

Mexp = y — - — • (25.34) 

This comparison is performed for the lanthanides in Table 25.1. The agreement 
with theory is impressive, except in the case of europium and samarium, where 
magnetic multiplets lying above the ground state play a measurable role. Bohr 
says that "[o]n the whole a consideration of the magnetic properties of the elements 
within the long periods gives us a vivid impression of how a wound in the otherwise 
symmetrical inner structure is first developed and then healed as we pass from one 
element to another." [Bohr (1922), p. 107] 

For magnetic transition metal ions the comparison is much less successful, as 
shown in Table 25.2. d electron wave functions have a longer range than the / 
electron wave functions, and transition metal ions interact more strongly with their 
environment than the lanthanides, so the third of Hund's rules is no longer correct. 
However, the theory can be improved substantially by postulating that the orbital 
angular momentum L is quenched by interactions with the crystal. Intuitively, one 
can think of interactions with crystal fields causing L to precess, so that all matrix 
elements of L vanish, although L2 still has value L(L+1). In this case, Hund's third 
rule is replaced by J — S. Table 25.2 shows that this new rule is fairly successful 
in explaining the experimental observations. 

Larmor Diamagnetism and Van Vleck Paramagnetism. The leading contribution 
to the susceptibility in Eq. (25.6) vanishes when 7 = 0, because 7 = 0 leads to 
g(JLS) = 0. J can vanish either for filled shells, or for shells that are one electron 
shy of half filling, because in the latter case L = S, and J = \L — S\ = 0 according 
to the third of Hund's rules. The ground state |0) with J = 0 is nondegenerate, and 
its change in energy with magnetic induction B is 

j /Y0 



768 Chapter 25. Magnetism of Ions and Electrons 

Table 25.1. Effective magneton numbers /Lteff calculated from 
Eq. (25.33) and compared with experiment at 300 K 

fits, Eq. (25.33) p^, Eq. (25.34) 
G"ß) (VB) 

Element 

La3+ 
Ce3+ 

Pr3+ 
Nd3+ 

Pm3+ 

Sm3+ 
Eu3+ 
Gd3+ 
Tb3+ 
Dy3+ 
Ho3+ 

Er3+ 
Tm3+ 
Yb3+ 
Lu3+ 

Term 

4 / ) 1 S 
4 / 1 2F5/2 

4 / 2 3 / / 4 

4/3 4 / 9 / 2 

4 / 4 5 / 4 

4 / 5 6H5/2 

4 / 6 7F0 

4 / 7 8 S 7 / 2 

4 / 8 7F6 

4 / 9 6 # i 5 /2 
4 / 1 0 5 /8 

4 / 1 1 4 / 1 5 / 2 

4 / 1 2 3 / / 6 

4 / 1 3 2F7 / 2 

4f14 lS 

0 
2.5 
3.6 
3.6 
2.7 
0.9 

0 
7.9 
9.7 

10.6 
10.6 
9.6 
7.6 
4.5 

0 

Diamagnetic 

2.3 
3.4 
3.5 

Radioactive 

1.6 
3.4 
7.9 
9.5 

10.4 
10.4 
9.4 
7.1 
4.9 

0 
The rare earth atoms are dissolved in compounds such as Ce2l20n • 4H2O, 
where they give up the two 6s electrons and one of the 4 / electrons. The 
particularly strong discrepancies for europium and samarium are due to 
the presence of additional low-lying states neglected by the simple theory. 
Source: van Vleck (1932) p. 243 and Boudreaux and Mulay (1976), p. 276. 

Table 25.2. Effective magneton numbers /ieff calculated from Eqs. (25.33) 
and (25.34) and compared with experiment at 300 K 

Element 

Ti3+ 
v3+ 
Cr3+ 
Mn3+ 

Fe3+ 
Fe2+ 
Co2+ 
Ni2+ 
Cu2+ 

Term 

3d1 2D3 / 2 

3d2 3F2 

3d3 4F3 / 2 

3d4 5D0 

3d5 6S5/2 

3d6 5D4 

3d74F9/2 

3d* 3F4 

3d9 2D5 / 2 

/ieff, Eq. (25.33) 
(Ms) 

1.6 
1.6 
0.8 
0.0 
5.9 
6.7 
6.5 
5.6 
3.6 

Meff> J = S 
(VB) 

1.7 
2.8 
3.9 
4.9 
5.9 
4.9 
3.9 
2.8 
1.7 

/xeXp, Eq. (25.34) 
(HB) 

1.8 
2.7 
3.8 
4.9 
5.9 
5.3 
4.0 

2.9-3.5 
1.7-1.9 

The quenching of orbital angular momentum means that Eq. (25.33) is best eval-
uated with J = S, rather than Eq. (25.8). Source: Boudreaux and Mulay (1976), 
p. 54. 
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Table 25.3. Susceptibilities of noble gases compared with Eq. (25.36) 

Element: He Ne Ar Kr Xe 
-X, experiment (1(TÖ cm3 mole"1): 1.88 7.02 19.18 28.49 43.33 

X, Eq. (25.36) x0.35 (1(T6 cm3 mole"1): 0.99 14.82 20.54 23.74 27.95 
The very rough agreement is slightly improved by multiplying Eq. (25.36) by 0.35. For 
helium, the factor of 6 in Eq. (25.36) is eliminated and a radius of 1 Â is employed. 
Otherwise, radii come from Table 11.1. Experimental data from Table 24.1. 

Because the magnetic susceptibility x = —d2S/dH2 ss —d2A8./dB2, the first 
term on the left hand side of Eq. (25.35) leads to a magnetization against the applied 
field and is therefore diamagnetic, Larmor diamagnetism. The second term on the 
right-hand side of Eq. (25.35) is negative, because the denominator is negative and 
therefore produces magnetic response that is paramagnetic—van Vleck paramag-
netism. The second term vanishes for closed shells, where not only J but L and 5 
are all separately zero; however, for shells one electron short of half filling, both 
terms on the right of Eq. (25.35) may compete. Aside from observing that both 
are very small, no general statement can be added. Curie paramagnetism, Larmor 
diamagnetism, and van Vleck paramagnetism all feature a small magnetic suscep-
tibility proportional to pb2

B. However, the mechanisms are quite different. Curie's 
law results from a matrix element that is linear in the magnetic field, and the sus-
ceptibility would vanish if it were not for the way that magnetic fields change the 
statistical occupation of states at nonzero temperature. 

The susceptibility of the noble gases can be estimated by employing atomic 
radii from Table 11.1 and writing 

r is the atomic radius, the factor of 6 comes 
from the fact that there are 6 electrons in the ('yz T.f.\ 
outer shell, and the factor of 2/3 comes from ^ ' ' 
estimating x2 +y2 = Ir2 / 3 . 

As shown in Table 25.3, the comparison with experiment is only partially success-
ful; agreement is improved by arbitrarily multiplying Eq. (25.36) by 0.35, presum-
ably because it is not legitimate to treat all electrons as occupying the outer radius. 

25.3 Magnetism of the Free-Electron Gas 

Having determined the magnetic properties of electrons when strongly bound within 
ions, it is valuable to consider the opposite extreme and examine their magnetic 
properties as they move about nearly free in a metal. 

There are essentially three terms in the response of free fermions to an external 
magnetic field. The first is called Pauli paramagnetism, and it results from the 
action of the magnetic field on the spins of the electrons. The second is called 
Landau diamagnetism, after Landau (1930), and results from the moments created 
by the circular motions of the electrons. The third (a series) was also calculated by 

X : ll,—ö 6 ^ r ■ 4mcz 3 



770 Chapter 25. Magnetism of Ions and Electrons 

Figure 25.3. When subject to a magnetic induction B, the number of spin-down electrons 
increases and the number of spin-up electrons decreases, to minimize the total free energy. 
Landau (1939) and predicts the oscillations of magnetization with magnetic field 
that lead to the de Haas-van Alphen effect. 

25.3.1 Pauli Paramagnetism 

Pauli paramagnetism can be understood as follows: In the absence of a magnetic 
field, the ground state of a free electron gas has equal numbers of spin-up and spin-
down electrons. An induction B pointing up raises the energies of spin-up electrons 
by the amount 

The energy SS is the energy of electrons in the 
CT = O j + / i g o . absence of a magnetic field. The g-factor, which ( 2 5 . 3 7 ) 

equals almost exactly 2, cancels the factor of 1 /2 
from the spin-1/2 quantum number. 

Now consider a very weak magnetic induction B applied to the electron gas, as 
shown in Figure 25.3, and calculate the net magnetic moment it induces. Remem-
bering that the definition of D(E) assumes up- and down-spin states to be equiva-
lent, and must be divided by two if they are considered separately, the number of 
spin-up electrons is 

Nup = V I d£°I)^p-f(£0 + fiBB), (25.38) 
D(£°) denotes the density of states in the absence of a magnetic field, and / ( £ ) is defined in 
Eq. (6.49). It is not clear that the density of states D should not change to first order with the 
magnetic field, but this guess will be verified in later calculations. 

and the number of spin down electrons is 

Wdown = V I dl° ^ - ^ / ( £ ° - HBB). (25.39) 

Expanding in the small quantity B gives 

Notice that differentiating / with respect to HBB is the same as differentiating with respect to 
£°, which in turn is the same as differentiating by the negative of the chemical potential, —fi. 
The derivative with respect to the chemical potential can then be brought outside the integral. 

while 
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„d ~ + ^ . (25.41) 
2 2. o\i 

The magnetization M points in the direction opposite to the spins, because the 
electron is negatively charged. Therefore, the magnetization per volume is 

M=^(Ndown-Nup)=i-^f^B (25.42) 

and the magnetic susceptibility x is 

dM dM . , , 1 dN 

«'«"»'WT*' (25'43) 

which at temperatures well below the Fermi temperature becomes 

Y = njyD(Ep). This expression makes use of the Sommer- ( 2 5 . 4 4 ) 
feld expansion—for example, by differentiat-
ing the expression for N exhibited in Eq. (6.72). 

In the particular case of the free Fermi gas, the density of states at the Fermi surface 
is given by Eq. (6.24), resulting in 

y = —— = 4 . 7 5 7 • 10 ( n / f 10 • Cm 1) . This expression is in cgs. For SI, multiply by 
7T2tl2 4OT-

(25.45) 

25.3.2 Landau Diamagnetism 

A collection of noninteracting electrons would change their energy in response to 
an applied magnetic field even if they did not have spin. This effect, first calculated 
by Landau (1930), is entirely quantum mechanical in origin, because it vanishes in 
any classical calculation. For classical electrons, electrons bouncing off bound-
aries cancel effects of electrons in the bulk. However, for quantum electrons, the 
quantization of electron orbits destroys the perfect cancellation and allows an ef-
fect to remain. When thermal energies are large compared with magnetic energies 
the resulting effect is diamagnetic, and precisely one-third as large as the Pauli 
paramagnetism in magnitude. 

Electron Energy Levels in a Magnetic Field. To calculate this effect, one must 
find the energy levels and density of states for electrons in a magnetic field. This 
task is left as Problem 4, and the results are as follows: The problem has a charac-
teristic frequency, the cyclotron frequency defined in Section 21.2, 

eB 
toc = —, (25.46) 

mc 

that gives the rate at which electrons spin about in their orbits. Energy states are 
indexed by three quantum numbers: kz, a wave vector parallel to the field; ky, a 
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wave vector perpendicular to the field which is related to the x coordinate of the 
center of the orbit through 

x0 = ^ ; (25.47) 
muc 

and an index v that describes how energetically the electron rotates about the center 
of the orbit. The integer v labels Landau levels. In a box of side length L with 
periodic boundary conditions, the allowed values of ky and kz are given by Eq. (6.7). 

The energy levels corresponding to these three quantum numbers are 

The rotation rates of the electrons are quantized in units of uv, and the energy is independent 
of ky, which corresponds physically to the center of the orbit. There really should be an extra 
term in this expression, aßaB/2, with a taking values ±1 according to the spin of the electron. 
The effects of the term have already been included in the previous section, so drop it to simplify 
things a bit. 

By requiring that xo lie between 0 and the end of the sample at L, one can determine 
the degeneracy of an energy state with given v and kz. One has that 

0 < X 0 < L = ^ 0 < — < L Using Eq. (6.7) for the allowed (25.49) 
muicL values of ky, where fe is an 

integer, and Eq. (25.47) forxo. 

mcürL2 

=► 0 > h > . T n e absolute value of the ( 2 5 . 5 0 ) 
27l7z right-hand side gives the number 

of allowed values of li-

BA $ 
^ A T = — = — ( 2 5 . 5 1 ) 

with , 
$ 0 = — = 4.14 • 10" 7 G Cm2; N is the total number of (25.52) 

e degenerate states, <3> is the total 
magnetic flux, and A = L2 is the 
total area. 

the number of degenerate electron states N in a Landau level is given by the ratio 
of the total magnetic flux to the magnetic flux quantum <£>o-

The density of kz states is L/2TT. Therefore for each v, the density of states 
including spin degeneracy is 

The first factor of two comes from spin degeneracy, the next factor comes from Eq. (25.49), 
and the final factor comes from the density of kz states. The spin degeneracy comes from 
the fact that a spin-up electron in one level has the same energy as a spin-down electron in 
an adjacent level. 

Instead of the density of kz states, one can instead consider the density of energy 
states and obtains 

2 &j c / 2m\ 3 / 2 -1/2 
D ( £ ' ^ ) = (27̂)2 ^ ( F ) [ £ - ( ^ ) H "sing Eq. (25.48). (25.54) 
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= hucG\£ — {v + {)h<jjc\. 

with 

(25.55) 

(25.56) 

The density of states is all that is needed in order to obtain the grand canonical 
potential in the presence of a magnetic field, and thereby magnetic response. In 
general the expression cannot easily be simplified, but when the cyclotron energy 
hu:c is much less than the typical thermal energy kBT a compact result can be 
obtained. 

The grand canonical potential of the electron gas is 

n = -kBTV ! d£ ^ D ( £ , z / ) l n [ l + ^ - £ ) ] 

/

oo 
d£ Yl G(E)ln[l+e ./3[/x-(2+( I/+l/2)ßw r)]1 

(25.57) 

(25.58) 

Using Eq. (25.55), and sending £ to £ 4- (v + |)huic 

Using the assumption that the magnetic energy HLOC is much less than the ther-
mal energy kBT, one can convert the sum over v into an integral. The relevant 
formula is a version of the Euler-Maclaurin theorem which states 

f = 0 

oo 1 

F(x)dx+—F'(0). 
0 2 4 

(25.59) 

Using this result, one has 

n = - V f dl kBT hüjc G(£) I dv ln[l +e 

dl (HLÜC)2G{E) 

ßß-ß(E.+uhwch 

+ 
V 
24 eß£-ßß+l 

U0 + ^(hcüc)2 I rf£G(£)/(£), 
with 
n0 = - v dB. I dxkBTG(S.) In 

'o 
1 _l_g^(M-£--ï) 

( 2 5 . 6 0 ) 

( 2 5 . 6 1 ) 

The variable* = uhwc. ( 2 5 . 6 2 ) 

Because IIo does not depend upon the magnetic field, it must be nothing other than 
the grand canonical potential II in the absence of the magnetic field. Furthermore, 
the second term of Eq. (25.61 ) can be obtained by taking derivatives of IIo, because 

V f rf£G(£)/(£) #n0 Taking a first derivative of Eq. (25.62) with ( 2 5 . 6 3 ) 
2 respect to ß brings ßf into the integrand. Note 

that the second derivative with respect to \a 
can be rewritten as —d/dx and used to elim-
inate the integral over x. 
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Therefore 

I l = n 0 - - (BuB)2 £■ From the definitions (24.39) and ( 2 5 . 6 4 ) 
6 Ö/x2 (25.46), 2BiiB=fiwc. 

ön . dU . 1 2dN „erB^ 
^ M = - ë H ^ - S B ^ = -3B>"ir» ( 2 5 ' 6 5 ) 

=>■ y = u D . C"ne c a n s n o w t n a t it does not matter ( 2 5 . 6 6 ) 
3 Qix whether one holds ß or N constant in 

this derivative, because \x varies only 
quadratically with B. 

Notice that this contribution to the susceptibility is opposite in sign to the Pauli 
contribution in Eq. (25.45), and one-third of it in magnitude. 

Therefore, the total magnetic susceptibility of the free-electron gas, including 
the contributions both of Pauli and Landau, is 

X=-lÂ Adding (25.66) to (25.45). ( 2 5 . 6 7 ) 
3 o/i 

= - ßB F™ . Compare with Eq. (25.45). ( 2 5 . 6 8 ) 
3 ir2h2 

There are grounds for worrying about the validity of Eq. (25.66). The effects of 
boundaries have been treated in a casual, somewhat intuitive way. Landau (1930) 
argued that because "the number of trajectories colliding at the walls can be consid-
ered as small, with an adequately large container, then we can assume this require-
ment [Eq. (25.49)] gives us practically all the existing trajectories." However, the 
perfect vanishing of magnetic response in classical physics is only apparent when 
boundary electrons are treated carefully; they cancel out exactly the immense dia-
magnetic response of electrons in the interior. Van Vleck (1932) discusses these 
issues in Section 81, and Problem 5 shows one way to perform the calculation with 
boundaries included. 

The series (25.60) begins to oscillate once cyclotron energies and thermal ener-
gies become comparable. These oscillations are precisely the de Haas-van Alphen 
effect studied in Section 16.5.2. Although Landau had seen these oscillations in his 
calculations as early as 1930, he thought that magnetic fields uniform enough to 
observe them could not practically be created in the laboratory. The experimental 
phenomenon was discovered without the aid of theory. 
Actual Susceptibilities. The free-electron model does a rather bad job of describ-
ing the magnetic susceptibilities of the metallic elements, as shown in Table 25.4. 
The reason is that the valence electrons surrounding the ions make large contri-
butions to magnetic response that have been ignored, and which are impossible to 
separate cleanly from the contributions of the conduction electrons. For the pur-
poses of magnetism, treating metals as boxes full of free electrons is inadequate. 

25.3.3 Aharonov-Bohm Effect 

Aharonov and Böhm (1959) pointed out that because the vector potential A ap-
pears in Schrödinger's equation, not the induction B, there exist circumstances 
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Table 25.4. Magnetic susceptibilities of metals near 290 K 

Metal 

Li 
Na 
K 
Rb 
Cs 
Cu 
Ag 
Au 

Be 
Mg 
Ca 
Sr 
Ba 
Zn 
Cd 
Hg 
Al 
Ga 
In 

Sn 
Pb 

Sb 
Bi 

Z 

2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 

4 
4 

5 
5 

X [Eq. (25.68)] 
(10"6 cm3 mole"1) 

6.90 
10.26 
15.83 
18.16 
21.33 
4.59 
5.87 
5.84 

4.50 
9.08 

13.69 
16.59 
17.78 
6.86 
8.66 
5.96 

8.32 
9.29 

11.24 

12.65 
13.68 

14.70 
16.40 

P 
P 
P 
P 
P 
d 
d 
d 

d 
P 
P 
P 
P 
d 
d 
d 

P 
d 
d 

d 
d 

d 
d 

X (Experimental) 
(10 - 6 cm3 mole-1) 

25.00 
14.00 
18.00 
17.00 
30.00 
-5.46 

-20.00 
-28.00 

-9.00 
6.00 

44.00 
92.00 
20.00 
-9.15 

-20.23 
-17.10 

16.40 
-21.68 
-10.33 

-29.68 
-22.79 

-97.40 
-271.67 

The data are in cgs; susceptibilities in SI are denned to be 4TT times greater. They 
are obtained by dividing the dimensionless susceptibility \ by moles per cm3. The 
symbols d and p refer to whether the metal is actually diamagnetic or paramagnetic. 
Source: Landolt and Börnstein (1959) vol. 2, parts 9 and 10. 

where knowledge of B alone in some region of space is insufficient to describe the 
behavior of electrons. They imagined electrons traveling in the vicinity of a thin 
solenoid with uniform induction B inside, and no induction outside, as shown in 
Figure 25.4. Note that because 

$ dlrBz= é dr-A, (25.69) 

the vector potential of a flux tube with flux $ pointing along z is azimuthal, and in 
cylindrical coordinates (r, (j>) it has value 

2-7rr 
(25.70) 
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Figure 25.4. (A) Electrons traveling around a flux tube suffer a phase change and can 
interfere with themselves even if they only travel through regions where 5 = 0. (B) An 
open flux tube is not experimentally realizable, but a small toroidal magnet with no flux 
leakage can be constructed instead. 

Therefore while the magnetic induction vanishes outside the flux tube, the vector 
potential does not. 

Electrons traveling in the presence of this flux tube must obey 

1 
2m 

-ip cxexp 

- V + -A 
i c 

ik-7— i he 
T dr'-AÇr Just substitute into Eq. (25.71). 

(25.71) 

(25.72) 

In this context one can view position in space as the adiabatic parameter A appear-
ing in Section 8.4.3 on geometric phases. Then the Berry connection and Berry 
phase are 

Jvp : |V,|' hÀ^ and T 
He J 

dr-A = 2-K (25.73) 

Thus an electron traveling in a complete circuit about a flux tube of flux $ 
acquires a phase $e/hc and can interfere with itself. Referring back to Eq. (25.51), 
this phase can be written as 27r$/$o- In particular, for a flux tube whose strength 
is a multiple of the flux quantum <J?o> the interference effect vanishes. 

After years of controversy, Tonomura et al. (1986) carried out decisive exper-
iments. An infinitely long solenoid is not experimentally realizable, but a perfect 
toroidal magnet from which no flux leaks out was constructed by enclosing a thin 
ferromagnetic ring within a superconducting casing and enclosing the supercon-
ductor in copper. Flux leakage was unmeasurable, incident electrons were com-
pletely shielded from the region of magnetic field, but a phase change depending 
upon whether electrons went through or around the torus could be measured. Elec-
tron holograms illustrating the effect appear in Figure 25.5. 
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(A) (B) 

Figure 25.5. Electron hologram showing interference fringes of electrons passing through 
small toroidal magnet. The magnetic flux passing through the torus is quantized so as to 
produce an integer multiple of -K phase change in the electron wave functions. The electron 
is completely screened from the magnetic induction in the magnet. In (A) the phase change 
is 0, while in (B) the phase change is n. [Source: Tonomura (1993), p. 67.] 

25.4 Tightly Bound Electrons in Magnetic Fields 

The energy levels of nearly free electrons are changed substantially by magnetic 
fields. What of the opposite limit, tightly bound electrons? Their energy levels 
are profoundly affected as well. This subject can be investigated by incorporating 
magnetic fields into the tight-binding model. 

The appropriate generalization of the tight-binding Hamiltonian in the presence 
of a magnetic field is the subject of Problem 3. One can heuristically obtain the 
desired result, using an illegitimate argument, as follows: If one had a vector po-
tential A that was constant in space, then one could create the canonical momentum 
by 

P--Â = eM-R/ncpe-ieÂ-R/nc (25.74) 
c 

and could therefore include a vector potential in a Hamiltonian by employing the 
Peierls substitution 

<}i _> eieÂ-R/hcçxe-ieÂ-R/Hc^ (25.75) 

If one carries out this replacement on the tight-binding Hamiltonian, (18.37), it 
becomes 

Y, e-ieÂrs/Hc\R)t{R + ô\ + Yl \R)U(*\- (25-76) 
RS R 

Although this argument is inadequate when A is not constant, it is precisely (25.76) 
that appears as the result of Problem 3. 

Formal Calculation of Energy Levels. Problem 3 also shows that the eigen-
value problem for Hamiltonian (25.76) may be transformed into the following one-
dimensional problem, depending upon index /: 

2^ ; cos (2irlb-K) + ilJi+i+ipi-i = £?/>/, (25.77) 

where 
Ba2 

\j = $0 is the magnetic flux quantum. ( 2 5 . 7 8 ) 
<£>0 
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and 
/ç = akx. kx is a Bloch wave-vector; the energy eigen- (25.79) 

values will be indexed by K. 

Suppose that b = p/q is rational. Then Bloch's theorem implies that the energy 
levels should split into q bands, because the potential in Eq. (25.81) is periodic with 
period q. The reason is that, according to Bloch's theorem, 

^ + 4 = ^ / . (25.80) 

Thus only q of the coefficients ipi in Eq. (25.77) are independent, and Eq. (25.77) 
is therefore a q x q matrix equation with q energy bands depending upon k. This 
result is peculiar, because changing the magnetic induction from b — 1 /2 to b = 
5001/10000 changes the number of bands from 2 to 10000. Nevertheless, it is 
correct. 

To proceed in calculating these energy bands, rewrite Eq. (25.80) in transfer 
matrix form: 

/ ^ / + 1 \ = /£-2cos(27r7&-K) - 1 W V/ 
W / ) v i o ; U/-i (25.81) 

From Bloch's theorem, 

w::Ht'HM::) 
with 

£ - 2 C O S ( 2 7 T / £ - K ) - 1 
Q = n ( ! "o ) (25-83) 

= 0. (25.84) =»DetQ(£, K)-eiqk 

Q is only a 2 x 2 matrix, and multiplying out Eq. (25.84) gives 

Det{Q(£,K)} + e 2 ^ - T r { Q ( £ , K ) } ^ = 0. (25.85) 

Because Q(£, K) is the product of matrices of determinant 1, it has determinant 1 
as well, from which follows that 

Tr{Q(£, K)} = 2 C O S ^ , (25.86) 

for any given value of n. 
Consider Tr {Q(£, K)} as a function of K. If one replaces K by K! = K + 2-ir/q, 

then 
Tr{Q(£,K)} = Tr{Q(£,K ' )} (25.87) 

because from Eq. (25.83) one sees that Q(£, K + 2ir/q) is built from a product of 
exactly the same matrices that make up Q(£, K), although in a different order, but 
the trace is invariant under cyclic permutation. Thus 

oo 

Tr{Q(£, K)}= Y, F'eiqKl- (25-88) 
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On the other hand the highest Fourier component e'K that can appear in Q is eiqK, 
by inspecting Eq. (25.83). So 

Tr{Q(£,K)} = F0(ß) + Fi(E)eu'K + Fl*(E)e- iqK (25.89) 

By inspection of Eq. (25.83) one can pick out the terms which involve maximal 
powers of e'K. These are contained in 

IK' J(2nlb—K) + e -i(2ixlb—K) (25.90) 

and can be seen to give 

<? 
—2-ïïilb F,(£)=(-i)*n«" 

i=i 
\q -2nbiq(q+\)/2 ( - l ) V 

(25.91) 

(25.92) 

In order to find Fo, observe that if one can find a value KQ such that the terms 
involving F\ vanish, then 

Fo(£)=Tr{Q(£,K 0 )} . (25.93) 

From Eqs. (25.92) and (25.89) one finds that the sum of terms depending upon K is 

( - l ) ? 2cos [2vrè (q2 + q) /2-qn] . (25.94) 

Because the argument of the cosine can be rewritten 

np(q+ 1 )—<?«, 

the cosine can be made to vanish by choosing 
7T 

KQ 
2q 

(25.95) 

(25.96) 

Thus it follows from Eq. (25.86) that 

Tr {Q(£, K)} = 2 cos qk = Tr {Q(£, 7r/2g)} + 2 cos irb(q2 + q) + irq — qK . 
(25.97) 

Because k and K can be varied freely, £ is an allowed eigenvalue so long as 

Tr {Q(£, n/2q)} < 4 . (25.98) 

The spectrum of allowed energy levels predicted by Eq. (25.98) was first cal-
culated by Hof stadter ( 1976) and appears in Figure 25.6. Minute changes in B pro-
duce great changes in the effective periodicity of the electron problem and cause 
rapid changes in the number of distinct energy bands. 
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Figure 25.6. This picture was produced by testing Eq. (25.98) for all p< q, q < 50, for 500 
values of £ for each pair of p and q, and then drawing a dot at all allowed energy levels. 
The number of bands is a thoroughly discontinuous function of the dimensionless magnetic 
induction b = p/q, yet the picture as a whole has some sort of underlying continuity. 

25.5 Quantum Hall Effect 

25.5.1 Integer Quantum Hall Effect 

The quantum Hall effect was first observed von Klitzing, Dorda, and Pepper (1980). 
The experiments were carried out in a two-dimensional electron gas formed by an 
inversion layer at a Si/SiC<2 interface (Section 19.5). At temperatures on the order 
of a few kelvin and at fields on the order of a few Tesla, von Klitzing, Dorda, and 
Pepper observed that the transverse conductivity a^ was quantized, with values 

Gxy = 
RK 

where v is an integer and the von Klitzing constant 

h 
RK = 25 813 ft. Just as defined in Eq. (18.104). 

(25.99) 

(25.100) 

As shown in Figure 25.7, long plateaus at these values are separated by very steep 
rises. The value of the conductivity in the plateau is equal to its theoretical value 
to at least one part in 108, and reproducible to one part in 1010, so the Hall effect is 
now employed to correct drift in the international standards of electrical resistance. 

First Explanation: Current Loops and Moments. The geometry of the inte-
ger quantum Hall effect is depicted schematically in Figure 25.8. Figure 25.8(A) 
shows the density of states of a quantum Hall device with some density of localized 
states created by impurities. In an absolutely perfect sample, when the induction 
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B increased, as soon as one Landau level became empty the next would instantly 
begin to lose its first electrons. The situation is different when localized states are 
present. After the chemical potential falls below the lowest-lying extended state 
in some Landau level, there remains a range of B for which the chemical potential 
moves through the localized states, and all extended states in lower-lying Landau 
levels remain completely filled. The field strengths for which extended states in 
all Landau levels are either completely empty or completely filled will correspond 
to the Hall plateaus, so the presence of some density of disorder-induced localized 
states is important in explaining the origin of the integer Hall effect. Figure 25.8(B) 
shows a simplified geometry for studying the effect. By driving a current / in one 
direction and measuring the voltage difference V in the perpendicular direction, 
one measures the transverse conductivity a^. A simple argument due to Streda 
(1982) shows why axy should be quantized. 

Consider any closed contour C in the sample. Imagine changing the external 
induction B slightly, so the total magnetic flux <£> within the contour increases at 
rate <i>. The contour experiences an electromotive force 

- - - 1 9 $ 
dl-E= . Lenz's law, or see Eq. (20.5b). ( 2 5 . 1 0 1 ) 

e c dt 

Figure 25.7. Experimental observation of the integer quantum Hall effect. A constant cur-
rent of 7 =28/iA runs around the upper loop; the current between the terminals separated 
by Vy is much smaller. The voltage plateaus correspond to Hall resistances of RK/V, where 
v is an integer. [Source: Cage (1987), p. 44. ] 
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Figure 25.8. (A) The density of states of a quantum Hall device contains large numbers 
of states at energies huc(v+ 1/2), but also contains localized states (shaded) in between 
the sharp peaks. (B) The quantized Hall effect is observed by creating a two-dimensional 
electron gas, immersing it in a strong field B, driving a current J through in one direction, 
and observing the transverse voltage V. 

The current j± traveling normal to the contour is given by 

j ± = axyEll, (25.102) 

where E\\ is the component of the electric field parallel to C. Therefore, Eq. (25.101) 
can be written 

r _ 1 f)<f> 

(25.103) 

Here Q is the total charge within contour 6. (25.104) 

(25.105) 

If v Landau levels are occupied, then according to Eq. (25.51), the total charge 
Q in the Landau levels is 

ß = _eiJL (25.106) 
q>o 

ecu ve v 
^axy = = = . Using Eq. (25.51). (25.107) 

$o h RK 
Because Eq. (25.107) was derived for ideal noninteracting electrons, it should not 
yet be clear why it still may be employed to 10-place accuracy when describing 
realistic, dirty, interacting experimental samples. An explanation is provided by 
making two plausible assumptions. 

1. The number of quantum energy states in a Landau level is not affected by in-
teractions between electrons or disorder. Referring to Figure 25.8(A), assume 
that the total number of energy levels contained in the broadened peak around 

— f dlj± = 
Vxy Je 

dQ 
dt 

=>• Pxy = 

- 1 0 $ 
~c~~dt 

Vxyd® 

c dt 
dQ 

c d $ ' 
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hu}c/2 remains <&/<£>o even after impurities and electron-electron interactions 
are considered. The large energy gap between the first and second Landau 
levels makes this assumption increasingly plausible as the induction strength 
B increases. 

2. Assume that the densities of localized states constituting the shaded regions 
in Figure 25.8(A) are rigid and do not change as B changes. 

As B increases, the total number of states in the Landau level increases in propor-
tion. If the numbers of localized states in the tail of the Landau level do not change, 
virtually all of the increase occurs through a rise in the number of extended states 
at the center of the level. So long as \i lies within the region of localized states, 
changes in the total number of charges N contained in the current loop must con-
tinue to be given by Eq. (25.51). The accuracy with which the Hall conductivity 
is quantized depends upon the accuracy with which the two assumptions about 
energy levels are obeyed; experimentally, the accuracy is at the level of parts per 
billion. 

Figure 25.9. If the electric field across a sample is expressed as a time-dependent vector 
potential, it can be made to disappear from everything but the boundary conditions, and 
the boundary conditions return to their starting values at time intervals T. Dots indicate 
electrons traveling around wire, while reservoirs at /ÂQ and ß\ maintain voltages 0 and V\. 

Second Explanation: Gauge Invariance. A different way to think about the 
quantum Hall effect was proposed by Laughlin (1981). Consider a single electron 
moving in a thin strip and in a strong uniform magnetic induction B, shown in 
Figure 25.9. The strip should be large enough so that its outer edges in the y 
direction are out of the range of B. Draw an imaginary perfect rectangle within the 
strip but at the top and bottom passing beyond the magnetic induction, and consider 
the quantum-mechanical problem restricted to the area within the rectangle. In the 
absence of any potential difference along y, specializing to the gauge 

A=yxB, (25.108) 
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Schrödinger's equation is 

-h2 d2 1 (h d exB\2 ._ 0 

- 2 n T ^ + 2m{l¥y + - ) +U^~E 
U(r) is a potential that 

lb (7) = 0 includes effects of the 
*■ ' ' crystal, and impurities. 

(25.109) 
Now introduce a slight complication that for the moment will seem artificial. There 
is some boundary condition that must be imposed when solving the Schrödinger 
equation; whatever it may be, it can be indicated as a linear condition 

E [ ^ ( J C , L ) ] = 0 , (25.110) 

where 23 is some operator that gives the boundary conditions. Now define t/>7(?) to 
be eigenfunctions of the equation such that 

£[V>7(;c, L)eh}=0. (25.111) 

These eigenfunctions can certainly be found for any applied field and any 7, al-
though it is not clear why one should care. 

Now put an electric field E(r) onto the sample, and assume it points only in the 
y direction. This field is not just the applied field, but could also include the field 
generated by Coulomb charges within the strip. Employ the method of Section 
16.3, which derives electron fields from time-dependent vector potentials, as in 
Eq. (16.30). The Hamiltonian becomes 

-h2 d2 1 fh d exB 1 (H 0 exB ^ , - V rr,^ o 

2m dx 2m \ i dy 
V>(r) = 0. (25.112) 

Because of the explicit time dependence in the vector potential, this equation 
does not follow from the time-dependent Schrödinger equation. However, as in 
Section 16.3, the errors introduced in this way are exponentially small. 

The electric field can be eliminated formally from the problem by writing 

iP = eieV'/R4>, (25.113) 

where V is the electric potential defined by 

£ = - W . (25.114) 

Because near y = 0 (the bottom of the rectangle) and y = L (the top of the rectangle) 
there is no magnetic field and the strip is metallic, the voltage is constant in space to 
high accuracy. In particular, the electric potential at the top of the strip, V(L) — V\ 
is independent of x. The function ip therefore obeys precisely the same equation as 
ij) in the absence of a field, but it obeys boundary condition 

rB[e-ietVl/n4>(x,L)} = 0. (25.115) 

In other words, ip is of the form indicated in Eq. (25.111) with 

7 = - ^ . (25.116) 
n 
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Now consider what happens when 

eVit 
~h~ 

This condition occurs after a time 

2vr. (25.117) 

T = - £ - . (25.118) 

The boundary condition has returned to its value at t = 0, so all the single-particle 
states ip are the same as the states tp. The occupation of the states might be differ-
ent. That is, as time progresses from 0 to T, each state / must evolve until finally 
at time 7 it turns into some other state /'. All the quantum states at t = 7 must 
be identical to those at t = 0, but they are not necessarily occupied in the same 
way. In fact, if some Landau level is incompletely filled, the occupation of states 
should be expected to change. However, if the Fermi level lies within the region of 
localized states between Landau levels, the occupation of states at t = T must be 
precisely what it was at t = 0. First consider the localized states. They are trapped 
in potential wells, with wave functions that are exponentially small at the system 
boundaries, so as the boundary condition indicated by Eq. (25.116) changes, they 
change exponentially little. Next consider the extended states within a filled Lan-
dau level. All of these states are occupied at t = 0, and when t arrives at T they 
must all remain occupied. 

In short, one can be quite sure that the system at t = 7 is indistinguishable from 
the system at t = 0. Because the voltage at top and bottom is imposed without 
allowing current to flow along y, the most that could have happened is that an 
integer number v of electrons was transported through the sample in the x direction, 
as indicated in Figure 25.9. The current that has passed through the system is 
therefore 

Jx = -= = —r1, (25.119) 
T h 

which means that the conductance is 
2 e v <7xy = v— = —. (25.120) 

25.5.2 Fractional Quantum Hall Effect 

The integer quantum Hall effect depends crucially upon the presence of disorder, 
which allows the Fermi level to lie in a gap between extended states and thereby 
produces plateaus in the transverse conductivity. Tsui et al. (1982) created two-
dimensional electron gases in GaAs-AlGaAs with electron mobilities [Eq. (19.65)] 
on the order of 5 • 105 cm2 V - 1 s_1, 100 times larger than the mobilities in samples 
where the integer Hall effect was observed. The importance of impurities was 
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Figure 25.10. Measurement of fractional quantum Hall effect in GaAs/GaAlAs het-
erostructure with mobility of 4-105 cm2 V"1 s~' and electron density of 1.45-1011 cm-2 

at a temperature of 150 mK. [Data of Boebinger, Chang, Stornier, and Tsui, published by 
Chang (1990), p. 185.] 

correspondingly less, but instead of eliminating plateaus in the Hall voltage, a host 
of new plateaus appeared, as illustrated by the data in Figure 25.10. 

The physics underlying the fractional quantum Hall effect is in some ways 
quite different from the physics underlying the integer effect. Locking the voltage 
Vy into plateaus is due to the formation of a quantum liquid, in which the electrons 
form a highly correlated state to minimize the effects of Coulomb repulsion. 

A general explanation of the fractional quantum Hall effect can be found by 
returning to the second argument used for the integer effect. Suppose that the elec-
tron ground state is a sum of many determinental wave functions and that for any 
given boundary condition of the type described in Eq. (25.115) there exist q degen-
erate ground state solutions. Suppose furthermore that at every time interval T the 
ground-state wave function travels between these degenerate states in sequence. 
Then the ground-state wave function does not return to itself completely until after 
a time q7. Repeating the argument that led to Eq. (25.120), the conductivity will 
be 

2 

p e 
q h ' 

where p is the integer number of electrons that leaves the sample in time q7. 

(25.121) 
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It is obvious to ask in the wake of the argument about the type of microscopic 
state which supports this degeneracy. In addition, with few exceptions, only odd 
denominators p have ever been seen. This fact also calls out for a microscopic 
explanation. 
Laughlin Wave Function. Laughlin (1983) proposed a generalization of the 
free-electron state in which the density of states within filled levels is eB/phc, 
and which therefore has conductivity p times less than that of the single Landau 
level. A first observation leading to this state is that in a strong magnetic field, the 
Coulomb interaction between electrons becomes increasingly unimportant. The 
characteristic minimum distance between electrons is 1/'sjn = ^hc/eB, so the ra-
tio of Coulomb to magnetic energies is 

e2^/n m*ce 2 
1.93-107 yjB/T. e° is the static dielectric constant. e°hioc e°hs/eBhc e°m 

(25.122) 
In a metal, the Coulomb energy would be much larger than the magnetic energy at 
any realistic field strength, but in gallium arsenide, with e° = 12.5 and m* = .061m, 
magnetic fields of a few Tesla are sufficient for the magnetic energy to dominate. 
The significance of reaching the high-field limit is that the true ground state of the 
system of interacting electrons can accurately be written using only states in the 
lowest Landau level as basis functions. States in higher Landau levels cost energy 
hwc, and Coulomb repulsion is too small an energy to force any electron to make 
the transition. 

In preparation for constructing the ground state of the interacting electrons, it 
is useful to write the Schrodinger equation for free electrons in a magnetic field in 
the symmetric gauge, with B pointing along —z: 

1 fh d exB\2 1 (h d eyB\2 

2m V ' dy 2c ) 2m \ i dx 2c ) 

Define the magnetic length 

ip(r) = 0. (25.123) 

/2Hc y x 
h = \ , and define variables y = — and i = — . (25.124) 

V eB lB lB 

The Hamiltonian becomes 

\ f) \ 2 /1 n \2~ 
i/> = ip£.. (25.125) 4 

\_d_ \ l nd_ : 
i dy J \ i dx 

Let 
z = x + iy, and define tp = e^2/2cf)(z, z). (25.126) 

Then the eigenvalue equation for <fi is 

hucl^z-^_ + ±A = £4>. (25.127) 
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In the partial derivatives, z and its complex conjugate z are treated as independent 
variables. Therefore it is easy to construct the many degenerate wave functions that 
constitute the first Landau level by writing 

<Kz, z) = f(z) => ̂ (z, z) = f{z)e-^l\ (25.128) 

where / is an arbitrary power series in z. Because df(z)/dz = 0, all functions of 
the form (25.128) have eigenvalue £ = HLOC/2. 

Because the ground state of the true many-body Hamiltonian, with Coulomb 
interactions included, can be constructed out of functions living in the first Landau 
level, the many-electron wave function must be of the form 

* = /(zo . . . ZN-\)e~ ^i=o I2'1'/2, (25.129) 

where / is an analytic function of all its arguments. Laughlin (1983) proposed that 
one examine a many-body wave function of a simpler form, called a Jastrow wave 
function, similar to Eq. (15.114) for the theory of liquid helium, and similar to the 
wave function that describes the ground state of superconductors. The form is 

tf = Y[ f2(Zl - zv)e~ ^i=o |z' |2/2. (25.130) 

The function f2 can be determined by considering constraints imposed by rota-
tional symmetry. The Hamiltonian commutes with the angular momentum opera-
tors 

.3_ 
~ldOt 

a __ a 
OZl OZl 

(25.131) 

and all of these, for different /, commute with one another. Therefore the eigen-
states can be taken to be eigenfunctions of these operators, which means that 

Z } = qfl{z)^>h{z)=Zq. Where 9 i s a n i n t ege r- i f h is to remain in- ( 2 5 . 1 3 2 ) 
Qz finitely differentiable at the origin. 

So 
* = l[(zi -zv)qe~ S o ' M2/2_ (25.133) 

/</' 
The wave function must be odd under interchange of particles, so q must be odd. 
This consequence of Fermi statistics thus explains why odd denominators are most 
easily observed in the Hall plateaus. The wave function (25.133) is a plausible 
candidate for the ground state of electrons in a strong magnetic field because it is 
constructed purely from wave functions in the lowest Landau level, and it vanishes 
whenever two particles come close together so as to reduce the effects of Coulomb 
repulsion. Guessing the form in Eq. (25.130) is enough to fix the wave function, 
even without inserting it into Schrodinger's equation and varying parameters. 



Quantum Hall Effect 789 

When q=\, Eq. (25.133) is precisely an antisymmetric product of N states in 
the lowest Landau level: 

# = 

1 
zo 

1 
Z\ 

zT1 z7" 

1 
ZN-l 

ZN-

A,_1 Vertical lines indicate taking the 
Z-<;=o lz'l / 2 determinant of this matrix. 

Subscripts on z label particle 
number, while superscripts are 
exponents. 

(25.134) 
To see that Eqs. (25.134) and (25.133) are equal, recall that a determinant is un-
changed when one column is subtracted from another. For example, subtract col-
umn 1 from column 2. All the vertical entries are of the form 

Zi -Z? = (Z2-Zl 

m-\ 

E J m-l-l 
Z2ZY 

1=0 
(25.135) 

So zi — Z] is a factor of the determinant. Similarly, zi — zv is a factor for all / ^ V. 
The largest power of zo to appear in Eq. (25.133) is z^_1, and the largest power 
of zo to appear in Eq. (25.134) is the same. The prefactors of Eqs. (25.133) and 
(25.134) are polynomials of the same degree and sharing all the same factors, so 
they most be equal up to an overall constant. 

When q equals an odd integer, the wave function describes a correlated state 
where electrons fill a fraction \/q of the states in the lowest Landau level. This 
claim may be demonstrated by considering how to find the degeneracy of a Landau 
level using functions of the type zm exp[— |z|2/2]. Suppose that the N single-particle 
states 

-1*172 ze -W/2 z2e~ 1*172 zN~ -W72 (25.136) 
are occupied. The density \zm exp[—|z|2/2]|2 has a maximum at \z\2 = m, so the 
functions in (25.136) describe a series of concentric rings of charge, filling an area 
uniformly out to a radius of \z\2 = N — 1 PZN. The units of length in Eq. (25.124) 
are IB, so the area A filled by charge is 

■■irNli 
2TTNHC 

eB ■N 
BA Use Eq. (25.124) for the magnetic length /g, 

and compare result with Eq. (25.51). 
(25.137) 

Thus the area occupied by electrons in a wave function of the form (25.133) can 
be determined by finding the radius of maximum density when all but one of the 
variables is set to some small value near zero, and the remaining one is allowed 
to become large. Set all but zo to values near zero, and search for the maximum 
density as a function of zo- For general values of q the maximum occurs for 

\Z0\2 = q(N - I) ^ N ■- BA 
q$o' 

Replace N by Nq in Eq. (25.137). (25.138) 

In particular, when q = 3, the Landau level is filled one-third of the way to the top, 
and the tilling fraction v equals 1/3. 
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Fractional Charge. Laughlin furthermore proposed that the excitations of the 
fractional quantum Hall state carry fractional charge. Imagine constructing an ex-
tremely thin solenoid with uniform induction B inside and no induction outside, 
and passing it through the two-dimensional electron gas. Imagine beginning with 
no flux through the solenoid, and then slowly increasing B until finally the total flux 
in the solenoid is <&Q. According to the discussion of Section 25.3.3, an electron 
traveling a circuit around an infinitely thin flux tube with flux of <£>o will undergo 
a phase change of 2n, and no physical measurement can detect the presence of the 
tube. Therefore the electron gas after the tube reaches flux <3>o must be in an eigen-
state of the original Hamiltonian. This state cannot be the ground state because 
turning on the flux tube at the origin drives charge away from the origin, and so 
one has constructed an excited state. 

To see that charge is driven away from the origin, and to calculate how much, 
note that turning on the flux tube creates an azimuthal electric field, 

1 ô $ 1 
H (25.139) 

c 2nr dt 
Traveling far from the flux tube, the current produced by this electric field is per-
pendicular to it, because only axy is nonzero, and the total charge Q transported 
away from the flux tube is 

1<9$ 
,xy~c~di 

1 v 

Q ■ I dt 2irr j± = - / dt ax 

CRK 
-4>o = — ve. 

(25.140) 

(25.141) 
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Figure 25.11. Shot noise in GaAs/GaAlAs heterostructure in magnetic field that puts the 
system in the v = 1/3 plateau. The magnitude of the shot noise is consistent with a system 
where current is carried by particles of charge e/3, and it is inconsistent with one where 
the carriers have charge e. [Source: Saminadayar et al. (1997), p. 2528.] 
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So for filling fraction v = 1/3, this argument constructs an excited state of the 
Hamiltonian in which a charge of precisely e/3 is transported through any large 
loop surrounding the origin, and therefore the charge carriers are predicted to have 
charge e/3. 

Experimental Observation of Fractional Charge. Saminadayar et al. (1997) 
tested this idea experimentally. The test is based upon Eq. (18.22), which predicts 
that current fluctuations in any current-carrying system contain shot noise propor-
tional to the current, proportional to twice the particle charge, and proportional to 
the frequency bandwidth. The results clearly support the claim that charge carriers 
in systems with filling fraction u = 1/3 have charge e/3, and they are displayed in 
Figure 25.11. 

Problems 

1. Classical electrons in a magnetic field—mechanics: Consider a popula-
tion of classical electrons in a two-dimensional box of side length L, all of 
which are moving in some direction at velocity v. When a magnetic field is 
turned on, the electrons in the center of the box begin to rotate, leading to a 
diamagnetic response. However, those electrons within reach of the bound-
ary bounce off it, ultimately traveling around in the opposite direction. Find 
the net magnetic response of the whole system; according to Problem 3.2, it 
should vanish. 

Assume that the centers of the electrons' orbits sit on a finely spaced grid. 
Discuss the electrons whose orbits hit the boundary separately from those 
whose orbits do not. Use drawings and geometrical arguments rather than 
complicated analytical formulae. 

2. Classical electrons in a magnetic field—statistical mechanics: Show that 
the free energy of a collection of classical electrons in a box must be indepen-
dent of any static applied magnetic field. 

(a) Write down the classical partition function Z for N particles. The particles 
interact with each other according to an arbitrary potential U that depends 
only upon their positions. 
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(b) Show how a spatially uniform static magnetic field is to be included in the 
partition function. 

(c) Show finally that with a change of integration variables the magnetic field 
can be eliminated from the partition function and therefore cannot affect any 
thermodynamic variable. 

3. Tightly bound electrons in two dimensions and in a strong magnetic field: 
Suppose that one has a Hamiltonian for a two-dimensional system on a square 
lattice of spacing a, 

X0 = — + U(R). (25.142) 
2m 

Suppose that in a basis of Wannier functions, w(R, r), $io takes the form given 
in Eq. (8.67), 

0 ~ / ,, \1\) t\K ~r 0 \. Measure energies relative to the on-site en- ( . Z j . l ' + j ; 
j?(5 ergy U ; recall that 5 is the set of nearest neigh-

bors of R. 

Now turn on a magnetic field. The Hamiltonian becomes 

(P + eAlc)2 
J { = i r t ^ + (25.144) 

2m 

Take the vector potential to be A = (0, x, 0)B. 
Expand eigenfunctions of "K in the form 

i>(T) = -^=y" e-ieyBR^hcC^%ü{R, r). w(R, 7) is a Wannier ( 2 5 . 1 4 5 ) 
yTV ^f function, and Cg is a 

R coefficient that needs to be 
determined in the remainder 
of the problem. 

(a) For Wannier functions very well localized compared to the scale on which 
the vector potential varies, show that to leading order, 

£ ^ ( r ) = A=Y, C^e-ieByRx/nc^ow(R, r). (25.146) 
R 

(b) Show that 

C p~ieBaRy/hc _|_ p pieBaRy/hc 
ECâ. (25.147) 

C e~ieBaRy/hc _i_ p JeBaRy/Hc 

^ ^R+ay ^ ^R-ay 

(c) Reduce Eq. (25.147) to a one-dimensional equation. First define 

R R F 
n = —, m=—, K = akx, and £ = —. (25.148) 

a a t 
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Suppose that 

Show that 

C ^ — iPm& 

where 

2ipm cos(27rmè-K) + ^ m + i + ^ m - i = £ipm, 

_ ea2B _ a2B 
2TTHC $o 

(25.149) 

(25.150) 

(25.151) 

4. Quantum electrons in a magnetic field: Work through the energy levels of 
an electron in a magnetic field. Beginning with the Hamiltonian 

1 - e~2 

adopt the Landau gauge 

K=—{P+-A)\ 
2m c 

A = (0,Bx,0). 

(25.152) 

(25.153) 

Show for wave functions proportional to exp[ryfcj,] that Eq. (25.152) becomes 
the Hamiltonian for a harmonic oscillator centered about 

xo = 
Hkv 

rnujr 
(25.154) 

where LOC is given by Eq. (25.46). Show that the energy levels are given by 
Eq. (25.48). 

5. Careful derivation of Landau diamagnetism: Consider noninteracting elec-
trons confined by a potential p2£o/2R2

), where p is the radius in cylindrical 
coordinates, with a magnetic field of strength H pointing in the z direction. 
Schrödinger's equation is 

2m 
1 d dip d2ip 1 d2ip 
pdprdp dz2 P2d<p 

1 dip mcv2 £o i 2 / c, - j /kj c— + [ — + -^\p ip = Zip. 

(a) Define 

and 

iP = R(p)e> 

muic 2 

d(p 

,il<fi+ikzz 

Show that after substituting £ for p one obtains 

£R" + R' h2k\ £o£ i I2 I 
+ + T + TT + ' 2mhioc mRr.uj2 4 4£ 2 HLÜ, 

(25.155) 

(25.156) 

(25.157) 

R = 0. (25.158) 
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(b) Show that R behaves as exp[—v£/2] for large £ and as ^l^2 for small £. Find 
the constant v. 

(c) Now define 
exp[-^/2]£l'l/2M0=*(0 (25.159) 

and 
£ = - . (25.160) 

V 

Show that 

Cto"-«;'C + (|/| + l K + 
/k<jc.f 2 ^ 

w = 0 

(25.161) 

(d) The confluent hypergeometric function /7(a, 7; C) solves 

QF" + (7 - C)/7' - a F = 0 (25.162) 

and is well-behaved at infinity only if a is a negative integer. Find the energy 
levels of the electron. 

(e) Repeat the arguments leading to Eq. (25.66) and show that they are un-
changed in the limit v — 1 <C 1. 
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26. Quantum Mechanics of Interacting 
Magnetic Moments 

26.1 Introduction 

Permanent magnetic moments could not exist in a world of charges ruled by classi-
cal electromagnetism. Quantum mechanics solves this difficulty through the quan-
tization of orbits. However, there is a second difficulty that quantum mechanics 
must also be called upon to solve, and that is the strength with which adjacent 
magnetic moments interact. 

Nearby magnetic dipoles do interact with each others' magnetic fields. Yet 
magnetic fields are so naturally weak that even at distances characteristic of the 
atomic scale, magnetic dipoles are too small to explain magnetism. The induction 
produced by a magnetic dipole mi is 

B = V _ l i 3r (mi- r ) -mi 
m i - V - = ^ , (26.1) r rJ 

and so according to Eq. (24.37) the energy of two dipoles separated by fyi and 
interacting with each others' fields is 

fh\ -/W2 —3(/W2-fi2)(mi 'hi) (26.2) 

which has a maximum magnitude of 2m\m2/r\2 when fh\ \\ mi || ~f\2- The energy 
scale for the dipole interactions is 

'2 A tn\ mo /2fln\ 
0 . 9 - 10 e V • — — — - . a0 is the Bohr radius. 

Xmun^ / 2 a o \ (4 = 0 9.10"4eV . ^ L ^ (—Y 
4 MB MB V ri2 ) a\ ' ßB ßB V m / 

(26.3) 
Because this energy scale equals kßT for a temperature of 1 K, magnetic dipole in-
teractions would have difficulty explaining a solid whose ferromagnetic transition 
temperature was 10 K, let alone iron for which it is over 1000 K. Apart from their 
role in large-scale phenomena such as domains, the magnetic fields produced by 
electrons and ions are usually negligible. 

26.2 Origin of Ferromagnetism 

26.2.1 Heitler-London Calculation 

The physical effect that produces magnetic ordering of adjacent magnetic moments 
is the same that leads to magnetic ordering within an ion and produces Hund's 
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798 Chapter 26. Quantum Mechanics of Interacting Magnetic Moments 

rules. Magnetic fields are irrelevant; what matters is the effort by electrons to 
choose a spin state that will minimize the Coulomb repulsion between them once 
Fermi statistics are taken into account. Interactions between spins are actually just 
a convenient way to record the end result of electrostatic repulsion. 

The emergence of interactions between spins from Coulomb forces is most 
clearly illustrated by a calculation of Heitler and London (1927) (Figure 26.1). 
Consider two adjacent atoms separated by distance Rn = R\ — Ri, and let (f)\{r) 
and </>2(?) be spatial wave functions of the outermost electrons on atoms 1 and 
2, respectively. These wave functions should be determined when the atoms are 
infinitely far apart, not interacting, and the Coulomb forces between the two atoms 
will be treated as a perturbation. 

Figure 26.1. Setting for the calculation of Heitler and London (1927). Two electrons, 
possibly of different spin, surround nuclei at locations R\ and R\. Correlations between the 
spins are induced by the overlap of the wave functions. 

Because the wave functions 4>\ and 4>2 are determined when the atoms are far 
separated, they will not be orthogonal when the atoms come close together; the 
overlap integral 

l=\\ I dr^(r)^2(r)\\ (26.4) 

is not zero. 
So long as the excited states of the two atoms remain irrelevant, the two-

electron wave function when the two electrons approach one another will consist 
of linear combinations of antisymmetric products of <fi\ and fa. It is not enough, 
however, to consider only the spatial dependence of the electron wave functions. 
The electrons employ spin degrees of freedom as part of the strategy of lowering 
their energy, and spin must be included explicitly. 

Spin Singlets and Triplets. The Hamiltonian does not depend upon spin explic-
itly, so all spin operators commute with the Hamiltonian, and the eigenfunctions 
can be chosen as eigenfunctions of the commuting operators S2 and Sz. The spin 
eigenfunctions are first 

—ß (Xî(<ri)Xi(<72)-X±(<7i)Xî(<72)) , (26.5a) 

which has eigenvalues S = Sz = 0 and is a spin singlet. Second, there is the triplet 
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Xî(o"i)Xî(cr2) 5 = 1 ; 5 Z = 1 

^ = ( X T ( ^ ) X i ( ^ ) + X i ( ^ i k î ( ^ ) ) S=l;Sz = 0 (26.5b) 

Xi(^i)Xi(^2) S=l;Sz = -l. 

Spatial Wave Functions. The product of spatial and spin wave functions must 
be antisymmetric under exchange of particle numbers. Because the singlet wave 
function is odd, it must multiply a spatial wave function that is even, while the 
triplet wave functions must multiply something odd. From the two functions </>i 
and fa, only one even and one odd function can be constructed, and when one 
takes into account the overlap integral in Eq. (26.4) the normalized combinations 
are 

<Mn, 72) = . ^,J(f)\{r\)(p2(r2) + h(r2)Mn)}, ^ n , multiply by spin (26.6a) 
V2 + 2/2 sinslet-

4>t{r\,r2) = , J0l(n)(fe(':2)-<?i>l(?2)<fe(n)]. Odd multiply by spin (26.6b) 
y/2 — 2/2 triplet and get three 

more wave functions. 

The Hamiltonian is diagonal in the space spanned by the four wave functions pro-
duced by the allowed products of Eqs. (26.5) and (26.6), because the Hamiltonian 
is independent of spin, but all the spin functions are orthogonal to one another. 
These four wave functions must be eigenfunctions of that subspace, although not 
necessarily of the full Hamiltonian. What remains is to calculate the expectation 
value of the Hamiltonian in each of them, and to find an approximation for the 
wave function of the ground state. 

Evaluation of Energies. Let £o be the energies of each atom when the two atoms 
are infinitely separated, so that 

P\ e1 

2m \r\-R 

When the two atoms come together, the full Hamiltonian is 

P2 p1 Pi p1 

,(r1) = £o0i(ri). (26.7) 

Then 

2m | n - / ? i | 2m \f2-R2\ 
2 2 2 2 

e e e e 
+TZ ^ + ̂  —t--t —,--x ^-7- (26.8) 

\r\-n\ \Ri-R2\ \ri-R2\ k 2 - / ? i 

= j dhdr2 tâ(7i)ÏÏ(72)X<h(?i)Mh) (26.9) 

= 2EQ + U, (26.10) 
where 
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U 

and 

df\ df2 
I0.(n)l2 

x I02(r2)|2 + � 
■r2\ \Ri-R2\ \7i-R2\ \r2-R\\ 

(26.11) 

(26.12) 
„ 2 T / Notice that the Coulomb interactions appearing in Eq. (26.14) are 

: 2 c o / + v , not the same as those appearing in Eq. (26.12); because ?i and ~?2 ( 26 .1 j ) 
have been exchanged, the Coulomb terms are grouped differently. 

dndr2 <#(WÎ(r2Wi(n)02(r2) 

dfxdh (t>UnW2(hW2(n)Mh) 

with 

V I df\ df2 
<P\{nW2{72) 

x 4>2{r\)4>\(r2) \r\-r2\ \R\-R2\ \r\-Ri\ 

Finally, 

and 

F MITTUN o2£o + t/ + 2/2£o + V tf + V 
£, = (0.5|5t|^) = 2 ^ , „,7 = 2 £ 0 + 2 + 2/2 

£; = (^|?C|ç!)r) = 2 2 _ 2 / 2 = 2 £ 0 + 

and the difference between triplet and singlet energies is 

2l2U - 2V 

1 + /2 

u-v 

£r £s = l - / 4 -y. 

| r 2 -^2 | 

(26.14) 

(26.15a) 

(26.15b) 

(26.16) 

The sign of the triplet-singlet energy difference can vary according to the mag-
nitudes of the three integrals /, U, and V. In the particular case of the helium atom, 
Heitler and London (1927) found that Eq. (26.16) is positive, so the singlet is of 
lower energy. Spins on the two atoms point in opposite directions, providing a 
two-atom example of antiferromagnetism. 

Lieb-Mattis Theorem. While Eq. (26.16) is very suggestive of how varying 
overlap integrals can lead sometimes to ferromagnetism and other times to antifer-
romagnetism, it results from approximations, and in at least one case where it can 
be checked thoroughly it is wrong. Lieb and Mattis (1962) proved that the true 
ground state of any two-electron system is always a singlet. Equation (26.16) can 
predict that the triplet ground state is lower, but such a prediction must be wrong. 

The argument is one earlier used by Feynman (1953) to discuss properties of 
the ground state of helium, and it is based upon observing that the ground state 
must be free of nodes. In brief, the argument proceeds as follows: Consider any 
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Hamiltonian for two electrons, and suppose one has found the ground-state wave 
function </>(n, 72)- The function </>*(n, r2) must have the same energy, as does 
4> + 4>*, so one may as well take 4> to be real. Using the variational principle of 
Appendix B.2, <f> minimizes the functional 

/ drxdf2 |_ |V 1 ( f l 2 + | - | V 2 0 | 2 + I/(?i, r2) |0(n, r2)\2 

J dr\dr2 |</>(n, r2)\z 

Suppose that </>(?i, r2) is an odd function of its arguments. In some places it is 
positive, in other places it is negative, and somewhere it must pass through zero, so 
it has at least one node. Next consider the absolute value of </>, \<j>(ri, r2)\. Placed 
into Eq. (26.17), |</>| gives the same value as </>; tiny regions around the nodes of 
</> where derivatives of \cf>\ might be ambiguous can be excluded from the integral 
without changing it appreciably. However, deforming </> near the cusp in Figure 
26.2 is guaranteed to lower the energy functional (26.17), as shown in Problem 1. 
Therefore 4> cannot be a ground state, and consequently it cannot have nodes. The 
singlet is guaranteed to lie lower than the triplet for all potentials U. 

Figure 26.2. The energy of a wave function with a cusp is always lowered by smoothing 
out the cusp. If 4> has a node it has the same energy as \(j>\, but the energy of \4>\ can be 
lowered by deforming to the dotted line, so 4> cannot be a ground state. 

Generalizing from this argument, it would be hard to see how ferromagnetism 
could occur at all. The conclusions that can be obtained for two electrons are actu-
ally quite particular to problems involving only two electrons. Consider the ground 
state of the ion Pr3+, which consists essentially of two 4 / electrons sitting outside 
a xenon core. If the Lieb-Mattis theorem could be applied, Pr3+ would be in a 
state with S = 0 and nonmagnetic. In fact, Hund's first rule predicts, and experi-
ment confirms, that the ground state is the triplet 5 = 1 . The theorem fails because 
the two 4 / electrons must be orthogonal to the inner shells of electrons, and the 4 / 
electrons are consequently required to have nodes. The theorem based upon avoid-
ance of nodes is irrelevant, and in returning to the Heitler-London approximation, 
one finds that it does not do such a bad job after all. Equation (26.16) can be ap-
plied, roughly, to Pr3+ by allowing R2 and R\ to coalesce and letting cj>\ and 4>2 be 
two orthogonal wave functions in the 4 / shell. The overlap integral / vanishes, and 
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Eq. (26.16) predicts that the triplet will lie lower than the singlet by 2U, predicting 
ferromagnetic correlations, and correctly recovering Hund's first rule. 

26.2.2 Spin Hamiltonian 

Because the symmetric and antisymmetric spatial states of two electrons are un-
shakeably correlated with the spin wave functions, Dirac (1926) and Heisenberg 
(1926) showed that the original Hamiltonian (26.8), which acts only on spatial 
degrees of freedom, can be replaced by a new Hamiltonian acting only upon the 
spin degrees of freedom. This new Hamiltonian is constructed to give results iden-
tical to the old one within the subspace of states spanned by the wave functions in 
Eqs. (26.5) and (26.6). It would not, of course, remain correct if excited atomic 
states were to become important. 

The four electronic states created by the products of Eqs. (26.5) and (26.6) 
have two energies. The three triplet states sharing the same energy are related to 
each other by symmetry. Their energies are invariant when the spins of the two 
electrons, S] and 52, rotate simultaneously by the same amount. This observation 
suggests the Hamiltonian 

"K = a + bS] ■ S2
 a m d b a r e constants. ( 26 .1 8) 

1 r ê + ê - i c+« 
See Schiff (1968), pp. 200-201, 

= a + b [S\SÏ+-\StSï+StS7\\ . or Landau and Lifshitz (1977), ( 2 6 . 1 9 ) 
\ ' 2 2 / P' raising and lowering v ' 

operators are defined by 
S± =Sx±iS>\ 

When this Hamiltonian acts on the triplet state it gives a + b/A, while when it acts 
on the singlet state it gives a — 3b/A. The difference J between singlet and triplet 
energies defined in Eq. (26.16) equals —b, and evaluating a gives 

Ä = 2£0 + ^ ^ + ( ^ - 5 , -S2)J. (26.20) 

A positive value of J causes the two spins to point in the same direction in the 
ground state. 

26.3 Heisenberg Model 

The Heisenberg model supposes that when a large collection of magnetic ions is 
placed in a lattice, Eq. (26.20) remains a guide to the form of the energy, and 

Drop additive contributions to the energy, and al-
a r _ \ ^ i , C. . C , low the possibility that J depends in a general fash- ( 2 6 2 1 ^ 

' ' " ' ' ion upon the particular pair of spins that is inter- ^ ' ' 
(//') acting. Carry out the sum over distinct pairs of 

spins at / and /'. 

Equation (26.21) cannot easily be derived in a controlled fashion, and it is not 
necessarily the form that realistic accounts of interactions between electrons will 
take. It has, however, formed the basis for almost all studies of the organization 
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and dynamics of spins, at either the quantum-mechanical or classical level, which 
makes it worthwhile to sketch a brief derivation. 

Consider a lattice of ions, and describe the electronic states in this lattice in 
terms of Wannier functions w(R, r), chosen because of their convenient ability 
to describe electrons localized on atomic sites R, and with functions at different 
sites orthogonal to one another. The lesson from studying two electrons is that 
even when the spatial wave functions of all electrons are fixed, the system can 
adopt various energies according to the way that spin and space degrees of freedom 
interact to conform to Fermi statistics. Therefore, consider the space of states 
spanned by a fixed collection of Wannier functions and all possible spin states of 
the many electrons. For N electrons the Hamiltonian is 

N p2 

/] ~ \-U = ^kinetic + ^ in t , (26.22) 

where U can either be the Coulomb interaction or else some more elaborate ef-
fective two-body potential such as a screened Coulomb interaction. Focus on the 
interaction term, which contains all the magnetic effects, and rewrite it in second 
quantized form using the Wannier functions as basis functions. Use |/?/) for the 
state vector such that {r\Ri) = w(Ri,r), and denote the creation and annihilation 
operators for these states by c] and Q. According to Eq. (C.10), the Hamiltonian 
in second quantized form is 

Ä i n t= Y. (^/'|t>l^/"^/'")44CT'^"V'C/»CT. (26.23) 
a'i" i'" 

GO 

The spin states of Ri and /?;// must be the same, as must be those of Rti and 
R////, or else the matrix element vanishes because U is independent of spin. 

The approximation that leads Eq. (26.23) to reproduce the Heisenberg Hamiltonian 
assumes either that Rim = Rti and /?/» = Ri or that Ri" = /?/' and Rim = Rt. This 
approximation can be motivated either by pointing out that the Wannier functions 
are localized within a unit cell, so the matrix elements are small unless the wave ■ 
functions group in pairs, or else by pointing out that these are the unique groupings 
of Wannier function indices that allow (26.23) to produce a nonzero result at lowest 
order in perturbation theory. Adopting in any event this approximation, 

£int=v < ^ H ? » > 4 4 ^ ^ ^ (2624) 
t-^ _l_ D.D.. \TT\D..B.\£t & £. .£.. v ' 

W 
< 7 < T ' 

+ (RlRl,\U\RllRi)clac]llTlcttT>ci>IT 

{RiRv\Û\RiRii)c\ac\lalci'a'Ciff 

^ + {RiRi>\Û\Ri>Ri)[nla8w -c\ac l a ,c\ l a ,cV a\ . 
w 

on 
The final term of Eq. (26.25) is called the exchange term, and it can be put in the 
form of an interaction between spins. To do so, note the identities 

5Z = 2 [4^T ~ 4^1 = 2 ^T ~"^ (26.26a) 
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5 + = c { q ; S~=c\cv (26.26b) 

In addition, by supposition every Wannier state R is occupied either by a spin-up 
or spin-down electron, which means that 

W/TW/'T + n/1 Hf I The number operator n = c^c. ( 2 6 . 2 7 ) 

= 2 {("/T+"u)("/'T+"/'i) + (" 'T_"u)("/ 'T-"/ ' i )} (26.28) 

= - { 1 + 4Sf ■ Sf, } . Use Eq. (26.26a). (26.29) 

Performing explicitly the spin sums in the exchange term from Eq. (26.24) gives 
therefore 

Äexch = -m^lRrRÙ ( T ' ^ ^ ê n 4 ^ } (26-30) 
[ + cllcnc<ncn+niinn) 

= -2{R,Rv\Û\RvRi) | ^ +SfSf, + ^[SfSj;+Srs£]\ (26.31) 

= -2{RlRl,\Û\Ri>Ri) j - +Sr SA , See Eq. (26.19). (26.32) 

which means that the Hamiltonian contains the term 

- 4 J2(RiRi'\Û\Ri>Ri)SrSr (26.33) 
(in 

as claimed in Eq. (26.21). The remaining term of Eq. (26.24) does not depend 
upon the spin states of particles, so Eq. (26.33) alone is responsible for magnetic 
ordering. 

26.3.1 Indirect Exchange and Superexchange 

Direct overlap of wave functions is not the only way for two magnetic ions to inter-
act. They can also affect each through indirect exchange, in which the interaction 
between two ions is mediated by conduction electrons. Roughly speaking, the elec-
trons belonging to an ion flip a conduction electron which then travels to another 
site and interacts with the spin of the ion on the second site. The calculations of 
Section 26.6 will provide a specific illustration of how conduction electrons inter-
act with a localized spin. A second way for separated spins to interact is through 
superexchange, a similar process, but where the mediating influence comes from a 
neutral atom sitting between the magnetic ions. Whatever the source of the interac-
tion between spins, the leading term in the Hamiltonian is often of the Heisenberg 
form. 
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26.3.2 Ground State 

Ferromagnet. The ground state of the Heisenberg model is easy to construct so 
long as all the constants //// are positive. Any state where all spins point in the 
same direction, say along z, has energy 

( Î T Î . . . | Ä | Î Î Î . . . ) = - V " — . For spin 1/2, with S2 replacing 1/4 if the ( 2 6 . 3 4 ) 
~~~i 4 spins have different magnitude. 

Proving that this simple state is actually the ground state is the subject of Problem 
2. 
Antiferromagnet. When some constants J are negative, the problem of finding 
the ground state is much more difficult. Quantum states in which alternating spins 
point in opposite directions are not eigenstates. For the case where there is only 
one negative constant J that multiplies interactions between nearest neighbors, the 
ground state wave function was found by Bethe (1931) and was developed further 
byOrbach(1958). 
26.3.3 Spin Waves 

The excited states of the Heisenberg Hamiltonian have the same significance for 
magnetic behavior that phonons have for elastic behavior. They determine mag-
netic contributions to specific heat, and as they grow in amplitude with increasing 
temperature, they determine the location of phase transitions between magnetic 
and nonmagnetic states. 

The ferromagnetic ground state is degenerate, because while spins all need to 
point in the same direction, there is no preference for precisely what that direction 
should be. Many of the low-energy excitations are spin waves, which are con-
structed by slowly twisting the local spin orientation while passing through the 
crystal. These deformations of the local spin ordering can propagate through the 
crystal like plane waves and are called magnons. 

The energy of very long-wavelength spin waves vanishes, just like the energy 
of very long-wavelength phonons; both are Goldstone modes. Goldstone (1963), 
p. 163 explained that "Whenever the original Lagrangian has a continuous sym-
metry group, the new solutions have a reduced symmetry and contain massless 
bosons." "The massless particles ... correspond to 'spin-wave' excitations in which 
only the direction of [phase angle] <j> makes infinitesimal oscillations. The mass 
must be zero because when all the <p(x) rotate in phase there is no gain in energy 
because of the symmetry." 

Schwinger Representation. A formal theory of spin waves, effective both for 
ferromagnets and antiferromagnets, begins with a representation of quantum spin 
operators due to Schwinger (1965). The Heisenberg Hamiltonian arose from prod-
ucts of fermion creation and annihilation operators, but in this new representation 
the spins are represented by Bose operators. 
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Let a\ and a\ be two Bose creation operators. Let aa be the Pauli spin matrices, 
with a = x, y, z- Consider 

Sa = WaWi'av- a*=(°l Ö ) ; C T > ' = 0 O');CTZ=(O ?)• (26.35) 

Writing the components out explicitly, one has 

S = — \a\a\ —a^aj 

â\â2 + â\â\ j 

Sy = i- iâ2â\— â\â2j ■ 

(26.36a) 

(26.36b) 

(26.36c) 

One can verify that the operators in Eq. (26.36) obey the commutation relations for 
angular momentum operators. For example, 

S\Sy 1 
4 A 
-iSz. 

*t; a\a2 + a2a\, a2a\ —a\a2 

(26.37) 

One also has that 
â\â2; S ■ â2â\. (26.38) 

Angular momentum operators can describe particles of any integer or half-odd-
integer spin. If one wants to describe particles of spin S, then one has to work in a 
space where 

- (âjâi +â2â2) = S. (26.39) 

Holstein and Primakoff (1940) found an improbable formal device to ensure that 
Eq. (26.39) will be satisfied, by writing 

a2a2 = 2,i> — a\a\ 

and then taking the square root of both sides to obtain 

(26.40) 

d2 = \l 2 5 — a\â]. I' seems incorrect to take the square root of 
the left hand side like this, but the identity 
stands up to inspection. 

(26.41) 

The result is 

5 + _ , t ^t ; a\ \/2S — â\â \a\ 

2S — â\â\â [ « 1 « ! 

Sz = (âjâi —S). 

(26.42a) 

(26.42b) 

(26.42c) 
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Neglecting the peculiar derivation of these relations, one can verify without much 
apparent trouble that all the necessary commutation relations continue to be satis-
fied. For example, 

[S+, S~] = 2SZ. The calculation occupies about four lines, and ( 2 6 . 4 3 ) 
relies upon the fact that â^â commutes with 
any function of itself. 

The subscript on â\ has been dropped. An obvious problem with this represen-
tation is that it allows the eigenvalue of â^â to be greater than 2S, which would 
correspond to negative eigenvalues of â\â2—an impossibility. This representation 
of the rotation operators allows the creation of states that were not permitted by the 
original representation. In the correct subspace the representation creates no diffi-
culties, but one must be aware of the possibility that the representation will create 
unphysical states. 

Now return to the Heisenberg Hamiltonian. It can be solved in an approximate 
way by taking S to be large and by expanding in powers of 1 /S. This approximation 
begins with a classical account of the lowest-energy configuration and proceeds 
with a quantum-mechanical calculation of the fluctuations about it. The expansion 
is known as the 1 /S expansion and is related to a host of similar approximations 
called \/N expansions, discussed by Bickers (1987). First write 

Si -Sr = ^ (s+5;7 + SfS]-) + SfSf, (26.44) 

(26.45) 

2 
1 
2 

â]\J2S — â\âi\J2S — â^âi'âi' 

+ -â], \J2S — âvâ\i y 25 — âjâiâi + (S — âJâi)(S — âj/âf ). 

The semiclassical approximation involves supposing that 5 becomes very large. In 
this limit, guess that the operators â can be written as 

a, = y/sbi + (at - y/Sbi) , (26.46) 

with the second term taken to be small. The values of the constants bi will be deter-
mined by minimizing the Hamiltonian, and expansion in the remainder produces a 
series in 1 /S. To leading order, one then has 

Jt — - zl Jii's \ (bibf + bvb*) p 
+ ( 1 -

- |*zrV 2 

N 2 ) ( i -
~\bv\2 

IM2) 
(26.47) 

The general procedure is to minimize this Hamiltonian with respect to all the pa-
rameters b[. If the Jw's are random variables or very long range, this task may 
be insoluble. Assume that all of the Jw are positive, that they are only nonzero if 
//' are a nearest neighbor pair, and that all the nonzero elements are the same and 
equal to J. It is therefore natural to guess that all the bi are equal. Taking this to be 
the case, the ground-state energy is 

£0 = -JNzS2 (\b\2{2 - \b\2) + (1 - |è|2)2) = -JNzS2, (26.48) 
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where z is the coordination number of each lattice site, and N is the total number of 
sites. The ground-state energy is independent of the particular value of b, because 
the spins can rotate in any direction so long as they all point together. Imposing 
an external magnetic field would favor a particular spin direction, and therefore a 
particular value of b, but for the present, one can choose b = 0. Continuing with 
the expansion of the Hamiltonian means treating the operators â formally as small. 
Working to next order gives 

"K « —NJzS — 27 2_J S [â]âi' + àj,âi — âjâi — âj;â// ) . (26.49) 

The sum over (//') is a sum over distinct nearest-neighbor pairs. A factor of 
two is needed because each pair appears twice in Eq. (26.47). 

This Hamiltonian is essentially the tight-binding Hamiltonian of Eq. (8.67), and the 
solution obtained for (8.67) can be used again. The Hamiltonian is diagonalized 
by the operators 

I 
in terms of which it becomes 

Ä = -NJzS2 -2JS^2Y1 cos (* ' V ~ X âtâr (26.52) 
k K 

k 5 

-NJzS2 + ^2 hüJküv (26.53) 

where 
HLU = 2SJY 1 - cos(5 ■ k) ), (26.54) 

and 5 are the nearest-neighbor vectors. Equation (26.54) gives the spin wave dis-
persion relation. It should be kept in mind that this dispersion relation is only 
the approximate result of the 1/5 expansion, but it describes the behavior of the 
Heisenberg model fairly well even for small 5. 

Bound States. The approximate analysis of Holstein and Primakoff incorrectly 
predicts the qualitative nature of the lowest-energy excitations of the Heisenberg 
model. Mattis (1988), Section 5.4, shows that on a one-dimensional chain, two 
magnons can form a bound state, and propagating structures of this sort lie lower 
in energy, for any value of k, than individual magnons. Wortis (1965) has shown 
that the situation is more complicated in higher dimensions. In two dimensions 
there is again a bound state for every k, although the difference in energy between 
the bound state and the lowest-energy magnon is exponentially small. In three 
dimensions there are no bound states at all for small values of k, although at higher 
k there may be one, two, or three. 

26.3.4 Spin Waves in Antiferromagnets 

If the coupling J between spins is chosen negative, then all features of the quan-
tum problem become more difficult. Neighboring spins do tend to be antiparallel, 
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Figure 26.3. In the the Néel state, neighboring spins belong to separate sublattices, point-
ing up and down respectively. This spin configuration provides only an approximate solu-
tion of the quantum-mechanical Hamiltonian. 

although the actual ground-state wave function is very complicated. To capture the 
tendency of neighbors to point in opposite directions, called the Néel state, divide 
the spins into two interpenetrating sublattices, A and B, so that the neighbors of the 
A spins are all on the B sublattice and vice versa (Figure 26.3). One way to remove 
the inconvenience of keeping track of the change in spin direction when moving 
from site to site is to transform the Hamiltonian. Subject all the spin operators on 
the B sublattice to a 180° rotation about the x axis, so x —> x, y —> —y, and z —► — z, 
and the spin operators transform as 

Sp^tf S/,->-S/, . (26.55) 

Following this transformation, a ferromagnetic state where all spins point in the 
same direction will have precisely the same energy as the Néel state had before the 
transformation. The transformation does not by itself solve the problem, because 
the ferromagnetic state is no more an eigenstate of the new Hamiltonian than the 
Néel state was of the old one, but it simplifies the algebra. Assuming that only 
spins that are nearest neighbors interact, the Heisenberg Hamiltonian becomes 

(26.56) 

(26.57) 
S)(â],âii-S). 

Adopt again the expression for the creation and annihilation operators in Eq. (26.46), 
and expand in powers of the second term. Taking b to be uniform in space, the 
leading term in the Hamiltonian is 

'K = 2\J\YJ\ [5+5++575,7 - SZSZ 

= 2|/|E 
â] y 25 — âjâiâj, y2S — cr^ây 

AU.A à (//') + i Y 25 — âjâiâiy 25 — â,,â/'â// — (âjâi �ai 

•K « -^Vz|7|52 [ (l - Z?2) - b2 (l - è2) ] , (26.58) 
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which reaches a local minimum for 
, n Eq. (26.58) can be made arbitrarily negative by taking b large, but large values ._ , , „ 
b = U. of b do not provide legitimate points about which to expand the Hamiltonian. (2t>.Dy) 

Expanding next to quadratic order in the creation and annihilation operators, 

!K~2|y |2_] \-~S +S l ajâi + âj,â// +â |âj , + â/â// >\ . (26.60) 

Because Eq. (26.60) once again resembles the tight-binding model, it is natural to 
define 

ay = —= Y " eik'R'âi Compare with Eq. (8.68). ( 2 6 . 6 1 ) 

and rewrite Eq. (26.60) in terms of ct^ and at in the hopes that it will become 
diagonal. The hopes are temporarily dashed, because 

Jt = -\J\NZS2 + \J\SJ2 [(âlâ]_i + âkâ-k) cos{k-5)+2at&k 
kS 

<5 are nearest-neighbor 
vectors. 

(26.62) 
This Hamiltonian is not diagonal, but it only mixes k, and —k. It can finally be 
made diagonal through a transformation to new variables of the form 

a\ = cosh(a^) \ + sinh(a^) 7 ^ , (26.63) 

with a real. Problem 4 shows that substituting Eq. (26.63) into Eq. (26.62) diago-
nalizes the Hamiltonian, provided that 

tanh 7.0-; = V ^ COs(£ • S). z . i s t h e number of nearest neighbors of each ( 2 6 . 6 4 ) 

<5 

In terms of the operators 7, the Hamiltonian becomes 

X = -Nz\J\S(S+\) + 2\J\zSY^ ( ^ + ^ ) y/1-tanh2 20^. (26.65) 
k 

While Eq. (26.65) was constructed in order to search for excited states of the 
antiferromagnet, it provides as a bonus an estimate of the ground-state energy. 
Write the ground-state energy in the form 

-yV52|7|z ( l + ^ V (26.66) 

For a one-dimensional chain of spin-1/2 particles, Eq. (26.65) gives F = 2 — 4/TT = 
0.726, while the exact result is F = 0.773. 

The energy of a magnon with wave number k is predicted to be 

£ r = 2\J\SJz2-{T,7jC°sk-6)2. Combine Eqs. (26.65) and (26.64). ( 2 6 . 6 7 ) 
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Unlike ferromagnetic magnons, the energy of antiferromagnetic magnons rises lin-
early for small k. 

The approximate prediction in Eq. (26.67) compares well with the exact one-
dimensional results for single magnon excitations. However, the lowest-energy 
excitations for any given k are once again bound states, as shown by Fadeev and 
Takhtajan(1981). 

26.3.5 Comparison with Experiment 

Figure 3.14 showed that spin-polarized neutrons are capable of detecting magnetic 
structures. Inelastic neutron scattering can be used to detect magnons in magnetic 
systems, exactly as it is used to measure phonons. Measurements of ferromagnetic 
and antiferromagnetic magnon dispersion relations gathered in this way are shown 
in Figure 26.4. The crude model used for the exchange constants //// precludes 
quantitative comparison of Eqs. (26.54) or (26.64) with the data, but the ferro-
magnetic dispersion does rise from zero quadratically, and the antiferromagnetic 
dispersion does rise linearly, as predicted. 

Fe CuO 

> 
F 
~ 80 
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« 
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t—t 
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20 

(A) Wave number k (Â Wave number k 

Figure 26.4. (A) Dispersion relation for ferromagnetic magnons in iron obtained with 
inelastic neutron scattering. [Source: Yethiraj et al. (1991), p. 2571, and Lynn (1975), 
p. 2629.] (B) Dispersion relation for antiferromagnetic magnons in CuO obtained with 
inelastic neutron scattering. Two modes are visible, one acoustic and one optical. Solid 
lines have expected theoretical form. [Source: Ain et al. (1989), p. 1279.] 

26.4 Ferromagnetism in Transition Metals 

26.4.1 Stoner Model 

The magnetism of the transition metals and their alloys sits in an uneasy relation 
to the Heisenberg model. The Heisenberg model conjures up an image of isolated 
magnetic spins interacting with neighboring spins at short range. In metals such as 
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iron, the conduction electrons participate in the magnetism; they are itinerant and 
carry a net magnetic moment, although they are spread throughout the crystal. 

Stoner (1934) showed how to think about the coexistence of magnetism with 
one-electron band theory. The two are not in conflict. A collection of Bloch elec-
trons can display a net magnetic moment if it is energetically favorable to occupy 
one spin direction more heavily than the other. Depopulating one spin direction in 
favor of another is guaranteed to incur a cost in kinetic and potential energy. The 
size of the penalty is indicated by the inverse of the density of states D(£f ). If the 
density of states is large, many electrons can be moved into higher-energy states 
that sit only a tiny bit above (what was thought to be) the Fermi energy; but if it 
is small, the energies of electrons rapidly rise as they transfer from one spin direc-
tion to the other. The exchange interaction between overlapping electrons favors 
ferromagnetism, so the question is which of the two effects wins. 

As observed in Section 8.4.4, Wannier functions for metals can be defined, but 
cannot necessarily be localized at atomic sites, and may interact with other atoms 
over a long range. Writing down the exchange interaction (26.21), one should 
expect very large numbers of spins to interact with each other; in the extreme case, 
the interaction could become something like —J[Yli St}2- Because the sum over all 
spin operators is a macroscopic quantity, the total magnetic moment of a crystal, 
it should behave classically. Under these conditions, it should be appropriate to 
replace the quantum spin operators by their average value (S). 

To construct the Stoner model, suppose that one has a collection of mobile 
electrons whose energy per volume is described by a density of states 0(£) . Fur-
ther suppose that when the mean spin per electron is (5), the energy per volume 
of the electrons is changed by — Jn (S) /2, with some effective constant J taking 
into account the actual range of interaction between spins. The competition be-
tween one-particle energies and exchange energies can be evaluated by supposing 
that up- and down-spin states are occupied equally up to energy 8,f — Ai, and that 
from there up to an energy £/r -f A2, only spin-up states are occupied. For the 
moment restrict attention to energies A sufficiently small that the density of states 
may be treated as constant. Then if the number of particles in the system is to be 
conserved, Ai = A2 = A. So one can write that the total energy per volume of the 
electrons is 

r£F-A 1 r£.F+A 1 
£ = / d£ 'D(£ ' )£ ' + - / dt' D(£')£' - -nJ (S)2 , (26.68) 

Jo 2 JEF-A 2 

where the average spin per particle is 

A brief calculation shows that 

I f L = A D < £ ' > - i D ( £ F > 2 A - (26-70) 

The leading factor of 1 /2 
assumes spin 1/2 electrons, while ( 2 6 6 9 ) 
the second comes from the fact 
that the density of states includes 
both spin directions. 
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which means that the system is unstable to ferromagnetism when 

dA 
„ •* TWO \ A This is the condition for linear instability of 
0 =r> — L ^ G f ) = 4 . the unmagnetized state. It predicts that the 

W net spin runs away from zero, but does not 
say what the spin will become. 

(26.71) 

The value of (S) does not necessarily increase until it saturates at 1/2. The details 
depend entirely upon the shape of the density of states. If 

J£ 'D(£ ' )£ ' 1 
2 JEf-At 

£F+A2 I 
dE' D(E')8.'- ~Jn {Sy 

then 

0A2 D(EF-Ai) This condition results from conserving the num-
ber of electrons. ÖA, D(£ f + A 2 ) ' 

and magnetization tends to increase so long as 

öS 
dA 

< 0 

j rEF+A2 

A , + A 2 < — / </£'£>(£'). 
4« i £ f - A , 

(26.72) 

(26.73) 

(26.74) 

(26.75) 

26.4.2 Calculations Within Band Theory 

The magnetic moments of the transition metals can be calculated with almost as-
tonishing reliability by the combination of density functional theory and band cal-
culations. The flavor of how these calculations proceed can be obtained by return-
ing to the Hartree-Fock description of the uniform electron gas. The calculations 
of Section 9.2.4 assumed that up- and down-spin states were populated equally, but 
it is easy to relax this assumption and see what comes out. Returning to Eq. (9.50), 
the energy of Â  up-spin electrons and A^ down-spin electrons would be 

£ = £T + £ 
where 

^T 

■ Nt 

n kfr 

2m 

^T 

, and 

3e 
4 

A-K 

2kF] 

TT 

1 

An identical expression holds for £^. 

3 (2vr) 3*fT 
AfT 

(26.76) 

(26.77) 

(26.78) 

If the energy (26.76) can be lowered at all by creating nonzero net spin, then 
the energy is minimized by putting all N electrons into a single spin direction. The 
energy of such a state is 

t-polarized — Ar 
3 h2 

5 2m 
( Ô T T 2 « ) 

2/3 

4TT 
6TT n) 

1/3 
(26.79) 
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and it must be compared with the unpolarized state 
s2 

-unpolarized = N 3 ^ Z / , 2 \ 2 / 3 3 2 / 2 N l /3 
3-7T n e 37T n 5 2m V ) ATT V 7 (26.80) 

After a bit of algebra, the criterion for the ferromagnetically polarized state to have 
lower energy can be put in the form 

2-KH2 

5m 
( ^ + l )<^ 2 (67r 2 n)- 1 / 3 (26.81) 

rw 27T / 1 \ / 9 7 r \ ' / 3 

— > -TH + ! 1 ( = 5 - 4 5 - S e e E q - (U-48) for the definition (26.82) 
ÛQ 5 \ 21/^ / \ 2 / of nv; ao is the Bohr radius, 2/m„2 /i /me 

The prediction of (26.82) that ferromagnetism is preferred at low electron den-
sities is not confirmed by any experimental results. Only cesium among the ele-
ments should be ferromagnetic according to this criterion, and cesium is nonmag-
netic. The validity of the approach is not, however, fairly judged by such a crude 
version of the calculation. A more reasonable test is to ask what happens when 
the full apparatus of density functional theory is set loose on the magnetic prob-
lem, allowing populations of up- and down-spin electrons to vary freely and letting 
the exchange and correlation functional £xc from Eq. (9.103) battle kinetic energy 
terms over magnetic structures. 

The 3d transition metals present the most important test case, because the 
metallic ferromagnets iron, cobalt, and nickel are in this group. In rough terms, 
these elements are magnetic because many partly filled d bands are clustered about 
the Fermi surface, providing a large density of states and allowing the Stoner crite-
rion (26.71 ) to be satisfied. Quantitative calculations along these lines are summa-
rized by Moruzzi and Marcus (1993), and some results are presented in Table 26.1. 

The predictive power of the band structure calculations is somewhat hampered 
by their great sensitivity to changes in lattice structure. Band structure calculations 

Table 26.1. Magnetic moment per ion in the ground state for the 
3d transition metals in fee and bec minimum energy states 

Element: Sc Ti V Cr Mn Fe Co Ni 
Calculated m/ßß (bec): 0 0 0 
Experimental m/ßß (bec): 

Calculated m//xß (fee): 0 0 0 
Experimental m/ßß (fee): 

Results are from density functional calculations of Moruzzi and Marcus 
(1993). The calculations are not always capable of deciding between 
the fee and bec structures, but given the correct structure they correctly 
predict the magnetic moment. 

0 
0 

0 

0.70 2.15 
2.12 

0 0 

1.68 

1.56 
1.61 

0.38 

0.60 
0.61 
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usually fail to predict experimental lattice constants to better than a few percent, 
and they may have trouble correctly deciding which of several candidate lattices is 
the true ground state. Equilibrium magnetic properties can vary quickly with small 
changes in lattice constant, so if experiment and calculation disagree on what the 
lattice constant should be, it is not clear what should be used to find the mag-
netic moment. Some remarkable predictions are nevertheless possible. Iron is bcc 
at room temperature, but calculations predict that if it were fee, and if its lattice 
constant were expanded by around 5% above equilibrium, it should become ferro-
magnetic with a moment of 2/̂ g per ion. Pescia et al. (1987) tested this prediction 
by depositing a thin epitaxial layer of iron on fee copper, and they found that it was 
indeed ferromagnetic. 

26.5 Spintronics 

Conventional electronics depends upon the manipulation of charge. Switches con-
trol the flow of charge currents, and the currents carry information. One hope for 
the future of information processing is to move from control of charge to spin. In 
one respect, spin has long been used to hold information; domains of aligned spin 
form bits in magnetic recording. The vision of spintronics is to move beyond con-
trol of domains with external fields to new devices, where packets of spin travel 
through wires, carrying bits as packets of charge do now. The hope is that these 
devices will have lower dissipation and faster switching times than ones now used. 

26.5.1 Giant Magnetoresistance 

In one respect, the hope of technological advance through control of spin has al-
ready been realized. Binasch et al. (1989) and Baibich et al. (1988) discovered 
giant magnetoresistance in layered magnetic materials. Figure 26.5(A) shows the 
change of in-plane resistivity for three layers of Fe, Cr, and Fe as a function of 
magnetic field applied perpendicular to the layers. The effect is around one per-
cent, which is much greater than the change in resistance of crystalline iron alone. 
The magnetic coupling between the two iron layers is antiferromagnetic; absent an 
external field, they point opposite to each other. Thus the large resistance is due 
to forcing electrons through a layered structure where spins point opposite to one 
another in the different layers. Theories for the origins of the change in resistance 
are reviewed by Zutic et al. (2004). 

Combining many iron and chromium layers together, as shown in Figure 26.5(B), 
the fractional change in resistivity climbs to 80%. Devices optimized for applica-
tions, such as spin valves, have an intermediate structural complexity, and might 
consist of four layers: an antiferromagnetic top layer, a ferromagnetic layer, a 
conducting layer, and a final thin ferromagnetic layer, as described by Wolf et al. 
(2001). 
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Figure 26.5. First measurements of giant magnetoresistance in magnetic multilayers. (A) 
Change in resistivity as a function of magnetic induction for a three-layer structure of Fe 
and Cr. The reference resistivity py is the saturation resistivity B —> oo along the easy axis 
(001). The data from the magnetic multilayer are compared with a reference film of pure 
iron. [Source: Binasch et al. (1989), p. 4829.] (B) Change in resistivity as a function of 
magnetic induction for an 80-layer structure of Fe and Cr at 4.2K. [Source: Baibich et al. 
(1988), p. 2473.] 

26.5.2 Spin Torque 

Slonczewski (1996) and Berger (1996) observed that since spins carry angular mo-
mentum, currents containing en excess population of one type of spin should be 
able to flip magnetic domains. Freitas and Berger (1985) had already observed 
domain-wall motion triggered by currents of several amperes, but the prediction 
was that modest spin current densities in nanometer scale channels could flip do-
mains as well. 

A spin current describes the rate of spin transport. Classically, if particles 
carrying spin S are moving with velocity v, then the current describing component 
j of the spin moving in direction i is 

Qij = vtSj. (26.83) 

Quantum mechanically, the definition stays essentially the same. The spin current 
density at point r carried by state \tp) is 

Qijij) = Re(lp\Ö(r - R)Sj—\lp) Be careful and work with (H/m)lm(ip* Vip). (26.84) 

Suppose a current of spin \ particles is flowing along x with a wave function 
of the form 

*P(x) = ^=(a\1)+b\l)). (26.85) 

The spin operators Sj are given by H/2 times the Pauli matrices of Eq. (26.35), so 
Eq. (26.84) becomes 

kh2 

Qxx = ^r{akb + b*a) (26.86a) 
2vm 
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Incoming spin current Ferromagnet 
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e 2 o a, 

Potential seen by spin down electrons 

2A 

Figure 26.6. A spin current incident upon a ferromagnet creates a spin torque. This 
schematic diagram illustrates model calculations. 

Qxz = 
kh2 

2Xhn 

i(b*a-a*b+) 

\a\2-\b\2) 

(26.86b) 

(26.86c) 

Specializing further, suppose that a spin current whose spin axis points at angle 
9 away from z in the x — z plane impinges upon a ferromagnet where all spins point 
along z (Figure 26.6). Use a very simple model of the ferromagnet, in the spirit 
of the Stoner model, where the highest occupied spin up states have kinetic energy 
2A more than the highest occupied spin down states. Thus assume that down spins 
see an energy barrier of height 2A, while up spins pass into the ferromagnet with 
kinetic energy unchanged. That is, when spin down electrons with h2k2/2m > 2A 
enter the ferromagnet, their wave vector changes from k to 

cl k2 — 4mA/H2 while for spin up &j = k. (26.87) 

Computing transmission and reflection coefficients t and r as is customary in bar-
rier penetration problems 

h 
2k 

k + k 
k-k 

. a k + k 
For spin down, r = 0 and t = 1. (26.88) 

The main point is that up- and down-spin electrons have different transmission 
and reflection coefficients upon entering the ferromagnet; fine details of the coeffi-
cients' values are less significant. 

The result is that outside the ferromagnet there is a wave function 

Jkx ^—ikx r (cos 9/2\ Î) + sin 9/2\ [)) + - ^ n sin 6/2\ | ) ffi?^£ÄtSd 
V 

Rotation matrices applied to 
spin 1/2 particles pr 
half the rotation one 
expect for a vector. 

(26.89) 
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Figure 26.7. Domain flipping and precession induced by spin torques. (A) Magnetiza-
tion flip in room-temperature layered metallic system consisting of 20nm Ni81Fei9/12nm 
Cu/4.5nm Ni81Fei9. A constant external magnetic field is used to maintain zero net mag-
netic field on the thinner magnetic layer, which flips and changes the magnetoresistance. 
(B) Magnetization precession in a 8nm Ir2oMn8o/4nm Ni8oFe2o/8nm Cu/4nm Ni80Fe2o lay-
ered structure at a temperature of 40K. [Source: Ralph and Stiles (2008), p. 1192.] 

and inside the ferromagnet 

„ikx 

V>" ?-= (cos 0/2 | T) +tie^-V sin e/2\ I ) ) . (26.90) 

Returning to Eqs. (26.86), one can compute the spin currents inside and out. Out-
side, they are 

^ 2Vm 

kh2 

^xz 2Vm 

Sin u In principle there are terms going as e2lkx and 
x, but they oscillate so rapidly they can 

be neglected. 

cos 0 + r^ sin sin2 6/2) 

(26.91a) 

(26.91b) 

(26.91c) 

Inside the ferromagnet, the spin current is 

hl 

-}v 
k + k\ 

Om -
^xx 2Vm' 2 

Sin 9 COs(k\ - k)x Return to Eq. (26.84); remember ( 2 6 . 9 2 a ) 
to take real part. 

hl k + ki 
'-xy~2Xhnti^2~ 

Om = sin 6 sin(£ — k±)x 

Qm = 
hl 

-xz 2Vm 

Define the current 

(k cos2 9/2-k^l sin2 6/2) 

w Ahk 
h=-r.—e. 

V m 

(26.92b) 

(26.92c) 

(26.93) 

The components of the spin current are discontinuous at the edge of the ferromag-
net, x = 0, and this discontinuity integrated over the area A of its surface is the 
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torque N: 

Use Eq. (26.88). (26.94a) 

(26.94b) 

Use?2 + r[ = l. (26.94c) 

A qualitative conclusion to draw from Eq. (26.92) is that once spin currents 
enter a ferromagnet they will precess in space with a wavelength 2n/{ki —k). A 
qualitative conclusion from Eq. (26.94) is that each excess spin-up electron enter-
ing the ferromagnet does bring with it a change in angular momentum on the order 
of h/2. A spin polarized current / will thus deliver a torque on the order of IH/e. 
Assuming this current arrives in a sample containing N atoms with spin angular 
momentum HN, the characteristic time to make the sample flip or precess will be 
Ne 11. For N ~ 106 and currents on the order of mA, this works out to 10~10 s. 

Figure 26.7 shows the results of two different experiments. In the first, a current 
pulse flips a magnetic domain. In the second, the arrival of a polarized spin current 
causes the spins in a device to precess. 

26.6 Kondo Effect 

Resistance Minima. According to Matthiessen's rule, Section 18.2.2, the resis-
tivity of a metal should consist of two additive pieces. The first, due to phonons, 
decreases with temperature, dropping as T5 at low temperatures. The second, due 
to impurities, is temperature-independent. A puzzling exception to this rule was 
observed by de Haas et al. (1934), while measuring the resistance of gold. Its re-
sistance dropped to a minimum at a temperature of 4 K, and then proceeded to rise 
at lower temperatures. Some feature of the solid became more effective at scat-
tering electrons as its temperature decreased. It was clear to Wilson (1954) that 
small traces of impurities were responsible, because the resistance minimum could 
be moved about by varying their concentration, but there was no explanation be-
yond this, and he believed that "some new physical principle seems to be involved." 
Some characteristic resistance measurements appear in Figure 26.8. 

The explanation lies in the magnetic character of the impurities. At high tem-
peratures, the spin of an isolated magnetic impurity flips about freely, presenting a 
small isotropic scattering potential to incoming electrons. At low temperatures, by 
pointing in a definite direction, the magnetic impurity becomes more effective in 
scattering electrons. Some experimental evidence along these lines was obtained 
by Sarachik et al. (1964), and the first theory is due to Kondo (1964). His cal-
culation followed the influence of single magnetic moment upon a collection of 
conduction electrons out to third order in perturbation theory. It appeared to ex-
plain the resistance minima observed at temperatures of a few kelvin, but could not 
be the full story, because it predicted that at 0 kelvin the resistance should become 
infinite, something neither observed experimentally nor believed to be true. An 

Nx = ~j sin 6(\-tl) 

Ny: 

Hz'-

= 0 

~ 2 e 
-k 

fj sin 0/2. 
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Mo.2Nb.8, ß/ßB = 0 

Mo.4Nb6, ß/ßB = 0 

Mo.6Nb.4, ß/ßB — -3 

Mo.7Nb.3, ß/ßB = -6 
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Figure 26.8. Resistivity data for Mo^Nbi_x alloys, showing that depth and location of 
a minimum of resistivity at low temperatures is correlated with the strength of magnetic 
moments in the sample. [Source: Sarachik et al. (1964), p. A1043.] 

intense search for the solution to this problem over the next decade led to many 
valuable new ideas, and eventually even exact analytical solutions of Wiegmann 
(1980) and Andrei (1982), reviewed by Hewson (1997). 

From the host of approaches to this problem it is only possible to choose a small 
sample. First it will be demonstrated why a sea of conduction electrons interacting 
with an impurity can behave as though interacting with a magnetic moment. The 
half-bandwidth W will denote the range of energy states inhabited by the electrons; 
their energies will range from — TV to W. Next it will be shown that the band of 
conduction electrons interacting with a magnetic moment of strength J is indistin-
guishable from an equivalent system in which the bandwidth 2W diminishes a bit, 
while J slightly increases. This rescaling of the problem, due to Anderson et al. 
(1970); Anderson (1970) and Wilson (1975), provides a simple introduction to how 
ideas from the renormalization group can be employed for systems of interacting 
electrons. 
Anderson Model. To begin, consider a model due to Anderson (1961) which 
describes a collection of conduction electrons in contact with a single impurity site 
(Figure 26.9). The Hamiltonian is 

Ä = £0 [«0Î + «Oil + £/«0î«0i + J2 hè\/ka + ^Aa^ka + V*Aa
e°^ ■ <26-95) 

la 
The first two terms describe the impurity; placing one electron there costs an energy 
eo, but placing two there costs 2EQ + U, with U representing the repulsion that 
two localized electrons are expected to feel for one another. The remaining terms 

8 
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describe the conduction electrons and provide terms proportional to v^ that allow 
them to interact with the impurity. In actual physical contexts, the impurity is likely 
to be an atom with an unfilled outer d or f shell, and the shell will usually have 
more than one orbital state available. Because the spin degrees of freedom included 
in Eq. (26.95) are quite enough to produce many interesting effects, additional 
orbital degeneracy can be neglected on a first pass through the theory. 

Figure 26.9. A band of conduction electrons, bandwidth 2W, is placed in contact with an 
impurity site, where the energy to add a first electron is eo, and the additional energy to add 
a second is €o + U. If the first energy lies below the Fermi surface while the second energy 
lies above the Fermi surface, it is an excellent approximation to say that the impurity is 
singly occupied. 

To make the impurity potential in (26.95) start acting like a magnetic moment, 
suppose that 

• the Fermi level £f of the conduction electrons lies well above eo, so the im-
purity state is almost sure to be occupied, 

• but eo + U is much greater than the Fermi level, so double occupation is very 
unlikely, and 

• the couplings v-k between the impurity and the conduction electrons can be 
treated as small. 

Rather than simply carrying out perturbation theory to some order in v-^, the. 
goal is instead to have a general idea how the presence of the impurity affects 
properties of the system at low temperature. At low temperatures, only states near 
the ground state enter, so the way the impurity affects the whole collection of low-
lying excitations needs to be analyzed. What results is an effective Hamiltonian for 
low-lying excitations that results from eliminating high-energy states. 

The meaning of the last statement is best clarified by proceeding immediately 
to show how it is done. First, break the Hamiltonian up so that it is possible to keep 
track of whether the impurity site is unoccupied («o = 0), singly occupied (no = 1) 
or doubly occupied («o = 2). Toward this end, define PQ,P\, and P2 to be projection 
operators. Po acting on any quantum state where the impurity is occupied gives 
zero, but if the impurity is unoccupied, PQ returns the state unchanged. P\ and P2 
similarly project out the no = 1 and no = 2 spaces. Formally, one can write 

â) = ( l - « 0 i ) ( l - « 0 î ) , (26.96) 
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with similar expressions for the other operators. 
Next, letting \ip) be some quantum state of many electrons, let 

| ^ o ) = A # } , |V i>=ÂM,andh/>2>=/^> . (26.97) 

Also, define 
„ ~ , For example, 3<io gives the 

Jiu, = PiKPv action of the Hamiltonian on ( 2 6 . 9 8 ) 
whatever piece of a wave 
function has the impurity state 
empty, and it selects from the 
result whatever part is singly 
occupied. 

so 3i\ip) = £.\ip) can be rewritten as 

The reason that %% = 3<20 = 0 
is that the various terms in the ( 2 6 . 9 9 ) 
Hamiltonian can leave the 
occupation of the impurity by 1, 
or leave it alone, but cannot 
change it by 2. 

Having broken the Hamiltonian apart to describe its action on different states of the 
impurity separately, it is now possible to transform (26.99) so that it is a problem 
posed for \ip\ ) alone, eliminating from the problem the subspaces where no = 0 or 
no = 2. Simply write 

Ä 0 0 | ^ o ) + Ä o i | ^ l ) = £ | ^ o ) The top equation in (26.99). (26.100) 

=> |Vo} = ( f i -Äoo)^ 1 Ä01IV1) (26.101) 
_ I Similarly from the bottom equation of 

and|^2) = ( £ - Ä 2 2 ) ' Ä21|^>; %^&£^%%® Q6.102) 
of (26.99) to obtain 

{Äio ( £ - Ä o o ) - 1 Ä 0 i + ( Ä 1 i - £ ) + Ä i 2 ( £ - Ä 2 2 ) _ 1 Ä 2 i } ^ i ) = 0 . 
(26.103) 

By eliminating |^o) and |^ 2 ) , Eq. (26.103) recasts the original problem entirely 
in terms of states where the impurity is singly occupied. This formulation is ap-
propriate when one expects on physical grounds that single occupation is to be 
expected. 

To proceed further, it is necessary to obtain explicit expressions for the entries 
in the matrix on the left-hand side of Eq. (26.99). Consider CKi0. It needs to act on 
a state where the impurity is unoccupied and subsequently produce one where it is 
singly occupied. The only piece of "K that works that way is 

£ H^la- (2 6-1 0 4) 
ka 

However, (26.104) does not annihilate states where the impurity is singly occupied 
as it should; one needs to add a projection operator on the right, to get 

Ä I O = E ¥ O / J / O (26.105) 
ka 
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E V L ^ ( 1 - " 0 I ) ( 1 - " 0 T ) See Eq. (26.96). (26.106) 
ka 

= 2_, v^0a^~k(T^ ~ " 0 , - c r ) - T h e t e r m ( ' - " o u ) is superfluous, because(26.107) 
r if the state with spin a is occupied, cj will 

annihilate it anyway. 

Because "K is Hermitian, 

Äoi = Äto = Ç(l - « 0 , - > f 4 > - (26.108) 
to-

other terms can be worked out similarly, such as 

t^];Äoo = A)E^L 
and 

^2i = ^Î2 = E V ( U * > . - - (26-110) 

From Impurity to Local Moment. With these formal developments as prelude, 
it can now be demonstrated that Eq. (26.103) approximately describes conduction 
electrons interacting with a magnetic moment at the impurity site. Consider the 
first term, 

Ä , o ( £ - Ä o o ) _ 1 Ä o i | ^ i ) (26.111) 

= Ä l o C ( l - n o , - > | 4 > - ( S - I Ä n - e o + erj)"' |Vi). (26.112) 
la 

UseEq. (26.109) to get rid of CKoo, and add ej because in moving ( £ — 9^oo) 
to the right of ct , CK«) acts on an empty state k that is populated to the left. 

ko 

As Eq. (26.108) shows, (26.111) is of order |urj2 and very small. To leading order 
Eq. (26.103) can be replaced by (Jiw — £)|^i) = 0. Up to order |f̂ |2, £ — An can 
be replaced by 0 in (26.112). Thus Eq. (26.103) can be interpreted as describing a 
situation where the impurity is singly occupied, but makes virtual transitions to the 
unoccupied or doubly occupied states and immediately jumps back. Furthermore, 
if one restricts attention to excited states k near the Fermi surface, then er can be 

' k 
replaced whenever it appears by £/?. Equation (26.112) now becomes 

5 ( 1 0 £ ^ * ( l - / f o , - f f ) c | c o ^ i ) (26.113) 
en — £ F - * ' kcr 

ka 

■ ^ - ^ c L ' ^ a ' ( 1 - " o , - f f ' ) ( l - « o , - < r ) ê L ê o f f | V ' i > (26.114) eo t,f 
kk'aa' 

The two terms that have been 

E f^,fy . i ^ omitted always just give 1, unless 

~c ^ O C T ' ^ 7 Cpn-iC0o\lp\)- everything vanishes anyway. ( 2 6 . 1 1 5 ) 
C f — Co *CT Reversing two of the operators 

kk'aa' reverses the sign and produces 
spin-independent constant. 
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In the no = 1 subspace, the impurity has two possible states, | and j , which can be 
identified with the states of a spin 1/2 particle. Thinking in these terms, cLcoj. can 
be identified with S+, the raising operator for the spin, while cj, cof = S~. For the 
z component of the spin, Sz — («of — "o|)/2, use the identity 

not ci er, t + n0, cî cv,, This is what shows U P i n (26.116) 
U| *î *'î U i k[ k'l (26.115). 

+ 2 ("OT + «Oi ) (c|T ĉ , T + cî^ cj, x ) (26.117) 

— Sz(cl Cr/f — cl,Cr,,) + - Y ^ cl Cr, . In the «0 = 1 subspace, n0T + «0| (26.118) V t î * ' î k[ k'l> 2 ^ ka k'a a l w a y s g i v e s l . v ; 

Therefore, Eq. (26.115) can be rewritten as 

V
 vl'vl 

^ £ F " € 0 
kk! 

§+êliêï'î+§~êhêî>i+§%ê^-eliêî'iï + 2 £ 4 / ^ IV'i)-

(26.119) 
The first three terms in the bracket of (26.119) represent electron spins interacting 
with a spin-1/2 magnetic moment. The last term is a small correction to the ener-
gies of the conduction electrons that does not involve the spin. Treating the third 
term of (26.103) in a fashion similar to the first term finally transforms (26.103) 
into an effective Hamiltonian, only to be used on states of type ip\. The effective 
Hamiltonian is 

Äeff = Ä,i + Ç JTk, [s+cl^+S-cl^^ +Sz{c]
Mcl,]-c\iclli)_ 

kk' 

+ % E 4 A „ (2 6-1 2 0 a) 
with 

, * r i . i + £ f - e0 U + e0 - 8-F 
(26.120b) 

Completing the derivation of Eq. (26.120) and finding K^, is the subject of Prob-
lem 6. Under the conditions depicted in Figure 26.9, the conduction electrons are 
coupled antiferromagnetically to the local moment, because J-g, is positive. 

26.6.1 Scaling Theory 

The previous section demonstrated that by eliminating states far above and below 
the Fermi level from a Hamiltonian, an impurity potential can be revealed as a 
magnetic moment. Putting matters this way leads to an additional suggestion: The 
states being eliminated might not have to be impurity states. They could also be 
conduction electron states. This suggestion is correct. By eliminating states at the 
band edges in just the fashion that occupancies of the impurity were eliminated 
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before, the coupling between conduction electrons and a local magnetic moment 
can be made to grow. A whole family of different Hamiltonians is thereby shown 
to be equivalent, some with strong coupling to the spin and a small bandwidth, 
others with a weak coupling to the spin and a large bandwidth. The final result is 
quite simple, and it appears in Eq. (26.129). 

The starting Hamiltonian is a simplified version of the Hamiltonian found in 
Eq. (26.120): 

J<- V eve! er + V ; Is'cl cp, +S+clcllt+S Ckfk'î CkiCk'l 
kk' 

(26.121) 
Proceed as in the previous section, except that now Pj is a projection operator 
demanding that W — \SW\ < ej < W, P\ projects on states with —W+ |<5W| < 
ê  < W — |<5W|, while PQ insists that —"W < ê  < —W+ |<5W|, as shown in Figure 
26.10. 

Figure 26.10. A small band of states, of width |<$W| is eliminated from the upper and 
lower band edges. Accounting for the virtual transitions that would have been possible to 
these states makes the coupling to the magnetic moment stronger. 

Using kork' to denote states obeying —"W+ \SW\ < ej < "W— |<TW|, and using 
q or q' to denote states obeying W — |<TW| < e^ < W, then 

iin = J £ S-c\cni +S+c\c^+S 
k[ 

kq 

Ä 2 1=7^5 4'î%+^+4l^'î+^ 

ê\f®-èïM 

Cq'fk'} Cq'ïCk'[ 

(26.122a) 

(26.122b) 
k'q' 

In the previous section, Ä02 was zero, something that is no longer true. However, 
so long as W/J S> 1, processes in which an electron scatters from —W to W are 
unimportant. Not all the following discussion is restricted to this limit, so setting 
Ä02 = Ä20 = 0 should be regarded as an approximation that is usually, but not 
always, well-justified. 
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As in Eq. (26.103), one needs to examine Äi i — £ plus two extra terms, one of 
which is 

^ ( f i - ^ - ' Ä z i l V i ) (26.123) 

«ftÄCE-Ä^-riV-^])-1^!) (2 6-1 2 4) 
A particle from the occupied states is destroyed, and one is created in the nar-
row region near W. The highest-energy states that can be destroyed have energy 
around £f, and these make the most important contribution to all physical pro-
cesses; hence W— £f. 

- £ 1 2 ^ 2 1 (-W)->|Vi>- (26.125) 
Restrict attention to low-energy excitations, which means £ ss £f, and measure 
all energies as a distance from £f. In acting upon \tpi), Ä22 can be taken to 
vanish, because the states up near W are empty. 

All that remains is the somewhat painful task of multiplying out Ä12Ä21. Details 
are left to Problem 8, and the result is 

Ä„Ä2I =j>D<w[-m E \ E t^-fe^n+È+fcP\ x 
(26.126) 

Eliminating the lower band of states near —W leads to an equal contribution, and 
doubles (26.125). Therefore, from Eqs. (26.125) and (26.126), the effective Hamil-
tonian produced by Eq. (26.103) has the same form as Eq. (26.121), but with a new 
value J + 8J of J, 

ß 
J + fiJ = J — 2—D(W)S'W, <5W is negative, because the bandwidth is be- ( 2 6 . 1 2 7 ) 

W ' ing reduced. 

and the energies of the conduction electrons are altered by addition of a term 

^ ) W ? i ; i v (26.128) 
kk'o 

The renormalization of 7 in Eq. (26.127) can be used repeatedly to find how J 
changes for large changes of W. One has 

^ = - 2 ^ ( W ) . (26.129) 

The density of states D(W) will of course vary with W, but as W becomes smaller 
and smaller, driving J to larger and larger values, D(W) must approach Do, the 
density of states at the Fermi level. To see the basic structure of Eq. (26.129), set 
D(W) to this value, so that it can be integrated, giving 

"W exp 1 
2D0J 

constant = ICBTK, (26.130) 
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where TK is defined to be the Kondo temperature. Two Hamiltonians with different 
values of "W and J should have the same low-temperature behavior so long as W 
and J are related by Eq. (26.130). In addition, as "W changes, the Hamiltonian must 
acquire an additional term given by Eq. (26.128), but this additional term does not 
directly involve the magnetic moment. 

Two limits of Eq. (26.130) are particularly useful. Imagine fixing TK, but vary-
ing W and J. In one limit, J is small and "W is exponentially large. This limit 
describes a very large population of electrons interacting very weakly with a mag-
netic moment, and because the interaction is weak, perturbation theory should be 
applicable. In the other limit, J is large and W is small. In this limit, a small num-
ber of conduction electrons interacts very strongly with a magnetic moment. It is 
natural to assume that the strong interaction will produce a strong antiferromag-
netic correlation between the electrons and the moment at temperatures below the 
Kondo temperature, and that this correlation is destroyed as the temperature rises. 

Scaling of Resistivity. To obtain physical consequences from the scaling relation 
(26.130), assume that physical properties of a system will depend on temperature 
only in the form "J(T /TK), and that two systems with the same TK are essentially 
indistinguishable. Take the particular case of resistivity; 

P - V (26.131) 

If all else in the problem is fixed, and the coupling / to the magnetic moment 
is made very small, the resistivity p should vanish as J2; this conclusion follows 
for example from Eq. (18.16), which shows rather generally that scattering from a 
potential vanishes as the square of the potential's strength. The way to obtain such 
behavior for small J is to guess something like 

�3" 

?(x) = 

T 
TK 

1 i 2 

ln(jc) 

2DQJ l 2 

>4Dlfi 
\+2DQJ\n{kBT/W) 

1 

(26.132) 

(26.133) 

4D0J \n(kBT/VJ)) . Catch the leading trends for (26.134) 
small J by Taylor 
expanding. 

The prediction is that the contribution to resistivity from magnetic impurities should 
begin to rise in a logarithmic fashion as temperature approaches 7>. The total re-
sistivity is the sum of this magnetic contribution and the contribution from phonons 
that according to Bloch's law Eq. (18.20) drops as T5. Taking the density of mag-
netic impurities to be nmi, the low-temperature resistivity should behave as 

■ AT5 - B n m i ln(kBT/W), -A and 23 are constants. P' 

and a minimum in resistivity occurs when 

dp 
dT = 0=> Tmin = £ n m i \ 1 / 5 

5A 

(26.135) 

(26.136) 
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The shape of the resistivity minimum in Figure 26.8 and the movement of the min-
imum with magnetic impurity density n„à are well accounted for by Eq. (26.135). 

The form guessed in Eq. (26.132) for the resistivity has the unfortunate prop-
erty of diverging when T —> 7^. The divergence may be eliminated by choosing 
instead, for example, 

*(£)-
which rises to some finite value as T —> 0, but produces the proper J2 behavior 
for small J. Hewson (1997) describes several calculations that make the behavior 
indicated by Eq. (26.137) more compelling than a plausible guess. 

Specific Heat. The heavy fermion compounds mentioned in Section 6.5.1 are 
roughly modeled as lattices of Kondo spins. Compounds such as UPt3 and UBe^ 
have low-temperature specific heats whose linear term is up to 1000 times larger 
than would be anticipated from free-electron theory. If the low-temperature specific 
heat is linear in temperature, the scaling theory suggests that 

r T kBT 
Cvocn— =n~— exp 

TK W 

While this equation does not allow an immediate connection with experiment, it 
does show how small reductions in the density of states Do or coupling constant J 
can be expected to produce exponentially large increases in the linear term of the 
specific heat. 

Figure 26.11 shows the specific heat as a function of temperature for UBen, 
one of the heavy fermion compounds. The large values of Cy/T at low temper-
atures are due to the peak at around 0.75 K, which has to decay rapidly in order 
to drop to zero at 0 K. If the scaling theory associated with Eq. (26.130) is ap-
plicable, then at very low temperatures conduction electrons have spins pointing 
opposite the uranium local moments, while above the Kondo temperature this cor-
relation disappears. Therefore, the entropy S = J dT C-ç/T associated with the 
peak should be kß In 2 or 5.8 J mole-1 K- 1 . Performing the integral over the peak 
in Figure 26.11 actually gives 1.2 J mole-1 K- 1 , of the same order of magnitude 
as the simple prediction. 

26.7 Hubbard Model 

Hubbard (1963, 1964a,b) proposed a seemingly simple extension of the tight-
binding model intended to explore the electronic correlations leading to magnetism. 
To the ordinary tight-binding model Hubbard added a term that provides an energy 
penalty U for any atomic site occupied by more than one electron. Hubbard argued 
that the diagonal piece of the Coulomb interaction has magnitude of around 20 eV, 
while the off-diagonal terms are all at least 10 times smaller; therefore he included 

cosh-1 (777k) 
(26.137) 

2D0J 
(26.138) 
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Figure 26.11. Low-temperature specific heat of the heavy fermion compound UBe^. The 
very large slope in C\? at low temperatures is due to the peak at around 0.75 K; were it 
not for this peak, C\r/T would have a value comparable to that of the free electron metals. 
[Source Ott et al. (1983, 1984).] 

only the repulsion between electrons at the same site. The Hubbard Hamiltonian 
in second quantized notation is conventionally 

êlêi'*+4*êi<? + U^2ct
ncnc]icn (26.139) 

where the sum (//') is taken over distinct nearest-neighbor pairs. 

26.7.1 Mean-Field Solution 

An exact solution of the Hubbard model is available in one dimension, due to 
Lieb and Wu (1968). The ground state has spin zero, with antiferromagnetic 
correlations between neighboring spins. These results do not carry over to two or 
three dimensions. The only simple thing to do in three dimensions is to employ 
mean field theory, which is generally believed to be wrong in most aspects, but 
which illustrates the competing effects. To carry out the mean field theory, write 
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the model as 
^=Y.-i [£\aëi^ + c\,acia\ +UY, n/T«U- (26.140) 

a 

The difficulty resides in the last term, which is quartic in fermion operators. In the 
standard steps of mean field theory, try 

"la = na + (nia ~ na) ■ (26.141) 

Choosing the average value of n to be the same on all sites prejudices matters in 
favor of ferromagnetism, which Hubbard had devised the model to explain. Ex-
panding to quadratic order, one finds that 

Ä ~ 5 Z _ t c\acVu + c\,acla +U^2nnni+n]nn-n]ni. (26.142) 

(T 

Going into k space, the Hamiltonian becomes diagonal, and equals 

^ — tel Cja COS 5-k + U ^2 "jfcî"! +" î " i t j . — n\nl- 5 are nearest-neighbor vectors. 
kSa k 

(26.143) 
The mean field theory is closed by setting the mean occupancy of up and down 

electrons equal to nj and n^, respectively. Further progress depends upon choosing 
a particular lattice and dimension in which to work. It is easiest to work in one 
dimension, where all the algebra is simple. Because the up and down electrons can 
have different densities, one must suppose that they are described by two separate 
Fermi levels. If a is the lattice spacing and N is the total number of lattice sites, 
then 

fkn dk 
Nn^=Na / — (26.144) 

J-kn 27T 

=>■ 7rn| = akp-[- (26.145) 

Doing the integral in Eq. (26.143), the ground-state energy is 
N 

£o = — [—2t] [sin nm + sin irn\] +NUmn\. (26.146) 

The total number of electrons in the metal is always fixed; assume that the band is 
half filled, so that « | + n^ = 1. Then the ground-state energy becomes 

-4tN 
£0 = simrn^+NUn^ ( 1 -« T ) . (26.147) 

Minimizing this expression, one finds that for 

^ > —, (26.148) 
t 7T 
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Figure 26.12. Five representative phase diagrams of the two-dimensional Hubbard model, 
as a function of on-site repulsion U over hopping parameter t, and filling fraction A, which 
tells the fraction of sites that has more than one electron, or chemical potential fi, which 
enters by adding (/i — U/2) ]T\ n, to Eq. (26.139). Early approximations differed dramat-
ically; more recently, the phase diagrams have started to converge, although the problem 
is still not definitively solved. [Results of Kaxiras and Manousakis (1988) Coppersmith 
and Yu (1989), Richter et al. (1978), Georges et al. (1996) (hopping energies t made ran-
dom variables here), and Sordi et al. (2010). There are also predictions of superconducting 
regions, as in Giamarchi and Lhuillier (1991).] 

«1 = 1 and nj, = 0 (or the roles may be reversed), so that the Coulomb repulsion 
leads to ferromagnetic ordering. Otherwise, one has n-j- = n± = 1/2, and the system 
is an ordinary metal. 

This calculation illustrates the physics of the Hubbard model in an uncomfort-
able way. By using mean field theory, one obtains simple expressions that illustrate 
the competition between kinetic energy and magnetic ordering that the model was 
designed to explore. Unfortunately, in one dimension this solution is known to be 
qualitatively incorrect. The exact analytical solution has no sharp transition in any 
physical quantity as U/t varies. The correlations between neighboring spins are 
antiferromagnetic, not ferromagnetic. 
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In two and three dimensions, there is only one point of general agreement. At 
half filling, where the number of electrons precisely equals the number of lattice 
sites, and for large enough U, the ground state is antiferromagnetic. Some reasons 
for this conclusion are explored in Problem 9. This conclusion has considerable 
physical importance, because it provides the simplest way to see how solids like 
CuO (Section 23.6.3) that should be metals according to band theory actually turn 
out to be antiferromagnetic insulators, called Mott-Hubbard or Mort insulators. 
Even this statement needs to be qualified, because charge transfer between oxygen 
and copper as discussed in Section 23.6.3 is not included in the Hubbard model, 
which is hard enough to solve without it. Away from half filling, the problem is 
not completely solved. Figure 26.12 displays five characteristic phase diagrams 
describing the ground state of the Hubbard model as a function of U/t and of A 
or chemical potential /i; A gives the fraction of electrons per site in excess of half 
filling, so there is one electron per site when A = 0, and two electrons per site when 
A = 1. The chemical potential ß enters the model by adding (// — U/2) J2i nito 
Eq. (26.139). 

The fact that the properties of the two-dimensional Hubbard model are not 
yet known with certainty is unsatisfactory because the Hubbard model is widely 
viewed as the simplest context in which to try to obtain exact results for many inter-
acting electrons; this model has been investigated with a ferocious intensity since 
the discovery of high-temperature superconductors. There is no better illustration 
of the difficulties involved in progressing systematically beyond the one-electron 
pictures of solids. 

Problems 

1. Wave functions with cusps: Show that the energy of \cj)\ in Figure 26.2 
can certainly be lowered by smoothing out the cusp. One way to perform 
the demonstration is to flatten out the wave function as shown in the figure 
throughout some small volume v and then estimate the effect on kinetic and 
potential energies. 

2. Ferromagnetic ground state: Consider the Hamiltonian (26.21) with all J 
positive, and take S$ to describe spin 1/2 particles. 

(a) Show with the aid of the identity in Eq. (26.19) that the state where all spins 
are eigenvalues of Sz with eigenvalue 1/2 is an eigenfunction of the Hamilto-
nian. 

(b) Show that the largest value that (^\S^ • S$, |\I/) can assume for R ^ R' in any 
wave function \I> is less than or equal to the largest eigenvalue of S^ ■ S^,. By 
expanding out the square of S^ + S^,, show that the largest eigenvalue of this 
operator is 1/4. 

(c) Therefore show that the ferromagnetic state provides the ground state of the 
Heisenberg Hamiltonian. 
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3. Magnetic susceptibility of Fermi liquids: Extend the Stoner model to Fermi 
liquids and find their magnetic susceptibility. 

(a) Write the energy of a Fermi liquid in the presence of a magnetic field. 
(b) Assume that all ôfa are occupied only for energies £° < £/r — A, while all 

<5/j, are occupied for £° < £/? + A. Assume that the density of states D(£) 
can be taken constant and that the kk! dependence of the parameters u-^ ^, , 
can be ignored. Rewrite the total energy in terms of integrals over energy. 

(c) Find the value of A by minimizing the total energy, and show that the sus-
ceptibility is 

*=w- (26l49) 
4. Diagonalizing spin waves: Show that Eq. (26.63) diagonalizes (26.62) using 

Eq. (26.64). 

5. Proj ection operators : 

(a) Find expressions analogous to Eq. (26.96) for P\ and P^. 
(b) Verify that Pb . . . /*? satisfy the requirement of all projection operators 

P2 = P. (26.150) 

(c) Why is Eq. (26.99) true? 

6. Local moment: Derive Eq. (26.120), and find an expression for Ä~,. 

7. Mean field treatment of magnetic moments: Consider the Anderson model 
given in Eq. (26.95). An approximate solution can be obtained through the 
mean field replacement 

t/n0T«0| ~ U (n0|) "0| +Un0f {nQl)-U (n0t) («o|) • (26.151) 

The brackets mean that one finds the expectation value, or mean occupancy, of 
the impurity states. Neglect the final term on the right-hand side of Eq. (26.151 ), 
which leads to a constant energy shift, and define 

e0a = eo + U (no,-*) • (26.152) 

One has then to solve the Hamiltonian 

lk = ^'Ka (26.153a) 
a 

where 
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(a) Define the Green function 

Ga (£) = [ £ - 'ka + 177] " 1 . r, is very small. ( 2 6 . 1 5 4 ) 

Let |0) be the vacuum state, and let 

| O ) = 4 | 0 ) and \k) = cl\0). (26.155) 

Show that 

[£-e0a + ir]}(0\G(7\0)-^vk(k\G(T\0) = l (26.156a) 
k 

[E-ei + irl}{k\GIT\0)-vS{0\GIT\0)=0. (26.156b) 

(b) Show that 

<0|Gff|0) = ? * A - L . A , (26.157a) 

where 
|2 

5 e = E ^ : a n d A = 7 r^ | ^ | 2 5 (£ -e J ) . (26 .157b) 
* 6* it 

(c) Recall from Eq. (18.38) that 

n0„(£.)d£ = --Im(0|Ga(£) |0)d£ (26.158) 
7T 

gives the probability that the impurity state with spin a will be occupied in the 
energy range [£, £ +d£]. Take the limit r/ —> 0, assume that <5e is negligibly 
small, and assume that A can be treated as a constant. Find two self-consistent 
expressions for («oj) and («oj.) by employing 

) = f F d£ noa(£)- (26.159) 
J — oo 

r&F 
{no, x 

Assume eoo- > £f- The expressions should be in the form (wof) = /(("oi)) 
for some function / . 

(d) Take £F - e0 = U/2 and U/A = 1. Plot / ( ( % ) ) and /_ 1(("oi)) versus 
(noi ) on a graph where x and y axes range between 0 and 1. The crossings 
of these two curves give possible values for the spin occupation of the impu-
rity. There is only one solution. What magnetic moment is predicted for the 
impurity? 

(e) Repeat the previous part of this problem for U/A = 5. There is more than 
one solution. What magnetic moment is predicted for the impurity? 
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8. Renormalization of J: 

(a) In multiplying (26.122a) and (26.122b), to be applied to \ip\), one can take 
ê^âl>a = ôw'- w h y ? 

(b) Using identities such as 

SZS~ = --S~ or S~S+ = --Sz, (26.160) 
2 2 

verify Eq. (26.126). 

9. The t-J model: Consider the Hubbard model at half filling: 

] T - t c^c/v + 4CTc/(J + [ / ^ C J T ^ T ^ U ^ I - (26.161) 
a 

The number of electrons and the number of lattice sites are both equal to N. 

(a) What is the ground state of the model when t = 0 and U > 0? What is the 
degeneracy of the ground state? What are the energies of the excited states? 

(b) Introduce the hopping term proportional to t as a perturbation. The task is to 
find the new ground state. Show that to second order in perturbation theory 
one must diagonalize an effective Hamiltonian of the form 

JeffJ2 (srSi>-\) , (26.162) 

and find the value of ieff- This model is known as the t-J model. 
(c) Describe physically why the ground state of the t — J model, and therefore 

of the Hubbard model for large U, are antiferromagnetic at half filling. 
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27. Superconductivity 

27.1 Introduction 

Kamerlingh Onnes (1911) found that mercury loses all electrical resistance below 
a critical temperature of 4 K. In copper, a very good conductor at temperatures 
of 77 K, electrical currents decay with a characteristic time of 2 • 10 - 1 3 s. But a 
superconductor is qualitatively better. Currents in a superconductor have been seen 
to persist for over a year. Since Kamerlingh Onnes' initial discovery, most metals 
and alloys have been found to exhibit superconductivity at some temperature, so 
the phenomenon is quite universal. 

The phenomenon of superconductivity posed for many years a serious chal-
lenge to quantum mechanics. Perhaps the dense combination of many electrons 
really could not be described by the same equations that had been deduced from ex-
periments on dilute systems; perhaps quantum mechanics was just an approxima-
tion to more complicated many-body equations, and superconductivity was the key 
to finding the true form. Sommerfeld and Bethe (1933) wrote that "[d]espite failure 
up to now, we may assert that superconductivity will be solved on the basis of our 
present quantum mechanical understanding." This assertion remained a matter of 
faith for another 25 years as one microscopic theory after another collapsed until 
Bardeen, Cooper, and Schrieffer (1957) created a compelling quantum-mechanical 
model. 

An important idea to grasp in understanding superconductivity is that it really 
is a macroscopic phenomenon, and corresponds to a definite macroscopic state 
of matter. The important feature of a superconductor is not how it responds to 
external electrical fields, but how it responds to external magnetic fields. Meissner 
and Ochsenfeld (1933) found that magnetic flux is completely expelled from a 
superconductor. Suppose one has a loop with a current flowing in it. Magnetic flux 
lines must thread the loop, as in Figure 27.1. In order for the current to diminish, 

Figure 27.1. The flux lines thread-
ing a current loop have to pass 
through the current if the current is 
to diminish. But for a superconduc-
tor, that is impossible, and the cur-
rent persists. 
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840 Chapter 27. Superconductivity 

the total magnetic field it creates would have to be reduced as well. In the course 
of the reduction, a flux line would have to pass through the current loop, but for 
a superconductor that is nearly impossible. It is for this reason that currents in 
superconductors are so persistent. The impurity scattering sites in the metal and 
the collisions of electrons with phonons do not go away, but whenever an electron 
is slowed down by such a collision, a flux line heads toward the metal surface. The 
metal repels it, and in so doing pushes the tardy electron back up to speed. 

27.2 Phenomenology of Superconductivity 

Perfect Diamagnets. When a superconductor is placed in an external field H, 
all the flux lines are expelled from it so B is zero in its interior. The magnetic 
permeability \i described by Eq. (24.6) is zero, and the superconductor is a perfect 
diamagnet. This perfect diamagnetism can be explained phenomenologically by 
supposing superconductors to be solids in which electrons accelerate in the pres-
ence of electric fields without displaying any damping. Like magnets and dielectric 
media, they are captured by proposing a relation between electrical field and cur-
rent, which is 

(27.1) 

(27.2) 

Using Eq. (24.5) and restricting ( 2 7 . 3 ) 
attention to slowly varying currents so 
that dD/dt can be ignored. 

Using again Eq. (20.5b) and integrating ( 2 7 . 4 ) 
in time, obtaining a constant of 
integration Bo-

This line of argument cannot determine the constant field Bo. Because of Meissner 
and Ochsenfeld's observation that all magnetic fields are expelled from a super-
conductor, London ( 1961 ) proposed that superconductivity could be explained by 
setting BQ to zero to obtain 

ß + A £ V x V x ß = 0 (27.5) 

where the London penetration depth is 

/ 2 The assumption is that any features of mag-
\ , = * / . netic response not captured explicitly by j are ( 2 7 . 6 ) 

Vf Airline2 captured by a coefficient jx. 

Equation (27.5) is called the London equation. The length \i gets its name from 
the solutions of Eq. (27.5). Consider a superconductor which occupies all of space 
for z > 0. Look for solutions of Eq. (27.5) which are independent of x and y. 
Rewrite Eq. (27.5) as 

B + X2
L ( v ( V - ß ) - V 2 ß ) = 0 . (27.7) 

mv = —eE 
dj ne2

 s 

ot m 
d-■ -> B 4iTne2-L -- V x V x - = V x £ 
ot ß mc 

- - B 4nne2 .-, 
=> V x V x - = (B-BO). 

ß mc1 
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Taking the dot product of Eq. (27.7) with z gives 

Bz = 0 . Because B is independent of x and y, all the x ( 2 7 . 8 ) 
and y derivatives vanish. 

The first conclusion is then that the normal component of the magnetic induction 
always vanishes at the surface of a superconductor. Taking next a dot product with 
respect to x gives 

Bx = \2
L<y^ => Bx<xe-Z/XL. (27.9) 

oz 
The second conclusion is that a component of the induction parallel to a supercon-
ducting surface dies off exponentially over length A .̂ This decay is the origin of 
the Meissner effect. Because the current within the superconductor is related to the 
induction by Eq. (24.3), one obtains two additional important conclusions: 

1. The superconductor sustains currents in equilibrium. 

2. These currents inhabit a strip of width A/, near the superconductor's surface, 
and they vanish everywhere else. 

27.2.1 Phenomenological Free Energy 

Trying to explain superconductivity with Eq. (27.2) as the starting point creates 
two difficulties. First, the constant time-independent magnetic field BQ needs to 
be eliminated without explanation in the midst of the analysis. Second, it is not 
the most general relation leading to superconductivity. Both difficulties can be 
counteracted by recasting the phenomenological theory in terms of a free energy, 
rather than a linear relation between current and field. 

Consider a material without macroscopic magnetic fields in equilibrium. Wein-
berg (1986) emphasizes the economy of beginning with a free energy whose mag-
netic-field-dependent part takes the form 

? = Jdrdr' YJ\Aa{7)Gaß{r-r')A0{r') + 5{r-^)^B{r)-B{r'). (27.10) 
aß 

G is an arbitrary phenomenological function. Because it is a function of 7 — 7', 
it describes a macroscopically homogeneous medium. 

Equation (27.10) differs from the previous magnetic free energy (24.25) in two 
respects. It is less general, because Eq. (27.10) is only quadratic in A, and therefore 
only suitable for small deviations from equilibrium. On the other hand, this form 
puts forward A as the primary variable rather than B. A technical point that should 
be mentioned is that Eq. (27.10) is therefore not gauge-invariant. This deficiency 
can be remedied by replacing A wherever it appears by A — V</>, where a gauge 
change A —> A + Vx sends 4> to (fi + X- The final results will all be expressed in 
terms of B = V x A, and because V x V0 = 0 is a vector identity there is no need 
to carry cf> along. 
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The minima of this free energy describe equilibrium states. Requiring the func-
tional derivative of the free energy to be zero with respect to the vector potential 
gives 

[ V x V x ^ ] f t = - f df J2Gaß(r-r')Aß(r') (27.11) 
J ß 

Write B = V x A before taking derivatives of Eq. (27.10). 

^ja(7) = ^[VxB]a = -c f df J2Gaß(7-7,)Aß(r'). (27.12) 
J ί 

In Fourier space, Eq. (27.11) becomes 

E {Gaß(k) + ^(k25aß-kakß)]jAß = 0. (27.13) 

A system displays paramagnetic or diamagnetic behavior with permeability /i 
if in the limit as k —> 0, 

Gaß —> ( 1 ) k2Saß — kakß . Not obvious—obtained by working backwards ( 2 7 . 1 4 ) 
\n / 4TT L J from the desired result. 

To see why, note that if G is taken to have this form, then the term involving G in 
the free energy is 

- ^ drd? S(r-r')A-V x\7 x A mite J2ßlk26a0-kakß]A0 (27.15) 
= —\kxk xA]a. 

— —— / drBCr)2. Use the identity in Eq. (24.21) to integrate by (27.16) 
oVT J parts and turn the leftmost A into B. 

Adding Eq. (27.16) to the second term in Eq. (27.10) gives a free energy 

s-è-J"*®- (27'17) 
which describes a conventional permeable magnetic substance. 

A superconductor is produced by adding any term to Gaß that destroys the 
existence of solutions with spatially uniform magnetic fields. For example, suppose 
that 

lim Gaß = -r-Tjoaß- (27.18) 
k-^O 4 7 T A £ 

In this event, the free energy takes the form 

-1- f dr~A2(r) + \VxÂ\2, (27.19) 
Φ7T J \ L 

which has an extremum when 

- jA + V x V x A ^ O . (27.20) 
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Taking the curl of Eq. (27.20) to ensure that the final results are gauge-invariant 
gives 

ß + A£ V x V x ß = 0, (27.21) 

recovering Eq. (27.5). 
Equation (27.21) is not quite as general as Eq. (27.5) because the first involves 

B while the second involves B/ß. A magnetic permeability different from unity 
can be introduced if one takes Gaß to be the sum of two terms, one of the form 
(27.14) and the second of the form (27.18). The physical interpretation of adding 
these two terms together is that some electrons in a solid, such as the valence elec-
trons, are confined to individual atoms and create a magnetic response ß. Another 
population of electrons creates superconductivity. Adding together these two re-
sponses continues to produce a superconductor, but the penetration depth changes 
and is given by Eq. (27.6). 

27.2.2 Thermodynamics of Superconductors 

Suppose one takes a long thin cylinder of superconducting material and places it 
in an external magnetic field of strength H that points along the cylinder axis. The 
long cylindrical shape is desirable because its demagnetizing factor is zero, and the 
normal component of the magnetic field automatically vanishes along most of its 
surface. Experimentally, Meissner and Ochsenfeld (1933) found that at a critical 
applied field Hc the superconductivity is destroyed and magnetic flux penetrates 
the sample. The transition is completely reversible, so right at this critical field the 
superconducting state and normal state of the material must be in equilibrium. The 
free energy per volume of the metal in the normal state must be just 

3" = ^normal + Ö ^c • (27.22) 
ÖTTß 

Because the superconducting state expels the magnetic induction, its free energy is 
JUSt Jsuperconducting-

There now appears to be a problem. The free energy of the normal state is 
greater than that of the superconducting one, and the magnetic field energy is also 
positive. Yet when the critical field Hc is applied, (27.22) is supposed to equal 
ŝuperconducting- What has gone wrong? The answer is that thermodynamics is be-

ing used improperly. The reversible experiments are carried out by slowly varying 
external currents, not by controlling B directly. In the instant that the normal metal 
expels B and becomes superconducting, a host of magnetic flux lines blasts off to 
infinity. The work done during this instant must be accounted for; equivalently, one 
must choose to work with thermodynamic variables that really do vary smoothly 
during the change from normal metal to superconductor. The correct thermody-
namic potential, as in Eq. (24.27), is 

S = ?-B-% = ?nonnal--]-B2
c. (27.23) 
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Therefore the difference in free energy per volume at any given temperature be-
tween superconducting and normal metal must be exactly 

A 5 = Sn, normal -^superconducting 
87T// 

(27.24) 

Because \i R* 1 for superconducting metals, Eq. (27.24) is often written 

A J = # . 
8TT 

(27.25) 

One should remember, as mentioned in Section 24.2.3, that the magnetic field H 
inside a long thin cylinder with axis along the field is always spatially uniform and 
equal to the externally applied field. It is magnetic induction B that is expelled 
from superconducting samples, not the magnetic field H. 

By differentiating Eq. (27.25) with respect to temperature, one finds immedi-
ately that the excess entropy of normal metal relative to the superconductor must 
be 

d 
AS=— A J : 

dT 
HcdHc 

4^W (27.26) 

Meissner and Ochsenfeld determined that as temperature rises towards the critical 
temperature Tc where superconductivity vanishes in zero magnetic field, the critical 
field Hc also goes to zero. It follows immediately from Eq. (27.26) that the latent 
heat of transformation is zero, and therefore the transition is second order. 

27.2.3 Landau-Ginzburg Free Energy 

The most productive phenomenological description of superconductivity combines 
ideas from the free energy (27.10) with the idea that the superconductivity resides 
in a population of superconducting electrons whose density vanishes at a critical 
temperature Tc. Landau and Ginzburg (1950) described the superconducting state 
through a macroscopic wave function *& that plays a role for superconductivity 
identical to the role played by the wave function <I> employed in Eq. (15.98) for su-
perfluid helium. If the supercurrent density n = \^\2 vanishes at Tc, then it should 
be possible to expand Gaß (see Eq. (27.10)) in powers of l^l2. Landau and Ginz-
burg guessed the free energy to be 

J: dr 2 ß i T 4 
+ 

l 
8^ 

B2 + 1 
2m* i c 

*(r) (27.27) 

The first two terms in Eq. (27.27) are procured directly from Landau's general 
theory of second-order phase transformations, discussed in Section 24.6.1. The 
remaining terms provide a particular realization of Eq. (27.10) and were inspired 
by the idea that the superconducting electron wave function might interact with 
the vector potential like a single macroscopic particle. The effective charge e* = 
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2e multiplying A is due to the fact that pairs of electrons are responsible for the 
superconductivity. Minimizing Eq. (27.27) with respect to A leads to 

V x ß = — / , (27.28) 
c 

with 

2eh - - 4<?2 -
j(r) = [**V* - #V#*1 A***. (27.29a) 

2im* m*c 
Minimizing with respect to \I>* leads to 

0: a +^+ i(»vA-) Integrate so that all spatial derivatives 
xjj act on SP, then take functional iy-i 9QM 

derivative with respect to \P*. ^ ' ' 

Equations (27.29) are the Landau-Ginzburg equations. 

Boundary Condition. To solve problems in particular geometries, it is always 
necessary to specify the behavior of * at the boundary of a sample. When a super-
conductor contacts vacuum no current can flow out of the boundary, so 

/H^ 2e ~\ 
n • I — V H A I ty = 0 H e r e " is normal to the boundary; see Lan- ( 2 7 3 0 ) 

\ i c ' ' dau and Ginzburg (1950), de Gennes ( 1992), 
'Via. 2e ->\ 

W = U. 
p. 177, or Wertheim (1969), p. 327. 

Landau and Ginzburg observe that "it is natural to demand that the wave function 
at the boundary of the metal should vanish" but such an additional boundary condi-
tion on the superconducting wave function would eliminate solutions in thin films 
except for quantized values of the film thickness. Because this phenomenon is not 
observed, the seemingly natural boundary condition \I/ = 0 must be rejected. 

27.2.4 Type I and Type II Superconductors 

The Landau-Ginzburg equations depend upon two lengths. The first is a coherence 
length £ that sets the scale for spatial variations of the order parameter ^/. This 
length is given by 

2 n2 

2m*\a\ 

The second length is the London penetration depth. In terms of Landau and Ginz-
burg's parameters it is given by 

A5 = T 5 ^ Ü - C"2> 47r|a|(2e)2 

The coherence length and penetration depth, as well as critical temperature and 
lower critical field are tabulated in Table 27.1. 
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Table 27.1. Properties of superconductors 

Compound 

Al 
As (P =14 GPa) 
Ba (P =20 GPa) 
Be 
Bi (P =8 GPa) 
Cd 
Ce (P =5 GPa) 
Cs(P=13GPa) 
Ga 
Hf 
Hg 
In 
Ir 
La 
Lu 
Mg 
Mo 
Nb 
P(P=17GPa) 
Pb 
Ru 
Se (P =13 GPa) 
Si (P =12 GPa) 
Sn 
Ta 
Tc 
Te (P = 8 GPa) 
Th 
Ti 
Tl 
U 
W 
Y (P =17 GPa) 
Zn 
Zr 

Nb3Sn 
YBa2Cu307_x 

HgBa2Ca2Cu3Oy 

Tc 
(K) 
1.18 
0.5 
5.3 
0.02 
8.55 
0.52 
1.7 
1.6 
1.09 
0.02 
3.95 
3.41 
0.10 
6.0 
0.1 
0.0005 
0.92 
9.3 
5.8 
7.20 
0.49 
6.9 
7.1 
3.7 
4.46 
7.8 
4.3 
1.37 
0.42 
2.4 
1.8 
0.02 
2.7 
0.85 
0.53 

18.5 
92 

135 

Hc 
(G) 
105 

30 

58.9 

340 
289 

20.1 
1096 

98 
1980 

803 
47 

308 
831 

1410 

162 
56 

180 

1.07 

52 
47 

28 
500 

£ 
(Â) 

13 000-16000 

7600 

2400-3 500 

380 

510-960 

1000-3 000 

4200 

34 
4-8 

AL 
(Â) 
160-500 

1 100 

380-450 
390-640 

390 

390-630 

340-750 

1600 
900-8 000 

Critical temperature Tc, lower critical magnetic field Hc where flux first 
penetrates sample at zero temperature, coherence length £ and London 
penetration depth \L for selected superconductors. Measurements are at 
atmospheric pressure unless otherwise indicated. Source: Grigoriev and 
Meilkhov (1997), pp. 566-567 and Plakida (1995). 
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Calculation of Coherence Length £. These lengths emerge from some simple 
calculations based upon Eq. (27.29b). First, consider a case in which externally 
imposed magnetic fields vanish. One sees immediately from Eq. (27.29b) that the 
spatially uniform solutions are 

|*|2 = I P (27.33) u 
The constant ß must always be positive or else 5F is minimized by sending <I> —> oo. 
The nonzero case in Eq. (27.33) is only possible if a < 0, and it corresponds to a 
spatially uniform superconducting state. The free energy per volume of this state, 
from Eq. (27.27), is 

3" a2 

v — v (2"4) 

and comparing with Eq. (27.25) shows that 

«? - * f . (2735, 

When superconductivity is present, it makes sense to scale \& by this uniform 
value \I/o and define 

iP = lQ, (27.36) 

in terms of which Eq. (27.29b) becomes 

-£2V2V>-V> + V # | 2 = 0, WhenA = 0. (27.37) 
£ being given by Eq. (27.31). Thus £ is the characteristic scale on which tp varies 
in the absence of magnetic fields. 

One-Dimensional Interface. The physical significance of £ is illustrated by ex-
amining the scale over which the wave function ip varies. Take tp to be real, and 
consider a one-dimensional interface. In one dimension one has 

- Ê V - V ' + ^ 3 = 0 - (27.38) 
Multiplying Eq. (27.38) by tp' and integrating, one has the first integral 

-Ç2(ip')2-ip2 + -ipA= Const (27.39) 

Equation (27.39) is only consistent with an asymptotic value of ip = 1 if one takes 
the right hand side constant to be — 1 /2. In this case, one can then write 

T// = - L - ( 1 - V 2 ) (27.40) 

which has a solution 
?/; = t a n h - ^ . (27.41) 

v2£ 
This solution describes a transition between two spatially uniform superconducting 
regions where the phase of the wave function changes sign across the interface. The 
coherence length £ sets the spatial scale for this transition. 
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Penetration Depth. The second length, the penetration depth, arises when one 
considers a superconductor occupying the region, say, x < 0, in an exceedingly 
weak field. When the field is zero, one has the solution * = \E»o for x < 0. In 
the presence of a very weak field, ^ will change to linear order in the field, but 
because it is nonzero without a field, to leading order one can continue to use 
\I> = *o - Looking at Eq. (27.29a) and keeping only the leading terms gives 

c - - 4e2 -,-
j=— Vxß = -mlA. (27.42) 

47T m*c 

Taking the cross product of Eq. (27.42) gives 

V x V x ß = * g ß = - A r 2 ß . (27.43) 
c m*c L 

Using Eq. (27.33) immediately gives Eq. (27.32) for the penetration depth. 
The ratio of the penetration depth and coherence length 

*LlS = -r\iz (27-44) 

is in fact the only free parameter of the Landau-Ginzburg theory, because all other 
constants can be scaled out, by rescaling ip, distance, and A . To be specific, define 

4 M 
(27.45) 

C\j2nïk\a\ 

and measure all distances in units of £. Then Eq. (27.29b) becomes 

ip-ip\tp\2-(-iV + ä/2)2ip = 0 (27.46) 

while Eq. (27.29a) becomes 

A2 1 
- f V x V x a = - T ( ^ * V ^ - ^ V f ) - |Vfa. (27.47) 
s ' 

Surface Energies. A particularly important result of Landau and Ginzburg's 
theory is the calculation of the surface energy between normal and superconducting 
metals. For K < \j\fl the energy is positive; however, if K > l / \ /2 , the surface 
energy is negative. Once one has a negative surface energy, it becomes favorable 
for magnetic flux to penetrate a superconductor and form interlocking regions of 
normal and superconducting metal. Superconductors for which this happens are 
called type II; those for which it does not are called type I. The way in which the 
flux penetrates was worked out by Abrikosov (1957). 

In order to discover why the magnitude of K plays such an important role, 
consider a superconductor in a magnetic field larger than Hc, so that the super-
conductivity is destroyed and ^ = 0. Now begin to lower the field, and examine 
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the linear stability of the state \I> = 0 by expanding everything to first order in * . 
From Eq. (27.29a), one sees that the current j vanishes to this order, and therefore 
one can take A simply to be the vector potential associated with a uniform field H, 
pointing, say, along the z axis. Writing Eq. (27.29b) to linear order then gives 

1 ' -jfiV + — ) 2 * = - Q * . (27.48) 
2m* c 

This equation is the same as the eigenvalue equation for an electron in a constant 
external magnetic field, and so one can immediately write down the solution by 
comparison with Eq. (25.48). Define HC2 to be the largest magnetic field permitting 
a nonzero solution of Eq. (27.48). The lowest-energy eigenvalue is hcoc/2, where 
in this case 

"c = ^ , (27.49) 
m*c 

because in Eq. (27.48) the charge carrier has charge — 2e. The larger H becomes, 
the larger a would need to be in order for a solution to be possible. For a given a, 
the largest H at which Eq. (27.48) has nonzero solution is therefore 

—a = \a\ = -. (27.50) 
m*c 

Using Eq. (27.35) to express the critical field Hc in terms of a and ß, along with 
Eq. (27.44) to define K, gives 

-^ = V2K. (27.51) 
He 

Now one can see why K = \/\/2 divides the two types of superconductors. If 
K > l / \ /2 , then HC2 lies above Hc. For applied magnetic fields between Hc and 
HC2, it is energetically unfavorable to expel all magnetic flux from the system, but 
favorable to form at least one superconducting vortex, corresponding to solutions 
of Eq. (27.48). Equation (27.48) predicts that a vortex will form, but is unable to 
describe its strength or final form; these can only be obtained from more elaborate 
calculations taking into account the nonlinear terms of Eq. (27.47). As the mag-
netic field descends below HC2 toward Hc, more and more vortices fill the system, 
until at Hc they coalesce and expel all the magnetic flux. By contrast, if K < l / \ /2 , 
forming a vortex does not become possible until the magnetic field has dropped 
below Hc. It is reasonable to guess, and possible to verify, that the system does 
not choose to form vortices when it has the option of expelling all the magnetic 
field and to become superconducting instead. The picture that led to Eq. (27.48), 
in which a normal metal in a magnetic field develops a superconducting wave func-
tion to order \&, is no longer valid. It is more favorable for <& to grow to size —a/ß 
and take over the whole sample. 

Interface Energies. Problem 2 describes the free energies of superconducting-
metal interfaces in two limits. For K = 0, 

hf^l (27-52> 
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and forming the interface costs a finite positive energy per unit area A. For K —> oo, 

Ç H2 

7 = - ^ (27.53) 
A 87T 

because this energy is negative, the system will respond by trying to form as much 
interface as it can. The result is the Abrikosov lattice of flux lines penetrating the 
sample depicted in Figure 27.2. 

Figure 27.2. A Type II superconductor is unstable to the formation of flux tubes that 
penetrate the sample trying to generate a maximal area where superconductor and metal are 
in contact. The lowest free energy configuration is often a triangular lattice. (A) Electron 
hologram from the side of magnetic flux entering a lead film [Source: Tonomura et al. 
(1986), p. 93.] (B) Top view of an Abrikosov lattice of flux tubes in NbSe2, taken with 
scanning tunneling microscopy. [Courtesy of S. Pan and A. de Lozanne, University of 
Texas.1 

27.2.5 Flux Quantization 

The Landau-Ginzburg equations have an effective charge — 2e seated in the spot 
one would expect to be occupied by the electron charge —e. This effective charge 
has a convoluted history. Ginzburg had guessed that the superconducting charge 
carriers might have an effective charge e*. Landau objected that effective charges 
violate gauge invariance, and their paper takes the position that "e is a charge, 
which there is no reason to consider as different from the electronic charge." In 
fact, arguments based upon gauge invariance require only that charges be integral 
multiples of the electron charge; in two-dimensional space these arguments permit 
effective particles with arbitrary charge, as shown in Figure 25.11 and discussed by 
Wilczek (1990). Despite the fact that the microscopic theory of superconductivity 
involved pairing of electrons, the correct form of the Landau-Ginzburg equations 
was not clear, and the effective charge —2e was a surprise when discovered exper-
imentally by Deaver and Fairbank (1961) and Doll and Näbauer (1961) in studies 
of quantized magnetic fluxes. 

The Landau-Ginzburg equations predict that the magnetic flux trapped within 
a superconductor is quantized (Figure 27.3). Suppose, however, that the effective 
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charge — e* and mass m* of the superconducting particles were not known. The 
superconducting current associated with \I> would be 

Letting 

gives 

e*H - - e*2 -* 
lim* m*c 

M?) \&(f) = fy0e"P(r> Take <j> to be real. 

-v<t>=-

e*\ 
A + e*H\7(f> 

m -f e -> 

H \ e*^>lJ c 

(27.54) 

(27.55) 

(27.56) 

(27.57) 

Simply demanding that the phase </> be differentiable is enough to prove that the 
magnetic flux is quantized, just as in Eq. (15.106). Because \I/ must return to itself 
when <j> changes through 27r, one obtains 

ds- V(j> = 2nl. l i s a n integer. 

As a result, 

/ 
ds- -

n 
m -> e -> 

e*^l c 
2vr/. 

(27.58) 

(27.59) 

Choosing a contour of integration that lies within the cylinder at a depth greater 
than the skin depth (Figure 27.3), j is negligible, and 

ch 

I d2r B7 = $ 

ds-A = 2-nl (27.60) 

2irlhc e 
= / — $ 0 . See definition of $ 0 in Eq. (25.51). ( 2 7 . 6 1 ) 

e* e* 

Figure 27.3. Magnetic flux that pierces a su-
perconducting ring is quantized in units of 
$o/2. The integration contour in Eq. (27.59) 
is taken on the dotted line, which lies deep in 
the superconductor where j vanishes. 

So the integrated magnetic flux $ that penetrates a hole through a supercon-
ductor is quantized in units of (e/e*)&o, and can be used to measure the effective 
charge e*. The measurements in Figure 27.4 show that e* — 2e, leading to the con-
ventional form of Eq. (27.27). The fact that the only phase changes observed in 
Figure 25.5 are 0 and ir is another experimental demonstration of this same fact. 
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X 3 
E 

0.1 0.2 0.3 0.4 
Magnetic field H (G) 

0.5 

Figure 27.4. Trapped magnetic flux in a superconducting cylinder as a function of applied 
field. The dimensions of the cylinder are on the order of 10 /im, and it is made of tin. The 
flux is measured by moving the cylinder up and down at 100 Hz toward and away from a 
conducting coil and measuring the electromotive force induced in the coil. [Source: Deaver 
and Fairbank (1961 ), p. 44; a nearly identical experiment was published simultaneously by 
Doll and Näbauer (1961). Theoretical discussions by Byers and Yang and Onsager are 
sandwiched between these two experimental papers.] 

27.2.6 The Josephson Effect 

It takes a certain degree of courage to adopt a phenomenological function like \l/, 
treat it as a physical entity, and predict new phenomena. Josephson (1962) pre-
dicted that the wave function could be induced to interfere with itself and oscil-
late if two superconductors were separated by a small strip of nonsuperconducting 
material. A qualitative derivation of Josephson's equations is presented at first; 
Section 27.2.9 obtains the basic results in a more careful way. 

Consider two superconductors separated by a thin insulating layer. On the 
opposite sides of this weak link, the two superconductors interact only because of 
their exponentially small residues as they decay across the barrier into each others 
territory. The change in energy of two nearly independent systems due to tunneling 
is given in general by 

I drU{r) ( ^ ( r ) * 2 ( r ) + ^ 1 ( r ) ^ ( r ) ) (27.62) 

(27.63) 

where the wave function without the argument r refers to its value at some reference 
point inside the bulk, and e is some very small quantity with dimensions of energy. 
Writing down a Schrodinger equation for two wave functions coupled by such an 
interaction leads to 

0*1 
h [£ i* i+e# 2 ] dt 

0^7 -i 
-2. [ £ A + £*,, 

(27.64a) 

(27.64b) 
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Taking each wave function now to be of the form 

ty = ^fiiJ*! (27.65) 

gives 

(\-^+iJn~\(i>])ei4" = —^ \Z\Jh~lei<tn +e^ei4'2} . A similar equation 
\/ft\ I n L J holds with indices 

reversed. 
(27.66) 

The superconducting electron densities n\ and n2 within the superconducting re-
gions are the same and constant, apart from some extremely small variations, so by 
taking the real and imaginary parts of Eq. (27.66), one finds 

• Superconducting particles are 

ri\ = 2— sin U2 -(f>\) = -ri2 = — ,flowinifroT,!.on,esuP^con
f
ductor (27.67a) 

fe v-rz. - r i / i. ry to another; this time rate or x ' 
change is the total current. 

1 The factor of two appears at the 

02 - 01 = - (£ 1 - £2) = 2<?(V2 - V\ )ln. end b ™ / h e e"erêies
f (27.67b) 

^ ^ ^ h correspond to energies of electron v ' 
pairs. 

In the presence of magnetic fields, Eqs. (27.67) are not correct because the phase 
of a wave function changes in the presence of a magnetic field. To make a wave 
function phase gauge-invariant, add 2e/(Hc) f0 d~s-A to the phase, where the line 
integral is taken from some arbitrary reference point. Incorporating this general-
ization, Josephson's equations become 

/ = Jo sin(02 -<t>\+Yc
 dI'^ (27.68a) 

~(Z2-Zi) = 2eV/h=jtU2-^ + Yc I ds-A\ . (27.68b) 
V is the voltage difference between the two superconductors, and the factor of 
two appears because the energies £; are energies of electron pairs. 

Equations (27.68) have peculiar properties. If one places two superconductors 
at different voltages in contact (£1 — £2 7̂  0), then 4>2 — 4>\ drifts in time, so n\ and 
«2 oscillate about their mean values at 484 MHz/^V—the AC Josephson effect. 
On the other hand, if £ 1 — £2 = 0, then (f)2 — <t>\ does not change in time, but does 
not have to vanish, so Eq. (27.68a) permits steady current flow—the DC Josephson 
effect. If a current source injects electrons into a Josephson junction, then the phase 
difference 4>2 — 4>\ simply adjusts to a nonzero value, up to a maximum value of 
7r/2. Current flow in the absence of a voltage difference is a defining properties of 
superconductors. 

The experiment that was decisive in bringing about acceptance of the Joseph-
son effect was performed by Anderson and Rowell (1963). It consisted of mea-
suring the relationship between current and voltage in a Josephson junction as a 
function of magnetic field. Later experiments probed more exotic interference ef-
fects; those shown in Figure 27.5 provide a clear demonstration that Eqs. (27.68) 
are sound. Calculation of the form of the interference is left to Problem 3. 
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Figure 27.5. (A) Setting for Fraunhofer diffraction in a Josephson junction. (B) The 
critical Josephson current Jc is the maximum zero-voltage current that can flow through 
a Josephson junction. The data show a measurement of Jc in an Sn-SnO-Sn junction at 
T = 1.9 K. [Results of R. C Jaklevic, reported by Mercereau (1969), p. 402] 

21.2.1 Circuits with Josephson Junction Elements 

When used as a circuit element, the Josephson junction has both some resistance 
R and capacitance C. So the circuit element containing the Josephson junction is 
described by 

V 
\-JQ s in d> -\- CV = J Leave out magnetic fields for the moment so 

R as not to have to carry along the integrals of 
the vector potential. 

( 2 7 . 6 9 ) 

where <j> = ^2 — <j>\- Eq. (27.69) constitutes the resistively shunted junction (RSJ) 
model. In the absence of magnetic fields 

= 2eV/h, (27.70) 

because the difference in Fermi energies between the two superconductors is just 
2eV. Therefore 

<t>fi T . , CH �� 

he.,. n 
2e* 2eRS 

d_ 
[—(fiJ — JQ COS 

(27.71) 

(27.72) 

Equation (27.72) has a mechanical analog, the motion of a damped particle in 
a potential. The potential slopes downwards, but with periodic bumps as shown 



Phenomenology of Superconductivity 855 

o 
o 

I 
Figure 27.6. The washboard poten-
tial in Eq. (27.72). 

in Figure 27.6: It is called a tilted washboard potential. One can understand the 
behavior of the Josephson junction based on the mechanical analogy without going 
through complicated analysis. First, make the equations dimensionless by measur-
ing time in units of 

to = ^ n , (27.73) 

so that Eq. (27.72) becomes 

ß<t> + 4>-
d 

where 

ß-

2<?V?' 

Jo 

J0R2C2e 

n ' 

cos (27.74) 

(27.75) 

If ß » 1, then the particle is very heavy, and the junction is hysteretic. To see 
why, suppose the current J to be less than JQ. The particle sits in one of the basins, 
perhaps rocking back and forth slightly, meaning that the voltage oscillates weakly 
about zero. Next suppose the current J to be raised above JQ. Then the particle 
rolls down the washboard. This continual motion corresponds to a voltage V. If 
the current is lowered again to its original value, the ball has acquired momentum, 
and because the damping is weak, it will continue to roll across the washboard. The 
nonzero voltage maintains itself, although the current is less than critical. This hys-
teretic behavior is prevented when the particle is overdamped, which corresponds 
to a small shunting resistance R. 

27.2.8 SQUIDS 

Superconducting quantum interference devices (SQUIDS) are Josephson junctions 
employed as very sensitive detectors of magnetic flux. DC SQUIDS consist of 
superconducting loops containing two junctions. Consider the contour depicted in 
Figure 27.7. Assuming that the superconductors are thicker than the penetration 
depth, along with Eq. (27.57), one obtains V(j) = — 4TTA/$O everywhere in the 
superconductor. Therefore 

ds-A = <& [ ds-A-p- I ds-V(j)+ [ ds-Ä-^- f 
74 47T J\ J2 47T J3 

ds- V<A (27.76) 
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^ $ = 

where 

714 = 

_ $ 0 

47T 

= 04-

( 7 2 3 -

-01 + 

"714 

47T 

$0 

) . 

i: 
(27.77) 

ds-A. With an identical expression for 723. ( 2 7 . 7 8 ) 

If the weak links were absent, the phase changes 714 and 723 would have to be 
multiples of 2ir, giving back the flux quantization condition (27.61). The gaps 
between the superconductors allow arbitrary amounts of flux to creep into the loop, 
but then place a constraint on the phases of the wave function. 

Figure 27.7. A DC SQUID consists of two Josephson junctions in parallel. The assembly 
is extremely sensitive to the enclosed magnetic flux. The dotted line is a contour used to 
calculate Eq. (27.76). 

According to Eq. (27.68a), the total current passing through the DC SQUID is 

J = J0 sin(7i4) +/o sin(723) (27.79) 

= •/<> s i n ( 7 2 3 - 4 7 r $ / $ o ) + s i n ( 7 2 3 ) . Inserting Eq. (27.77). (27.80) 

The current oscillates as a function of the phase $ in the SQUID, and it can be used 
as a sensitive measure of magnetic fields. In practice, Eq. (27.69) must be used 
to describe the behavior of the phase, rather than Eq. (27.68a), and the junctions 
are resistively shunted so as to eliminate the hysteresis that would accompany the 
completely nondissipative case. 

27.2.9 Origin of Josephson's Equations 

Section 27.2.1 described the derivation of superconductivity from hypotheses con-
cerning a free energy. A broadening of this point of view to encompass dynamical 
phenomena allows for a very general derivation of Josephson's equations. 

The new point of view focuses upon the field 0 appearing in the macroscopic 
wave function \I>o exp i<fi. According to Eq. (27.57), so long as <I>o is constant, the 
current j can be put in the form 

-?_ |\I>o|287re/j ^ V 0 + I 
47T 

The magnetic flux quantum <3>o is defined in ( 2 7 8 1 ) 
Eq. (25.51). 

Therefore x = $o0/47r enters the theory in exactly the same fashion as the field x 
in electrodynamics used to generate gauge transformations of the vector potential. 

The most economical theory of superconductivity begins with two postulates: 
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1. The field x generating phase changes has become a macroscopic field with 
physically measurable consequences. The vector potential always appears in 
combination with x as Ä + V x , while the scalar potential V always appears in 
combination with x as V — x/c. 

2. When <f> = 4irx/$o appears in the theory, it does so in the form exp [/</>], so <p 
only has significance up to multiples of 2n. 

These postulates describe a spontaneous breaking of gauge symmetry. 
Having determined that the gauge potential x should be part of the theory, one 

can write down a Lagrangian in the spirit of Section B.3 for superconductivity in 
the form 

drdt £ = / dfdt I — G (A + V x , V - x / c ) > . v is the scalar potential. 

(27.82) 
Use 

1 dA _ W _ _ and B = VxA. (27.83) 
c at 

Problem 4 demonstrates through straightforward computations that 

5L dG 
= 0 => = —ne ~ne 1S t h e charge density. ( 2 7 . 8 4 a ) 

ÔV dV 
ÖL dG J 
— = 0 = » ^ = - - . (27.84b) 
ÔA 8A c 

The Lagrangian must also vanish with respect to variations in x, so 

ÔL n -. dG d 1 dG n tn nc — = o ^ V - ^ - — -—-=0 (27.85 
ôx 3A dtcdV 

d - -
=4> —[—fie] = — V • /'. This is just the equation of continuity, ob- ( 2 7 . 8 6 ) 

dt tained by substituting in Eqs. (27.84). 

The Lagrangian depends upon the fields A , V, and x, as well as upon the time 
derivatives of A and x- Therefore, the Hamiltonian is 

-? dL dtl 
3-f = A ■ U y ZJ Just the definition of the Hamiltonian, as on ( 2 7 8 7 ) 

ßl OX ' P-346 of Goldstein (1980). 

There is no need to calculate any properties of the Hamiltonian explicitly in order 
to derive the Josephson effect. One has only to observe that the Hamiltonian is 
conserved and must equal the energy of the system. According to Eq. (27.84a), the 
canonical momentum corresponding to x is proportional to the charge density, 

^ = - ^ . (27.88) 
ox c 
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Therefore Hamilton's equations for x must be 

Identify Q with x a nd P with —ne/c. This ( 2 7 . 8 9 a ) 
equation is ^g- = —P. 

This equation is ^ = Q. ( 2 7 . 8 9 b ) 

The derivative of the energy "K with respect to the electron density n is precisely 
the electron electrochemical potential \x. Finally, 

cu ■ 2a 2eV „ 
X = =>(j)= - = . Usex = #c/2e. (27.90) 

e h h 

If two points differ in voltage by an amount SV = <5/i/(—<?), then the phase dif-
ference 8(j) between these points changes at a rate öcfi — 2eSV/H. Because all 
physical quantities are periodic functions of 4> + 4ir J ds-A/<&o with period 2ir, 
the current must oscillate with frequency 2eôV/h. The arguments leading to this 
conclusion depend only upon the assumption that (/> is a physical field and that 
physical quantities depend upon exp [/(/>]. Oscillations of Josephson junctions there-
fore provide the most precise measurement of the Josephson constant Kj = 2e/h. 
While Eq. (27.68b) depends only upon fundamental constants, and is correct to 

very high accuracy, Eq. (27.68a) is less fundamental. The function sin <f> appearing 
in Eq. (27.68a) could be replaced by other functions, just so long as they had the 
same periodicity. 

27.3 Microscopic Theory of Superconductivity 

The phenomenological theories of superconductivity are in many respects quite 
complete. Yet there are certain types of questions that they cannot answer. Why 
are some materials superconducting and others not? What determines the critical 
temperature Tc and critical field Hcl What sets the coherence length and penetra-
tion depth A/.? These are issues that a microscopic theory should address. Because 
the single-electron Hamiltonians that are amenable to exact or numerical solution 
do not produce superconductivity and because the full many-electron Hamiltonian 
is intractable, decades passed after the experimental discovery of superconductivity 
with little theoretical progress: 

Bloch, in a famous theorem later extended by Böhm to many-body sys-
tems, showed that in the absence of a magnetic field the most stable state 
of an electron system is that of zero current. Because of the frustra-
tions which the many theorists who worked on the problem encountered, 
Bloch jokingly proposed a second theorem—that "any theory of super-
conductivity can be refuted." —Bardeen (1963), p. 3 

cm he 
dx c 

d'K _ . 
d\—ne/c] 

A crucial step on the path to a microscopic theory was the discovery of the 
isotope effect by Maxwell (1950) and Reynolds et al. (1950), shown in Figure 27.8. 
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Figure 27.8. Superconducting transition temperature Tc versus average isotopic mass in 
four samples of mercury, showing decrease in Tc with increasing mass. [Source: Reynolds 
etal. (1950), p. 487.] 

If the superconducting transition temperature could be depressed by changing the 
mass of the ions, then the interaction of electrons and ions must be crucial. The 
theory of polarons in Section 22.3.2 is based upon this same type of interaction. In 
fact, Fröhlich ( 1950) began a theory of superconductivity based upon an interaction 
between electrons and phonons prior to the experimental observations shown in 
Figure 27.8, and the Hamiltonian he deduced for this purpose is a starting point for 
successful microscopic models. 

27.3.1 Electron-Ion Interaction 

Fröhlich (1950) found that electrons could effectively attract each other because 
of an intermediate interaction with phonons. In rough terms, the motion of an 
electron with wave number k through the lattice causes the ions to vibrate with 
the same wave number. It is then energetically favorable for a second electron, 
traveling in the opposite direction from the first but with the same wavelength, to 
synchronize its phase with the first electron so as to obtain the greatest energetic 
benefit from the ionic vibrations. This synchrony is an effective attraction between 
the two electrons. To see in detail how the attraction comes about requires bringing 
together results on the interaction of electrons with ions and with each other. 

The most physically meaningful way to perform this task is by imagining that 
an electric field Ê has been imposed on a metal and then finding the resulting 
motion of charge, including both (a) charge motion associated with conduction 
electrons and (b) charge motion associated with ions. From the total conductivity 
a obtained in this way follows a dielectric function e that contains information 
on all the charge carriers bundled together. This dielectric function shows how 
electrons and ions adjust in response to any electric field, but in particular it can 
be used to show how electrons and ions adjust in response to the electric field of a 
moving electron. It follows that the effective interaction of two electrons separated 
by distance r is e1 /er, with e carrying information about the cooperative motion 
both of ions and a sea of conduction electrons. 
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Conduction Electron Current. Equations (20.75) and (20.76) describe how 
conduction electrons move in response to external potentials V. Because a = 
u}(e — \)/4iri from (20.14), Eq. (20.84) says that for longitudinal waves, the con-
duction electron contribution to the conductivity is 

o"d = ^ - - (27.91) 
T 

Equation (27.91) looks simple until one contemplates writing Xc out in its full 
splendor. Evaluation of Eq. (20.76) can be simplified in two steps: 

1. Only the low-frequency susceptibility is needed. The reason is that electrons 
will only experience an attractive interaction when they oscillate at frequen-
cies characteristic of phonons. As shown in Figure 20.1, characteristic phonon 
energies and frequencies are around two orders of magnitude less than char-
acteristic electron energies and frequencies, so Xc can be evaluated at UJ = 0, 
allowing the electrons to respond adiabatically to the phonons. 

2. Only the long wavelength susceptibility is needed. When u —> 0, Problem 
20.6 shows that Xc takes the form 

Xc = - ~ ^ ^ (27.92) 
7T2/r 8(? 

and that in the low q limit 

me2kp K? ,„„ 
Xc = 2^ = ~T-- (27-93) 

7T2/T 47T 
There seems not to be much justification for going to the low q limit because 
the interest will be in q in the neighborhood of kp. However, the plot of 
Xc(#)/Xc(0) in Figure 27.9 shows that the error is hardly significant, because 
X changes only by 10% by the time q reaches kp. 

The final result is that the contribution of electrons to the conductivity is 

*ei = ^ % . (27.94) 
47Tjgz 

Ion Current. Section 22.3.2 showed how an electron moving in a polar solid 
would cause ions to move. The analysis relevant for superconductivity is very 
similar, but it must be modified slightly because the important phonons are acoustic 
rather than optical. 

Returning to Eq. (22.18), suppose that ionic displacements u respond to applied 
electric fields by obeying 

— p*F ^ o r s m a " ?' E should probably be replaced by £ceii, but 
— e c in view of other uncertainties the replacement is pedantic. (71 QS) 

2\ M(co2 — u) 
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Figure 27.9. Charge susceptibility Xc> showing that the large wavelength limit q —> 0 is a 
satisfactory approximation for q as large as kF. 

In Section 22.3.2 the bare phonon frequency ü was constant; now take it to de-
pend upon q, and in particular to vanish for q = 0. The function ü^ is assumed 
to be known, but its particular form will not be important in what follows here. 
Observing that 

7ion(<7, w) = -iume*u (27.96) 

and defining 

Airne ,*2 

UJ, pi M 
This is an ionic plasma frequency. (27.97) 

the conductivity a\on of the ions is 

LO W* 
0"t on — 

4717 LO1 — Ujl 
(27.98) 

Electrons and Ions Together. When one finally combines electronic and ionic 
currents, the total conductivity is 

o(q, u) u 
Am 

e(q, u) = 1 + ■ 
<t 

0J„ 

UJ^ � W s 

w, pi 
o; 2 -φ)2 ' 

Combine Eqs. (27.98) and (27.94). 

See Eq. (20.14). 

(27.99) 

(27.100) 

Just as in polar solids, ü^ does not correspond to an actual resonant frequency. The 
frequency LO^ of longitudinal phonons is given by demanding that e vanish, and it 
is 

2, ,2 

W j = W 3 + 
q"u. pi 

See Eq. (20.23). Notice that if electrons were not 
available to screen the ions, the longitudinal phonons 

Q Q2 I p-2 ' would oscillate at the plasma frequency o>pj as q -
c 0, rather than producing the expected acoustic mode. 

(27.101) 
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Using this definition, a bit of algebra shows that 

1 Q2 

e{q,uj) q2 + K2
c 0 , 2 - 4 

(27.102) 

Effective Interaction. Suppose now that two electrons move through a solid 
whose dielectric function is given by Eq. (27.102). If they have wave vectors k\ 
and &2 and energies £ i and £2, then the charge density of the two of them oscillates 
as 

|^ic/*'-?-£"/Ä + ^2c/*2-ï'-e2r/f i |2 oc const. + cos[(îfci — ik2) - r — (£1 — £2)r/Ä]. 
(27.103) 

Their effective interaction is therefore 

Ut 
Aire1 Aire1 

eff e(q,u)q2 q2 + K\ 1 + 
2 - 2 

UJ~ — CJ-
1 q 
7 2 

with 
&2 and Hu> = £1 — £2-

(27.104a) 

(27.104b) 

The essential point to observe in Eqs. (27.104) is that when co^ < to < u>^, the 
effective interaction becomes negative, and the two electrons attract one another. 

Second Quantized Interaction. 
To see how the to express the interaction of electrons in second quantized no-

tation, suppose that electrons have an effective potential Ueff(r — r') in position 
space. Use plane waves exp[ik ■ r]/VV as the basis states in Eq. (C.10). Then the 
interaction becomes 

f4ff = 2 ^2 êlêpêk'"êî"(kk'\Ueff(r\ -r2)\k"k" 
kk'k"k'" 

The matrix element becomes 

- ^ / drdr'd/'dr"' V2 

V2 

-ik-r-ik'■?+ik"-r"+ik'"-r'" ■ e 'r Usff(r-r 
x6(r-r)6(7-7") 

S(k" + k'" -k-k')Ueff(k" -k) 

(27.105) 

(27.106) 

(27.107) 

= V)^ï"+k'"-lc-ï'^e^^ ~ k) Viewing £ states as discrete. See Eq. (6.12) ( 2 7 . 1 0 8 ) 

The fact that the interaction depends only upon the distance r\ — ?2 between parti-
cles enforces conservation of momentum when viewed in k space. Thus, returning 
to Eq. (27.104), and including electron spin, one has the effective interaction 

'K: , 1 ^ 4-rre2 2 -2 U)~ — Lü~ 
i i g q 

' 1 2 ka k'u' k'-qa' k+qa (27.109) 
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27.3.2 Instability of the Normal State: Cooper Problem 
Cooper (1956) performed the first calculation showing how a small attractive inter-
action between electrons destabilizes the conventional electronic ground state. The 
idea is the following. Consider a state containing N particles that occupy k states 
up to a Fermi level. This state will denoted by \G), and the first guess is that it is 
the ground state of the Hamiltonian, or at least close to it. Formally, 

\G)=\{^0). (27.110) 
k<kF 

Now imagine adding two new particles to \G). One possibility is that the two new 
particles seek out the lowest-lying unfilled k states and occupy them. Solutions of 
this sort certainly exist. But in the case where the particles interact by an attrac-
tive potential, there is another possibility; they may form a bound state that in no 
respect resembles the independent particles. Such a Cooper pair is at the heart of 
superconductivity. The calculation will show that states of the form (27.110) are 
unstable. While identification of an instability is never sufficient to show where 
the unstable system will terminate its travels, the nature of the instability also gives 
sufficient clues that the problem can be recast and solved completely. 

Consider first a simplified treatment that leaves open a few nagging ques-
tions, but makes the development much clearer than the proper formalism. The 
Schrödinger equation for two electrons added on top of a Fermi sea ofN electrons, 
occupying k states up to kf is 

r-fi V1 + -fi_V2+£/ (? i_^^ ( ? i^ ) = £ ^ ( ? i ^ ^ (27.111) 
2m 1m 

subject to the constraint that ^(r\, 'r-i) contain no Fourier components with k less 
than kf. To simplify matters, assume that the pair of electrons described by W has 
no net momentum and can therefore be written in the form 

Wuh)= £ ^e-^-V. (27.112) 
k'>kF 

Placing Eq. (27.112) into Eq. (27.111), multiplying by exp[ik • (n — r^)] and inte-
grating over 7\ — ?2 gives 

e^=H2k2/2mis the energy of a single-particle 
(2e£ — £ ) * £ + £ U~kk'^k'=®- s t a t e- The potential {/£, is (it|(/|/t'). Be- ( 2 7 . 1 1 3 ) 

k'>kf cause \k) is a normalized plane wave exp[ik ■ 
~r\/VV, U-g^i is 1/V times the conventional 
Fourier transform of the potential U(r). 

In order to make further analytical progress, one must make some assumption about 
the form of U. An assumption that is particularly suited to analytical progress is 

Uo, 
V U& = -^0{hu>-\£F-ei\)0(fiw-\EF-<%{). (27.114) 

Technically, the form of potential U assumed in Eq. (27.111) is not consis-
tent with this sort of behavior in k space. One could retroactively modify 
Eq. (27.111) to avoid being upset by this. The constant Uo has dimensions 
of energy times volume, and it is derived from the Fourier transform of the 
potential U(r). 
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When one lets kmax be the largest value of k for which Hui — \8p — ej| is positive, 
Eq. (27.113) takes the form 

j j Kmax 

(2er - £)*r = — y^ % , . T r u e s o l o ng a s * < *max; otherwise the right ( 2 7 . 1 1 5 ) 
k k \f z_-/ k hand side vanishes. 

One can construct a host of solutions to Eq. (27.115) by picking any two wave 
vectors ka and k\, whose magnitudes (above kp) are the same, setting 

£ = 2ej , (27.116) 

and taking the only nonzero components of ^ to be 

1 
H = -*h = -*- (27-117) 

Solutions of this type correspond to adding two particles to a normal Fermi liquid. 
If, however, one assumes that £ — 2e^ ̂  0, then by summing Eq. (27.115) over k 
one gets 

^rnax ^max j j -t &max 

k>kF k>kF
 k k'>kF 

^max T j 

k 
EF+hw D(EF) U0 

de — The factor of 1/2 is needed ( 2 7 . 1 2 0 ) 
£ 2 2e — £ because there is no sum over spin. 

^ l = l D ( £ ^ 0 l n ( 2 £ ^ 7 £ ) . (27.121) 

Assuming that UQD{8F) is much less than one, an approximate solution of 
Eq. (27.121) is 

£ = 28 F - (2£max - 28,F) exp 
D{8F)U0\ 

(27.122) 

The energy of the bound state is only slightly smaller than the energy of two ad-
ditional particles at the Fermi level. However, the wave function is quite different 
from the form in Eq. (27.117); it is 

j j Kmax 

V * ' k'>kF 

This wave function is rotationally invariant. Because the two electrons making up 
the wave function must be antisymmetric, they must be multiplied by an antisym-
metric spin wave function in order to satisfy the Pauli principle. The conclusion 
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is that two electrons in an antisymmetric spin state, and with opposite k vectors so 
as to have no net momentum, can form a bound pair if they are added on top of 
collection of other electrons that are assumed not to have formed pairs of this type. 

But then the assumption that the other electrons have not already formed bound 
pairs is clearly wrong, and one has to start all over at the beginning. However, be-
fore doing so, it is worth recasting the Cooper problem in the language of second 
quantization, to set the stage for the Hamiltonian actually used to study supercon-
ductivity. 

27.3.3 Self-Consistent Ground State 

Model Hamiltonian. Given the observation that pairs of electrons with opposite 
wave vectors and spins seem capable of binding into pairs, Bardeen, Cooper, and 
Schrieffer (1957) proposed the BCS model Hamiltonian, which abstracts from all 
the preceding complicated discussion a simple solvable model. It is 

ÄBCS = £ ^l(jcla + Ç £fe4r*!V-*i^r (27-124) 

k,a kk' 
A glaring departure from Eq. (27.109) is the absence of the sum on q. Nonzero 
values of q correspond to electron pairs whose center of mass momentum is 
nonzero. These play no role in the ground state, so the q sum can be omitted 
from this Hamiltonian. Later, when interaction with external fields is consid-
ered, the q sum will have to be brought back. 

The matrix elements U-g,, will not be needed for some time. In model calculations 
they can freely be altered into any form that decays for large k and that is negative 
for some k and W near the Fermi surface. With use of Eq. (27.114), the problem can 
be solved exactly, and when need arises, this form of the potential will be adopted. 

The Cooper problem suggests that the Fermi sea is unstable toward the cre-
ation of correlated pairs of electrons. How can one create a state that has definite 
numbers of electrons correlated in pairs? A simple guess is that the state is of the 
form 

N 

E -t 4 
%C-%lgk 

1 
which creates all possible pairs of 2N particles with various weights. If g^ = 1 
up to the Fermi surface and is zero thereafter, then the state ## is precisely a 
Bloch state. The only terms in the product to survive are those that create precisely 
one sample of each type of particle; there are N\ such terms, so one must divide 
through by this factor to normalize the state. Bardeen, Cooper, and Schrieffer 
found that for formal reasons this type of state is inconvenient to work with. The 
difficulties are similar to those that arise in classical statistical mechanics. They 
make it advantageous to work in the grand canonical rather than the canonical 
ensemble, and are ameliorated by considering 

I ^ E ^ I * " ) (27.126) 

|$JV) = |0), (27.125) 
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E 1 £ 3 
. k 

tcK 
k] -kl 81 

The constants ĝ  could also depend upon A*. 
I çi\ Neglecting this dependence is justified by not-
I ' ' ing that the sum will be dominated by a nar-

row range of N and assuming that g-k does not 
vary appreciably with N in this range. 

Coherent States. Equation (27.127) can be rewritten as 

cl c] - 1 |$) = e x p E ^ 4 c t ]|0). 

(27.127) 

(27.128) 

(27.128) is a coherent state, similar to the states that allow one to find the classical 
limit of quantum optics. Coherent states have pleasant formal properties that offset 
the fact they they have indefinite particle number. For fermion operators, only 
the zero and first powers survive in the exponential, so one can finally rewrite 
Eq. (27.128) as 

i $ > = n I 1 + M I / - * J i0>=e'0 )- (27-i29) 

The variational procedure of Section B.2 dictates that given a trial state and a 
Hamiltonian, one has to take the expectation value of the Hamiltonian and try to 
minimize it with respect to all of the parameters in the trial wave function. The 
wave function does not have definite particle number, which means that instead 
of enforcing the constraint that |<3>) be normalized, it is necessary to enforce the 
constraint that the average particle number be maintained at TV. This constraint 
is maintained by introducing a Lagrange multiplier that is easily identified as the 
chemical potential //. 

Here are several identities that make it possible to manipulate the coherent 
state. 

1. The normalization of the state is given by 

< * i * > = n o + i « * i 2 ) = : N * - (27.130) 

2. Taking the expectation of the operators which destroy a pair of electrons, one 
obtains 

1 er 
(27.131) 

£>- = — / ö l e - c- \®) = — 
-k^kV 

|2 

I? ' 

sir 
because one of the factors of 1 + | ^ | 2 disappears and is replaced by gj. Simi-
larly, 

(27.132) ^\i/-kiè~l'ïèl'^ = blbl'-

3. The number of particles of a given spin in the wave function equals the number 
of pairs containing that particle: formally, one has 

E «**> è st ~t st Δt 8kCkf -k[+ g-ïC'-kfll $. (27.133) 
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Expectation Value of Hamiltonian. Identities (27.130) through (27.133) make it 
possible to evaluate the expectation value of the Hamiltonian (27.124). The kinetic 
energy expectation value comes from Eq. (27.133), and then Eq. (27.131): 

Equation (27.132) already records the matrix element needed for the potential term 
in the BCS Hamiltonian. Therefore, the expectation value of Eq. (27.124), includ-
ing the Lagrange multiplier p, to enforce particle number, is 

($|ÄBCS-^I$) = E 2 fa-») s ^ I + E ^ I V (27-136> 
k kk' 

Varying Parameters in Trial State. In order to minimize Eq. (27.136) with respect 
to the parameters g^, take the derivative with respect to gt. Noting that 

dbï 

d8Ï 
1 

(l + Î P) 
4 

(I+I^I2)' 
(27.137) 

one has 

2{tn-p)gn v ^ Uu, 

o+tai2)2 Iro+tai2)2 h'hq-H^qk' 

is conventional to define the gap function 

k 
ZUTk'h^ 
1 

0. (27.138) 

(27.139) 

in terms of which Eq. (27.138) becomes 

0 = 2 (e ? - p) gq> - A ? + gf Ajf Use the fact that Uu, = I/-. 

k-(€k-ri 

with 

�Si 

h 

Al 
er-ßf + \Atf. 

(27.140) 

(27.141) 

(27.142) 

The energy £^ will emerge as the energy of an excitation above the ground state 
indexed by k. It is always positive, and is shown in Figure 27.10. With a little 
algebra, it follows that 

bt 81 = \ 
1 + | S # 2£; 

(27.143) 
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Chemical Potential. To calculate physical quantities, it is necessary to determine 
the chemical potential p. Despite the fact that electrons occupy a complicated 
correlated state, the Fermi energy can still be defined by 

yV = 2 ^ 6 > ( £ / 7 - e j ) = f F deD{e), (27.144) 
k 

and the chemical potential turns out to equal ZF. To see why, recall that the chem-
ical potential is determined implicitly from the constraint 

"=£#* = £ ô 
ko 

£ 
ko 

ek~V 

ko 

et-fi 

de 

de 

de 

D(e) 

( e r - ^ + IAP 

e — [i 

de'D(e') 

dèDiè 

{e-fi)2 + \A\2_ 
1 d e — p 

e-//)2 + |A|2 

See the Sommerfeld expansion in Section 6.5. 

N + D{EF)(p-E.F) 

SeeEq. (27.135), and Figure (27 145) 
27.10. 

(27.146) 

(27.147) 

(27.148) 

G(A/£F)2 (27.149) 

2 9 e ^ ( e - / z ) 2 + |A|2 
1 d e — ß 
Yde 

= / de'D(e') 

^=EF. Use Eq. (27.144) 

(27.150) 

(27.151) 

Gap Equation. From the definition of Ar. it follows that 

r. ^-W/ 
(27.152) 

Equation (27.152) is the gap equation at zero temperature. It can be solved ana-
lytically if one assumes the simple separable potential given in Eq. (27.114). Then 

Vo Ak> 
v T iJ^-tf + W 

(27.153) 

The step function inside the sum need not be written out explicitly, because the 
functional form of Ar is 

Ar = A9(hiü-\er-EF\). (27.154) 
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To determine the remaining constant A, assume that A^ is not zero for all k, so 
that 

1 = E^-lergH)-r=I/o < 2 7- 1 5 5) 
T V ifa-tf + W 
/■£f+^ D(e) t/0 

= / de —— Because M = £ F - F a c t o r of 1/2 ( 2 7 . 1 5 6 ) 
JS-F—hui 2 9 / / _ e \ 2 I I A 12 in density of states because there 

Z \ A f ^ " H ^ l is no spin sum. 
fiW/A JA D ( £ ^) 

JO o 2V
/c in 

(27.157) 

^ M s i n h - ^ (27.158) 

A = 2ftu;exp 
2 

D{£F)U0 

Correct when D(£/r)f/o -C1. Frequently, D(£f) 
is denoted instead by 2W(0), where iV(0) is ("27 159) 
the density of states of a single spin direction 
at the Fermi surface. 

The binding energy A that emerges from this calculation differs from the one that 
appeared in Eq. (27.122) by a factor of 2 inside the exponential. This binding en-
ergy is exponentially larger than the binding of an isolated Cooper pair, because all 
N particles in the wave function are participating in the bound state in a consistent 
way. 

27.3.4 Thermodynamics of Superconductors 

The great advantage of working in the grand canonical ensemble is most evident 
when one wants to do thermodynamics. The grand partition function is 

Zgr = Tre-ß[^Bcs-t^\, (27.160) 

where the trace is over all sets of Fermi occupation numbers. Because ÄBCS is 
quartic in Fermi operators, the trace cannot be performed in closed form. However, 
one can get an excellent approximation to the thermodynamics employing a ver-
sion of mean field theory that is designed to reproduce the results already obtained 
from coherent states at zero temperature. The expectation value b^ — (c_^,c^j 
is all one needs to understand the ground state. So guess that mean field theory is 
accomplished by setting 

c-*r*î dkï=bk+(ê-ïiêkî-bi)' (27.161) 

treating the second term as small, and expanding to first order only in the small 
quantities. The result of carrying out this procedure is the effective grand partition 
function 

where 

Zgr = jre-ßi^-ßN] ; (27.162) 
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Xzff-ίN 

£ hM -/*) + £ h'uu4/~h+^H*-*I^T - ^ ^ (27-163) 
i f f kk' 

£ % ^ -/*) - £ [ M A , + A?_^T] - E *2***<fr- (27-164) 
t(T tt' 

In the ground state, this decomposition was exact; at nonzero temperature it is no 
longer exact, but provides a very good approximation except exceedingly close to 
the critical temperature. Because products of no more than two Fermi operators ap-
pear now in Eq. (27.164), the trace can be performed exactly by the means used to 
solve the ideal Fermi gas. First, however, it is necessary to diagonalize the Hamil-
tonian. The appropriate transformation was introduced by Bogoliubov (1958) and 
by Valatin (1958). Perform the canonical transformation 

The new operators only obey the correct Fermi commutation relations if 

(27.165a) 

(27.165b) 

h\2+h\2- i. (27.166) 

Placing Eqs. (27.165) into Eq. (27.164), one finds 

Jr. eff " ~/̂  = £ 
(eï - M) 

t ^ ^ i r _ ^ T + M | ^ 

kV 

(27.167) 

Requiring the coefficients of the nondiagonal terms, for example, of \\\+, to 
vanish leads to the condition 

2urVr(er-v) + A%vl-A$ul = 0. k k (27.168) 

One has the freedom to choose one of u? or vr real; choose ur, so as to write 

0 = 2^/1 - | ^ | ^ ( ^ - M ) + A ^ - A ï ( l - | ^ | (27.169) 

Write v-k as 

n 
si 

'i + kl2 

thus defining g-k. Then Eq. (27.169) becomes 

0 = 2 ( 6 j - / i ) f t - A ï + g3A|. 

(27.170) 

(27.171) 
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So the definition of g-f, is no accident: It satisfies Eq. (27.140) precisely as before. 
Once this condition is met, the Hamiltonian becomes diagonal. As before, 

£7 — (er — ß) 
81= k \ \ • (27-172) 

A; 
k 

For future reference, note that 

H 2 = £ * - ( r M ) , k i 2 = £ * + r M , nul = ^ . (27.173) 

Writing out the Hamiltonian in terms of the new operators 7, one finds that 

Äeff -pN=YJh [%%+ifa] + E ek-ii-Ek—T,Hbî'ukTi> 
k' 

(27.174) 
This expression clearly shows that £^ give the energies of excitations above the 
ground state. 

There is still one piece of the puzzle missing, because A^ has been defined in 
terms of b^, but nothing has yet been done to fix b^. Write 

bU = bi = iêl/-ki) = {^ut (T^l-îlT^+ttrmswith^orrr-~kî~-kl/ \~k~k \'kl 'ki 'kl 
(27.175) 

This expectation value must be identical with what one expects for noninteracting 
fermions, because that is what Eq. (27.174) describes. Therefore 

where 

/* = -W—T (27-177) 

ept-k + 1 
is the Fermi function. However, it is an unusual Fermi function. The denominator 
features exp[/3£j], rather than exp[/3(£^ — p)\. The formal reason is that although p 
is buried inside the definition of £^, it does not multiply the quantum operators in 
Eq. (27.174). Physically, the reason is that 7^ creates an excited state, but does not 
change particle number. Because £^ is always positive, / j reaches its maximum 
value at the Fermi surface, and it decays to zero when k lies either above or below, 
as shown in Figure 27.10. It describes the occupation probability of holes below 
the Fermi surface and electrons above the Fermi surface. 

Using Eqs. (27.170), (27.166), and (27.172) to determine u^ and v% gives finally 
that 

é ï = ^ ( 1 ~ 2 / ï ) ( 2 7-1 7 8 ) 

=* E hv& = ~Ak = E £rt 0 -2h) urkn (27-179) 
w k> k' 
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Excitation energy Occupation number Fermi function 

CO 
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0.4 
0.2 
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Figure 27.10. Sketches of the excitation energy, occupation number, and Fermi function 
for the BCS theory of superconductivity. 

generalizing the BCS gap equation to nonzero temperatures. 
The critical temperature is the highest one for which this equation has a solution 

for A nonzero. So the critical temperature should be given by the solution of the 
gap equation when A is infinitesimal. Using the same simple form of £7-̂ , from 
Eq. (27.114) shows that if A is almost zero then 

A = ^2e(Hio-\EF-el 

&*> D{lF)dx 

A U0 
■2fi) (27.180) 

Jo "" 2 
, U0D(EF 

2 
U0D(£F) 

In ßhw 
2 

eßhw + i 

x = ß{ez-ß)- (27.181) 

l—} (27.182) 

C / 2/Y£ \ 1 Computations use 
< \n(ßhjj) + l n >, approximation ßHco > 1; (27.183) 
I V 7T / J Eq. (27.184) shi 

�oo ß 
+ 2 / dxlnx f 

Jo 
dxe* 

; use 
i ßHco > 1 ; 

i shows that this 
is the same as 
{ / 0 D ( £ f ) « l . 

where -JE is Euler's constant. The final result is that 

kBTc = hiv exp -
7T L U0D(8.f 

(27.184) 

and comparing with Eq. (27.159) predicts that the ratio between the gap at zero 
temperature and the critical temperature takes the universal value 

2 A ( r = 0 ) = 5 r = 

kßTc IE 
(27.185) 

When the gap A is measured by tunneling, this relationship is found to hold to 
about 30 %, displayed in Table 27.2. Considering the simplicity of the form as-
sumed for U-fa,, the agreement is quite acceptable. 
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Table 27.2. Thermodynamic properties of a variety of superconducting mate-
rials 

Element 2A/kBT (Cs-Cn)/Cn Element 2A/kBT (Cs-Cn)/Cn 

BCS 
Al 
Cd 
Ga 
Hg 
In 
La 
Nb 

3.53 
2.5-4.2 
3.2-3.4 
3.5 
4.0-4.6 
3.4-3.7 
1.7-3.2 
3.6-3.8 

1.43 
1.3-1.6 
1.3-1.4 
1.4 
2.4 
1.7 
1.5 
1.9-2.0 

Ratio of energy gap A to critical temperature kBT [Eq. (27.185)] as well as fractional 
change in specific heat from normal to superconducting state is compared with pre-
dictions of Bardeen, Cooper, and Schrieffer. Source: Meservey and Schwartz (1969). 

27.3.5 Superconductor in External Magnetic Field 

Bogoliubov Hamiltonian. In order to find the behavior of a superconductor placed 
in an external magnetic field, the model Hamiltonian must be altered: made more 
complex in one respect, and simpler in another. The complication arises in the form 
of the electron interactions. Comparing Eqs. (27.109) and (27.124), one sees that a 
sum over q was dropped in moving from the first to the second. The interpretation 
of q is that it corresponds to the center of mass momentum of Cooper pairs. In 
the superconducting ground state, all the Cooper pairs are stationary, but this as-
sumption is invalid when external fields are applied and supercurrents result. The 
sum over q must be added back in to the Hamiltonian. To keep formal complexity 
to the minimum, the potential U-^, will be simplified to the maximum degree and 
replaced by the constant value —Uo/V. Might such a choice lead to divergences? 
Equation (27.155) shows that it will not. Instead of that integral being cut off at 
£f + hu>, it would be cut off at W/2, where W is the bandwidth, and describes the 
range of energies where D(e) is nonzero. 

The formulation of superconductivity due to Bogoliubov (1958) therefore be-
gins with the Hamiltonian 

kk'a kqk' 

The energy eg, depends upon k and K in order to accommodate the possible addi-
tion of external potentials. 

The pattern by which quartic Hamiltonians are changed to quadratic ones should 
now be clear. One replaces the product of four fermion operators in the last term 
with products of two operators times the expectation values of the other two. Let 

Pb 
Sn 
Ta 
Tl 
V 
Zn 

4.0-4.4 
2.8^1.0 
3.5-3.7 
3.6-3.9 
3.4-3.5 
3.2-3.4 

2.7 
1.6 
1.6 
1.5 
1.5 
1.2-1.3 
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Nk denote the total number of plane waves k, and define 

** = £ V \Cq-k'iCk'] (27.187) 

Then 

Ä - UN = Y^[eTk, - ßoU/}clclla - $ > & - ^ T + A4A-h]- ( 2 7-1 8 8 ) 

Wer &g 
There should be an extra constant subtracted off, as in the nonzero temperature 
calculation, but it can be absorbed into the one-particle energy. 

In order to focus upon external potentials, the Hamiltonian must be written in 
terms of r rather than k. Define 

L- *VT E 
0—ik-r 1 1 

N~k 
E ^ * "w = if E ***-*-JV(27.189) 

The factor of 1 /y/N^ guarantees that c-f has the right anticommutation relations. 

Substituting the final two relations in Eq. (27.189) into Eq. (27.188) and then using 
the first gives 

Ä = £[e??' - iiàrr\c\ac-fia - ^[A£c^c?T + A ? c t T 4 j (27.190) 

Diagonalizing the Hamiltonian. This Hamiltonian is quadratic, so in principle it 
can be diagonalized. Let 7/<j be a linear combination of the c's which diagonalizes 
the Hamiltonian. In other words, the 7 operators are defined by 

& = £ £ / T/TT/T+7^7/1 (27.191) 

A sufficiently general transformation of the c's is of the form 

1 
cn £«/(r)7/T+<(r)7/j 

1 
k I n 

C7 n 
The general transformation would involve four ( 2 7 . 1 9 2 ) 

-1 separate functions, but one finds in the course 
[ are E /-,\ - *,_,%„! separate functions, but one finds in the cou: 

ul\r)lll ~~vl l r J 7 / | • of the calculations that only two of them i * / independent, and that signs must be chosen in 
this way for the diagonalization to work. 

In order to find equations for u and v note that 

"KB, îic '' _ £ / 7 / cr _ 
j . -i j. These are commutators, not anticommutators, 

!Xß, 7 . = £ / 7 / . and they work as indicated because the prod-
a - I a uct of two identical 7's is zero. 

(27.193) 

Next note that 

[ K B , c L l = V [ e ~ , - lib-ffAcL* - AÎCpi Do commutation with r", then ( 2 7 . 1 9 4 a ) 
' i z—' ' change r" to r. 
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KB, 4|] = E ^ ' - ^rr'H'i + A^? T (27.194b) 
r' 

[îKfl, Cjtr] = — y^fej7' — i i ^ ' l c f / t + A-pcL Take the complex conjugate of (27.194c) L ' J ^—' ' rJ- the first two relations. 
r' 

[MB, cn] = - Y^Tf ~ ^rAcri - A ? 4 r (27.194d) 
r 

Placing the expression for c in terms of 7 into any of these four expressions, one 
finds that the results are consistent only if the minus signs in relations between c 
and 7 are chosen as in Eq. (27.192); matching terms in 7 requires that 

« / ( ^ i = - E J . ^ - / 4 h ( ? ) + «i(i!)A;. KZI-™} 

These coupled eigenvalue equations are the Bogohubov equations. The pair poten-
tial A is given by 

A, = ^Nk (ênê7î) = Y ^ui(7)vf(r). (27.196) 
1 

Interaction with Electromagnetic Fields. The reason to pose the Bogohubov 
equations in real space is that external potentials can be incorporated into the matrix 
tjfi, which also contains kinetic energy and contains effects of interaction with a 
lattice or impurities. For a homogeneous system, with no external potential, they 
reduce exactly to what appeared before in Eq. (27.168). The functions w/ and vi 
are just plane waves: 

UT ^ = uke~'k'r> VT (̂ ) = vke~lk r ■ I d e n t i f y t h e index 'wi th *• 
(27.197) 

Treating these solutions as the zero-order starting point, the Meissner effect emerges 
from finding effects of a weak external vector potential. The calculation is a rather 
elaborate exercise in perturbation theory. 

As the vector potential turns on, the plane waves are altered only slightly, so 
the solutions of the perturbed problem can be indexed by k, which takes the place 
of index /. The problem to be solved is 

H{7)h= \é,(-iH^ + e4) -^}uï(7)+vl(r)A7 (27.198a) 

Let 

**&% = - < im ( ^ + T ) - ^ K ( ? ) + " * ( ? ) A Ï . (27.198b) 

u%(r) = uf{r) + if{r) = up-** + ̂  e~ik ^ufik') (27.199a) 
k' 

vffl = v?\r) + v£\r) = ^ke'ilrr + Y e~il''7v^(k'). (27.199b) 
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Treating the vector potential as small, and collecting terms to first order, one has 

( £ * - ä V 2 - ^ ( ? ) " A ^ V H - | ^ (A-V + V - Â ) , f ( r ) (27.200a) 

( ^ + ^ V 2 + M ) M i 1 ) ( r ) - A , f (r) = - | ^ ( Â - V + V - A ) ufir). (27.200b) 

In order to write down Eqs. (27.200), some technical problems have to be 
solved. The first is that the energy £^ = £i0) + £1° might change to first or-
der in A, but a change was not included. Problem 6 shows that £j ' vanishes so 
long as V -A = 0. In addition, A? has been replaced by the constant A, although 
A? = A(0) + Al° should in principle acquire a spatially varying contribution at first 
order. The demonstration is not straightforward, but Ai0 = 0 so long as the vector 
potential is restricted to the London gauge, V • A = 0. It is unfortunately not easy 
to carry out the full calculation in a fashion that is manifestly gauge-invariant. 

Substituting Eqs. (27.199) into Eqs. (27.200) and integrating by 
/ dr exp[ik' • r]/V, one finds 

(fiï + C*) v^Ck')-A*u^(k') = FirkvLV (27.201a) 

(£ï-C*) u^(k')-Av^Ck') = Fnuf, (27.201b) 

with the unperturbed single-particle energies 

Ci = 

eh 

h2k2 

2m 

r dr' 

Jk v si 
and 

fi, sothat£r = ,/C^ + |A|2, (27.202) 

^ = " ^ / T ̂ -k)*$ + *) -W) = Fh- <2 7-2 0 3 ) 
One can immediately find the explicit expressions 

T ^ ) = ?2f7r (k-Cï'H + ̂ i *î (27.204a) 

«Ï (* ) = ̂ i [(k+d>H+AVÏ\ ■ (27-204b) 

The perturbation theory is now finished, but there remains the task of finding the 
change in physical quantities of interest. 
27.3.6 Derivation of Meissner Effect 

To see whether the quantum wave function exhibits the Meissner effect, one must 
look at the response of the current to the vector potential. If the current has a linear 
response, then the material is superconducting. The current is 

Nk : A IP eA The factor of 2 is for spin, and the factor 
9« - R e / c * I I-— I r - \ ofNj/V accounts forthe fact that there are ( 9 7 2 0 5 ^ 

V \ r ' \ m tnc I I Nk values of k, hence JV* values of 7 which 
occupy a total volume V, so each r is 
associated with a volume V/A^. 



Microscopic Theory of Superconductivity 877 

P eA* 
V 

kk' 
+C.C. 

E< {wH,+v*m) L+-J (u^%+vml) 

V E^(' W eA 
— H 
im mc 

(27.206) 
The only term that does not annihilate 

V*{j)+C.C. the ground state is 77t . ( 2 7 . 2 0 7 ) 

Note that 
1 £- - C-

Y^ v^v* = - Y^ ——— = •/v/2> ComPaie with Eis- (27J45>and (27-173). (27.208) 
* I '* 

so the current becomes 

nelA 
J = J 

mc 
n is the total density of electrons. 

where 

71 

V — im K 

k 

(27.209) 

(27.210) 

j requires further evaluation. To first order in A, 

f eft. 
Vm Y,vivl*^ Ck + *') ^-%yf + v:kv^\V) (k + k') e'^'-%>7. 

kk' 
(27.211) 

Substituting the expression for vi ' (Ic) obtained in Eq. (27.204) and using Eq. (27.173) 
gives that 

A Jii-k'Yr Fl'k 
-^ —eft •s—^ 

kk1 + 

-eft 

(k + k') e«-^ 

(k + k') -i(k-k') 

£ 2 - £ 2 
ck cl< 

:'W k'k 
E l - E l 

k k> 

Et-ÇA , A* A �Jc ^k 

2£l + 2Ek 

£ t - C ï \ . AA* 
+ • ^k J ih 

( 2 7 . 2 1 2 ) 

V) Yl (* + * 0 et{k~k'yrFk'kL^V & ) > Interchanging I and V in the ( 2 7 . 2 1 3 ) 
m V _„ \ ' second half of the right-hand side 

kk and doing a moderate amount of 
algebra. 

where 

4Ci. CP) = h%-<*<*-*** (27.214) 

Because L depends upon the absolute value of k and k' only through the energies 
C^, one can do the angular integrals over k and k'. Define 

^(C,C ,,^ = ̂ ( f ) 2 i :* (Cï -C)^-0(*a+*'a ) (* / S + *'/î)^-ï')-A. 
kk' 

(27.215) 
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Then expanding out Fy-^ using Eq. (27.203) gives 

The conductivity a can be evaluated by defining 

1 _ . j . D{£.F)smJ2m(/H2r 
V Ikpr 

(27.217) 

Evaluate energy and wave vector at the Fermi surface, because this is the only 
place where the coherence factor L(Ç, £') is much different from zero. 

so that 

2-KH /eh\2 S S 
2=0 

(C-CO* 
hvp 

2 \m J daa daß 

sse — D I E F ) — T ~ cos 
2TT K ' R4 

In taking the derivatives with respect to aa or aß, keep only the largest powers 
of kpR, which is much larger than 1 for most important values of R. 

Therefore, the first contribution to the current can now be written 

(27.218) 

(27.219) 

AW = £ / dfSlßC-^Aßtf), (27.220) 

with 

Saß(R) 
3ne2 RaRß J dc, dCL((, c') cos 

(C-C')R (27.221) 
4TT2mchvF R4 

The coherence length £ is conventionally defined for the microscopic model as 

Hvf 
t = TTA' (27.222) 

Upon evaluating the final integral in Eq. (27.221) (Problem 7) and summing both 
terms in Eq. (27.209) the current is 

U7) = J2 fdr'Saß(r-r')Aß(r') 
ß J 

with 

and 

s«ß(S) = MR-^'(«) 

TT J-

A-Kmci R4 

1 f°° dy' 
cosh y - exp 

2R cosh y' 

(27.223a) 

(27.223b) 

(27.223c) 
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When A varies slowly on the scale of the coherence length £, it can be taken out of 
the spatial integral, and one finds that 

2 -» —ne -> 
j(r) = A(r). (27.224) 

mc 
If A does not vary slowly, Eq. (27.223a) describes averages of A over a ball the size 
of the coherence length £. 

In either case, the microscopic theory predicts perfect diamagnetism. For ex-
ample, operating with 4-7r/cVx on both sides of Eq. (27.224) reproduces the Lon-
don equation Eq. (27.5). More generally, the relation between current and vector 
potential in Eq. (27.223) meets the conditions laid down in Section 27.2.1 for pro-
duction of the Meissner effect. The microscopic theory has predicted that super-
conductors will be perfect diamagnets, and it also shows how the coherence length 
£ is related to the gap parameter A. 

27.3.7 Comparison with Experiment 

According to Bardeen, "In working out the properties of our simplified model and 
comparing with experimental results on real metals, the excellent agreement ob-
tained was a continual source of amazement.... Everything fitted together neatly 
like the pieces of a jigsaw puzzle. Accordingly, the scepticism with which the the-
ory was greeted in some quarters was surprising." [Bardeen (1963), p. 7]. The 
resistance was rapidly conquered by several comparisons with experiment, includ-
ing specific heat and nuclear spin relation. The predictions of how these two effects 
should vary with temperature was computed by methods similar to those used for 
the Meissner effect. Specific heat is obtained by differentiating the expectation 
value of the Hamiltonian with respect to temperature, while spin relaxation in-
volves the expectation value (ctcn. The forms of temperature dependence are 
different below Tc. Specific heat drops off rapidly as T drops below Tc, while spin 
relaxation at first rises when T goes down, eventually dropping to zero. These two 
predictions were confirmed experimentally, as shown in Figure 27.11, and played 
a decisive role in confirming the correctness of the basic model. 

Improvements in photoemission have made it possible to observe directly changes 
in the electron density of states due to the superconducting transition. The density 
of electronic states in BCS theory should be 

(27.225) 
Eq. (27.225) predicts that the density of states vanishes completely within a range 
±A around £ p. This is not observed in photoemission experiments. Instead the 
density of states is smeared out by the finite lifetime of excitations. Dynes et al. 
(1978) proposed a simple modification of Eq. (27.225), adding an imaginary part 
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to the energy, so that the probability of interacting with a state of energy £ becomes 

/ ( £ ) / > ( £ ) = / ( £ ) R e 
£ - i T 

v/£-iT + AV£-»T-A' 
/ ( £ ) is the Fermi function. The expression 
is set up to choose the correct branch of the 
square roots. T functions as an extra fitting 
parameter. 

(27.226) 

« 

10' 

1 

io-

S io-2 

1 -3 £ io-
C/5 1 0 - 4 

io~5 

(A) 

j i i i i i i i i 

1 3 5 7 9 
Inverse temperature, T/Tc 

1 2 3 
(B) Inverse temperature, T/Tc 

Figure 27.11. (A) Specific heat of aluminum and vanadium, relative to ^Tc, where 7 is 
the Sommerfeld parameter defined in Eq. (6.78), compared to the prediction of Bardeen, 
Cooper, and Schrieffer. [Source: Boorse (1959), p. 391.] (B) Inverse nuclear spin relax-
ation in aluminum compared with prediction of Bardeen, Cooper, and Schrieffer. Note 
the initial rise below Tc followed by an exponential drop. [Source: Masuda and Redfield 
(1962), p. 161.] 

Some questions could not, however, be answered from the model Hamilto-
nian alone. So long as the effective electron-electron interaction U-^ is negative, 
the model always predicts superconductivity, leaving much room for a more de-
tailed explanation of which materials are superconducting, which are not, and what 
sets the critical temperature. To address such questions it is necessary to return to 
Eq. (27.104). A thorough discussion has been provided by McMillan (1968), build-
ing upon work of Eliashberg (1960). The calculations are very elaborate, but the 
flavor of what is accomplished can be captured by letting angular brackets denote 
averages with respect to k and kf over the Fermi surface, take q = k — k' and defining 

A ep -£>(£/ 
Ane1 w^ -w~ 

*2 + «? ( e - - e p ) 2 / f i 2 _ 2 / i * = D ( £ F ) 
Ane1 

rf + KÎ, 
(27.227) 

Thus //* is related to a product of the strength of the Coulomb interaction and 
the density of states at the Fermi surface, while Aep is roughly the electron-phonon 
interaction times the density of states at the Fermi surface. Physical quantities 
needed to evaluate these averages include the following: 

• Electron energy bands near the Fermi surface. 
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Figure 27.12. High-resolution photoemission from lead, above and below the supercon-
ducting transition. For temperatures T > Tc, the photoemission intensity is a Fermi func-
tion. Below Tc, the data are described by Eq. (27.226). Lines are theoretical expressions 
and circles are data. [Source: Yokoya et al. (2002), p. 102.] 

• Phonon densities of states. 

• Electron-phonon interaction matrix elements. 

Following a sophisticated numerical analysis, McMillan finds that the super-
conducting transition temperature Tc is given approximately by 

T ° 0 / 
r c = L 4 5 e X P { -

with GD the Debye temperature. According to Table 13.1, Debye temperatures 
are on the order of a few hundred kelvin. Following Eq. (22.42), one can estimate 
the order of magnitude of the electron-phonon coupling as C œ J2-Ke2huj/kp. 
Using also Eq. (6.33) to estimate the density of states at the Fermi surface, and 
taking k = k!, gives finally the very rough estimate Aep ~ 0.8 • [1023 cm - 3 /«]1 /3 . A 
value of 0.8 for Aep should be an upper limit, because the average in Eq. (27.227) 
involves regions that are both positive and negative, and cancel against each other. 
Neglecting p* f« 0.1 and taking Go = 400 K gives a superconducting transition 
temperature of around 30 K. For many years, NbaGe held the record as material 
with the highest superconducting transition temperature, with Tc — 23 K, and 30 K 
was widely suspected to be a theoretical upper bound. 

27.3.8 High-Temperature Superconductors 

Bednorz and Müller (1986) found that La2_xBaxCu04 (LBCO) becomes supercon-
ducting at a temperature of 35 K, triggering a frenzied hunt for new superconduct-

(1 + A, epy 
Aep-M*(l+0.62Aep) 

(27.228) 



882 Chapter 27. Superconductivity 

ing materials. Soon afterwards Wu et al. (1987) found YBa2Cu306+x (1-2-3 com-
pound, or YBCO) with a transition temperature of 92K, meaning that it could be 
driven superconducting by immersion in liquid nitrogen at 77K. Additional com-
pounds were eventually found with superconducting transitions at temperatures 
over 100 K. The high-temperature superconductors are different from the com-
pounds that set the previous records. They are not conventional metals. Instead, 
they are antiferromagnetic insulators, carefully doped so as to produce metallic 
and superconducting phases. Many of them are based upon layers of CuÛ2; just 
as with CuO (Section 23.6.3) the insulating behavior is induced by electron cor-
relations and cannot be explained in the single-electron picture. While there is no 
full consensus on the theoretical description of high-temperature superconductors, 
many experimental claims are now fairly well established. 

Structure. The high-temperature superconductors are brittle ceramics. Figure 
27.13 shows the structure of a well-studied member of the family, La2-xSrxCuC»4, 
also called LSCO or La214 . The superconductivity is due to motion of electrons 
on the copper-oxygen planes. The unit in the center of the crystal is perovskite 
(Section 2.3.6), explaining why the copper-oxide superconductors are also called 
perovskites. The crystal has both tetragonal and orthorhombic phases, which result 
from slight symmetry-breaking distortions of the structure shown in the figure. 

The parent compound, La2CuC>4 is an antiferromagnetic insulator. Supercon-
ductors are produced by substituting varying degrees of strontium for the lan-
thanum. Lanthanum has a single d electron in an outer shell, while strontium has 
a filled s shell, so the effect of substituting strontium for lanthanum is to dope the 
structure with holes. Some fraction of the positive charge from the holes makes its 
way to the copper-oxygen planes, and in range of concentrations produces super-
conductivity. The maximum Tc of 38K is reached for x ss 0.15. 

Phase Diagram. 
The full array of experimental probes in condensed matter physics has been 

brought to bear on the high-temperature superconductors. One of the central con-
clusions is that the phase diagrams of a large number of the materials are essentially 
identical, once they have been scaled by the maximum transition temperature, and 
by the optimal dopant concentration. The result appears in Figure 27.14. 

Antiferromagnetic Region When dopant concentration x is zero, all of the copper-
oxide ceramic superconductors are anti-ferromagnetic insulators. This is remark-
able. Superconductivity consists in the expulsion of magnetic flux from a solid, so 
magnetic ordering and superconductivity are naturally considered to be competing 
and incompatible forms of order. The Curie temperatures where antiferromagnetic 
order disappears are on the order of several hundred degrees Kelvin. 

Superconducting Region Figure 27.14 shows that just when the doping x reaches 
the point where the antiferromagnetic transition temperature Tc drops to zero, su-
perconductivity appears. As the dopant concentration x increases, and the hole 
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Figure 27.13. Structure of La2Cu04, as reported by Yamada et al. (1988). There are both 
tetragonal and orthorhombic phases, which however cannot be distinguished on the scale of 
this figure. Superconductivity results from substitution of Sr for La to form La2-*SrxCu04 

density available to the copper-oxygen planes increases, and the superconducting 
transition temperature increases, reaching a maximum around x = .15 for LSCO 
and x = .18 for BiaS^CaCuaOs+j (Bi2212). Then then superconducting transi-
tion temperature decreases again, reaching 0 at around x — 0.3 For higher dopant 
concentrations, the ceramics are normal metals. 

The coherence length £ of the high-temperature superconductors is anisotropic, 
but small, on the order of 1 or 2 Â. The parameter K defined in Eq. (27.44) is 
much larger than 1, so these superconductors are of type II. The usefulness of the 
materials would greatly be increased if they continued to act as superconductors 
for magnetic fields greater than HC2 where vortices first form. However, the small 
coherence length leads naturally to large numbers of vortices with narrow cores 
that are very hard to pin, and drift of the vortices creates dissipation. 
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Pseudogap Region Figure 27.14 shows another dividing line, detected in the 
high-temperature superconductors by a wide variety of probes. The dividing line is 
a crossover temperature T*, as no thermodynamic quantity has yet shown an abrupt 
enough change to qualify as a true phase transition. However, below this line, 
there are many unusual properties. The region is often called the pseudogap phase 

Figure 27.14. Phase diagram for a number of copper-oxide superconductors. The hori-
zontal axis is scaled by the optimal hole concentration, which is on the order of 0.2 per 
unit cell. The vertical temperature axis is scaled by the maximum critical superconduct-
ing temperature, typically around 100 K. Scaled in this way, the phase diagrams of many 
different compounds collapse onto each other. Bi2212 is I^S^CaC^Os+jc and T12201 
is Tl2Ba2CuOö+x. The crossover temperature T* is detected by many different probes 
including nuclear magnetic resonance (NMR), Raman scattering, angle-resolved photoe-
mission spectroscopy (ARPES), magnetic susceptibility (x), and scanning tunneling spec-
troscopy (STS). [Source: Rossat-Mignod et al. (1990), Greene and Bagley (1990), p. 529 
and Nakano et al. (1998) p. 2623.] 
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because as discussed by Damascelli et al. (2003), angle-resolved photoemission 
detects a superconducting gap, by techniques like that shown in Figure 27.12, along 
some but not all directions perpendicular to the Fermi surface. Investigations with 
scanning tunneling probes, reviewed by Fischer et al. (2007), tell a similar story. 
Almost any probe one chooses shows some sort of cross-over between two limiting 
behaviors at round T*, and thus one can map out the line with Raman spectroscopy, 
nuclear magnetic resonance, or magnetic susceptibility as well. 

Even the normal metal phase may be unusual. Electrical resistivity is surpris-
ingly linear in temperature; in the case of YBCO, the linear behavior persists up 
to around 1000 K. The various competing contributions to resistivity, as for exam-
ple in Figure 18.1, are mysteriously absent. A phenomenological account of this 
behavior is provided by Varma et al. (1989). 

Theories While experimentalists have been busy mapping out the phase diagram, 
theorists have been busy trying to calculate it. No definitive answer has yet been 
reached. A very appealing theory is that the essence of the high-temperature su-
perconductors is to be found in the Hubbard model of Section 26.7. The high-
temperature superconductors are no more and no less than doped Mott-Hubbard 
insulators. The challenge faced by this point of view is that it has so far not proved 
possible to solve the Hubbard model exactly, nor has any method of approximation 
been found completely convincing. Thus, if some approximate solution is found 
that reproduces some feature of the experiments, it is hard to tell whether this fea-
ture really resulted from the Hubbard model itself, or from the choice of approx-
imations. Lee et al. (2006) provide a confident case that Mott-Hubbard physics 
does indeed explain the main features of the copper-oxide ceramic superconduc-
tors. Chen et al. (2005) provide a careful presentation of some alternatives. If one 
theory does eventually emerge dominant, it will happen because the great majority 
of experimentalists finds it useful in interpreting their experiments. This has not 
yet happened with a single microscopic theory. 
Symmetry of the Order Parameter. 

The majority of experimental evidence supports the claim that the supercon-
ducting order parameter of the high Tc materials has d-wave character, while for 
most previous superconductors it had 5-wave character. Before displaying the ex-
perimental evidence, it is necessary to establish what this claim means, which re-
quires in turn asking about the relationship between the Landau-Ginzburg equation 
and the underlying microscopic theory of Bardeen, Cooper, and Schrieffer. 

The theory of Landau and Ginzburg is built upon the order parameter * . The 
most important properties of this order parameter are, first, that it becomes nonzero 
only in the presence of superconductivity and, second, that it alters under gauge 
transformations 

A -► A + Vx as * -> me-2iex/hc. (27.229) 

The phase of * then naturally satisfied the conditions outlined in Section 27.2.9 
that lead to the Josephson effect. 
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The Bogoliubov equations feature a quantity that shares these two properties— 
the pair potential A?. To see why, turn to Eqs. (27.198), and ask how u, v, and A 
transform after gauge transformations. To keep the form of the equations intact, 
they transform as 

u%(r) — nj(7)<?_fe*/,ic
) vffl -+ vfflj**!**, and A7 -> A^-2^^. 

(27.230) 
Very near the transition temperature Tc, Gor'kov (1959) showed that A? is in 

fact proportional to \I/. At lower temperatures the correspondence is less certain, 
but the precise form of the Landau-Ginzburg equations is not necessarily correct 
in any event. 

In searching for the form that a theory of high-temperature superconductivity 
might take, it is natural to ask how A^ might generalize when the simplifying 
assumptions leading to Eq. (27.196) no longer apply. If the effective potential U is 
not isotropic, then 

i' 
Fourier transforming according to prescriptions as in Eq. (27.189) gives 

&7T> = Yl ~~%T (c-ricr'-ri) ■ (27.232) 
7" 

The implication of this calculation is that in a general theory of superconductivity, 
the analog of \& should depend upon two arguments, becoming \P(r, ?). The calcu-
lations worked out so far assumed that the effective potential U was isotropic, and 
consequently that ^ depended only upon the center-of-mass coordinate (r + 7y)/2. 
In a more general theory, \&(r, 71) might be expected to do the following: 

Vary slowly as a function of (r + r ')/2. (27.233a) 
Decay rapidly as a function R— |r — r |̂. (27.233b) 
Depend upon the direction of R = r — f. (27.233c) 

A superconductor where *& is independent of the direction of R is called s-wave. 
One where * has the symmetry of x- R oc cos 6 is p-wave. Superfluid 3He has an 
order parameter of this type. One with the symmetry of (x ■ R)2 — {y-R)2 oc cos 29 
is called d-wave. Problem 8 shows that under some simplifying assumptions, one 
should expect to measure 

|A- j | OC | COS 2<f)\ Where 0 is the angle of the vector (kx, ky). . ( 2 7 . 2 3 4 ) 

Experimental investigations of the symmetry of the order parameter can be 
carried out without commitment to any particular microscopic theory of the inter-
action U, as discussed by Annett et al. (1996). Two particularly direct experiments 
provide evidence for d-wave pairing. The first is Josephson tunneling into super-
conducting samples from different angles, as performed by Wollman et al. (1995). 
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> 
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Figure 27.15. Experimental evidence for af-wave pairing in the high-temperature super-
conducting ceramic E^S^CaC^Og+ä (Bi2212). (A) Experimental trace of the Fermi sur-
face at 13K obtained from angle-resolved photoemission. (B) Measurement of the super-
conducting gap Aj as a function of angle. The solid line is a plot of | cos(a£x) — cos(aky). 
[Source: Ding et al. (1996), p. 799.] 

Even more direct and convincing are results from angle-resolved photoemission 
spectroscopy, discussed by Damascelli et al. (2003). The methods employed are 
those shown in Figure 27.12. Opening a superconducting gap creates a small bump 
in the density of states below the Fermi surface, and the size and shape of the bump 
can be used to fit to the magnitude of the superconducting gap | A^|. Figure 27.15 
shows direct measurements of variations in the size of the superconducting gap 
|A j | consistent with Eq. (27.234). 

Thus, a microscopic theory of high-temperature superconductivity needs to ex-
plain the coexistence of superconductivity and antiferromagnetism in the same ma-
terial, reproduce the main features of the phase diagram in flg:ybco.thermo, and 
incorporate d—wave symmetry. The problem is not that there is no theory of the 
high-temperature superconducting materials. The problem is that there are many, 
and none has yet carried the day. The last word belongs to Anderson (1997): "the 
consensus is that there is absolutely no consensus on the theory of high Tc super-
conductivity." 

To those men of early times and, as it were, first parents of philosophy, to 
Aristotle, Theophrastus, Ptolemaeus, Hippocrates, Galen, be due honor 
rendered ever, for from them has knowledge descended to those that have 
come after them: but our age has discovered and brought to light very 
many things which they too, were they among the living, would cheerfully 
adopt. Wherefore we have had no hesitation in setting forth in hypothe-
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ses that are provable, the things that we have through long experience 
discovered. Farewell. — Gilbert (1600), p. li 

Problems 

1. Superconducting sphere: Consider a sphere of superconducting material of 
type I, whose critical field is Hc, in a uniform external magnetic field H. 

(a) Using the fact that normal magnetic fields must vanish at the surface of a 
superconductor, show that when the external field H reaches a value of \HC, 
some portion of the sphere must make the transition to normal metal. Do not 
try to find the shape of the region that does so. 

(b) At what external field will the entire sphere become normal? 

2. Energy of normal-superconducting interfaces: Consider a half-space, x < 
0, of normal metal in equilibrium with a superconductor filling x > 0. To 
allow the normal and superconducting metals to remain in equilibrium, the 
normal metal is permeated almost everywhere by a magnetic induction Bc. 

(a) First consider the limit K —> 0, where the penetration depth XL is small. Be-
cause superconductivity vanishes in the normal metal, it is reasonable to guess 
that one needs to look for a solution in the superconductor such that \P van-
ishes at x = 0, such as Eq. (27.41). Find the difference in free energy S be-
tween a superconductor where ^ vanishes at x = 0, and one where the wave 
function \P fills the space x > 0 uniformly. Show that the interface energy is 
positive, and given by Eq. (27.52). 

(b) Next consider the opposite limit, in which the coherence length £ is small 
compared to the penetration depth Â .. Now the gradients of ty can be ne-
glected, and instead one has to consider the contributions of the magnetic 
field. First compute the free energy per area 

7= / dx^l—^A2 + —. (27.235) 
Jo 2mcz 8-7T 

Simplify J with the use of Eq. (27.9). Then compute S as defined in Eq. (24.27), 
and verify Eq. (27.53). 

3. Diffraction effects in Josephson junctions: Referring to Figure 27.5, and 
employing Eq. (27.68a), show that the maximum zero-voltage current Jc able 
to flow through a rectangular Josephson junction in the presence of a magnetic 
field is given by 

sin(27r$/$o) 
ycoc 

(27T#/$o) 
(27.236) 

(a) Write down a vector potential A that produces the desired field B 
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(b) Assuming some phases (p\ and <fo on the two sides of the junction, find the 
total current J by integrating (27.68a) across the area of the junction. 

(c) Choose the phases 4>\ and 02 to maximize the zero-voltage current flow. 

4. Josephson Lagrangian: Verify Eqs. (27.84). 

5. Properties of BCS coherent state: Verify Eqs. (27.130) through (27.133). 

6. London gauge: 

(a) Show that if V • A = 0, then first-order changes in the energies E-k do not 
appear in Eqs. (27.200). 

(b) Verify that A? responds to a change in gauge \ as reported in Eq. (27.230). 

(c) Physical properties of superconductors are functionals of the vector potential 
A. For small vector potentials, the functional is linear, and in a homogeneous 
superconductor one must have 

A- = A(0) + Ai° = A(0) + j dr1 7{r-r') -Â(r'), (27.237) 

X is for some function CP. Consider the particular case where A = V%, and A ia 

very small. Linearizing Eq. (27.230) and comparing it with Eq. (27.237), 
show that 

™ - w v (;) ► (27-238) 

(d) Show as a consequence that in the London gauge, where V • A = 0, and if 
A ■ n vanishes at the outer reaches of the system, with « is a unit normal, then 
Al° = 0, and A? = A. In other words, gauge invariance is used to choose a 
convenient gauge in which the problem simplifies. 

7. Meissner effect integral: Evaluate 

W(R) = JdÇ dÇ'L(Ç, C') cos [(C - Ç')R/hvF] . (27.239) 

(a) Use Eq. (27.214) for L(Ç, CO and Eq. (27.202) for £?. Make the substitutions 
C = A sinh x and C' = A sinh x'. 

(b) Define y = (x — x')/2 a n d / = (x + xf)/2. Express the integral in terms of y 
and y. 

(c) Retain the variable y', but make the substitution p = sinh y. The integral over 
p can be performed to give 

c-/ N * f , expf-2A cosh y'R/hvF 1 , , „ . . „ W(R) = 7rhvFS(R)-TrA / dy' —^ , , ; — - 1 . (27.240) J cosh / 
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8. d—wave Superconductivity: Suppose that the gap function A^/ of Eq. (27.232) 
obeys the conditions of Eqs. (27.233); in fact, there is no dependence upon 
(r + r1). Suppose that the dependence on the direction of R is of the d-wave 
form 

(x-R)2-(y-R)2(xcos29. (27.241) 

Show that Ajgj, takes the form for some function f(k) 

**='*{**-%)m <27'242) 
resulting in a symmetry for the gap function given by Eq. (27.234). 
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A. Lattice Sums and Fourier Transforms 

A.l One-Dimensional Sum 

The following sum arises in Section 3.2.4. 

1=0 
N-\ 

,ilaq There are N terms in this sum. 

i(l+\)aq 

(A.l) 

(A.2) 
/=o 
N-\ 

: \ e 1 — 1 -\- glNa1 Replacing / by / + 1 is the same as removing ( A . 3 ) 
^-^' the first term in the sum, and adding an extra 

term on at the end. /=0 

iZq-\+eiNaq 

eiNaq _ j 

giaq _ \ 

eiNaq/2 g i n Nag/2 

eiaq/2 s m aqj2 

Solving Eq. (A.2) for £ , . 

Using s\n{x) = (e'x — e~'x)/2i. 

2 s m Naq/2 
'S?l ~ T7I2 sin aq/2 

The result is plotted in Figure 3.3. 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

A.2 Area Under Peaks 

Because Figure 3.3 looks like a sum of Dirac delta functions, it is useful to find the 
area under each of the peaks. In fact, both T,q and \T,q\2 can be regarded as sums of 
delta functions. The area under a peak of T,q is obtained by integrating from — IT/a 
to ir/a and is 

n/a giNaq _ j 
dq —: — 

dz Z N 1 
iaz z — 1 

2-7T 2TT 
— =N—, 
a L 

The limits of integration go from midway be- ( A . 8 ) 
tween one set of peaks to midway between 
the next. 

Defining z = exp[m</] and taking the unit cir- ( A . 9 ) 
cle as the integration contour. 

The residue of the pole at z = 0 is 1. Recall ( A . 10) 
that L = aN is the length of the system. 
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898 Appendix A. Lattice Sums and Fourier Transforms 

and 
.2vr S , = J2 N—ô(q-2nl'/a) = J2 2ir6(qa-2irl'). (AM) 

V /' 
|2 The area under a peak of |S a | is found similarly. 

I 

f 

■it a „iNaq _ i 
j I |2 "<7 — H 

dzz?-lz-N-l 
iaz z — 1 z~ ' — 1 

ia z ^ l - z ) 2 

dz 1 
i a z ^ l - z ) 2 

27rJV „ AT 
= 2-KN— 

a L 

There is no pole in the two discarded terms. 

Using the residue theorem with aid of the Tay-, 
lor expansion 1 / ( 1 — z)2 = ^ ; ^ 0 (' + 1 )z' ■ 

(A. 12) 

(A.13) 

(A. 14) 

(A.15) 

(A. 16) 

So the area under a peak of |£ö | 2 is N times the area under a peak of S9. 

A.3 Three-Dimensional Sum 

In the three-dimensional case, let ai . . . 03 be primitive vectors, and consider the 
collection of lattice points of the form 

R=^2 laaa with 0 < la < M. 

Then 

E* = £«** 
R 
3 n 

Q = l 

3 n' 
a= l 

3 

V ^ eilaq-aa 

JMäa q _ Y 

eiaa •<? — 1 
Using Eq. (3.13) 

I J ( 2 7 r ) J2ô{q-aa-2Trm'a). SeeEq.(A.ll). 

(A. 17) 

(A. 18) 

(A. 19) 

(A.20) 

(A.21) 
Q = l 

The values of q at which the delta functions peak are the reciprocal lattice vectors 
K, obeying Eq. (3.18). If one integrates any of the delta functions by dq, what is 
the result? Define the variables Qa = q-âa. Then 

■aa-2Trm'a) (A.22) 
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dQ 
dQ 

Y[6(Qa-27rm'a) (A.23) 

dq 
\ pj The matrix of derivatives of Q by q is a matrix 

whose rows are the Cartesian components of ( A . 2 4 ) 
|ö I • (fl2 X ^ 3 ) ! "^ the three primitive vectors 3. The determinant 

of this matrix is the volume of the primitive 
cell defined by the three primitive vectors. 

Therefore 

?« = V N( 
2ir 

^2ei«R = Y/
N( — )3o(q-K)- withL3 = v. (A.25) 

A.4 Discrete Case 

Rather than choosing to evaluate Eö for all values of q, one often has reason to 
restrict q to the discrete values 

2vr/ 
n = , With / an integer. ( A . 2 6 ) 

Na 
It is clear from Eq. (A.l) that Eq = N when q = 0, q = 2-n/a, q = 4ir/a, . . ., 
and it is clear from Eq. (A.5) that S0 vanishes otherwise. So with q restricted by 
Eq. (A.26) one has 

^ = N £ <W/a (A.27) 

= N/ SQK- Because 2irl/a are just the reciprocal lattice ( A . 2 8 ) 
' ^ \/f*rtnrv in nni* rlim^neir^n 
K 

In three dimensions, (A.28) generalizes naturally to 

E elc/ = N N ö^p- N ' s t n e t o t a l number of elements in the sum ( A 2 9 ) 
^ 1K' over«. 

R K 
Equation (6.12) provided a correspondence between discrete and continuous delta 
functions, which says to multiply the discrete delta function by (2TT)3/V. Using 
this rule turns Eq. (A.29) into 

$ > < ^ = ( 2 7 r ) 3 ^ X > ( < 7 - ^ (A.30) 
R k 

which is identical to Eq. (A.25). 
An additional result in one dimension follows from computing 

Y,J>r = Y,<?*ar'Na (A.31) 
q l=\ 

e2nir/a _ 1 
= iTÙr/Na _ ] = a N J 2 Kr-INO) = L8{r). S incere [0, L}. ( A . 3 2 ) 

e l t 

Similarly, if q lies in the first Brillouin zone, then 
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£ er^ = VÖ(r). 
q£B.Z. 

A.5 Convolution 

The convolution of two functions A(r) and B(r) is 

A*B(r) = f <rf A{?)B( 

Fourier transforms of convolutions give products: 

(A.33) 

7-7) 

f dre^TA*B(f) 

= f drdVe^A^Bir-r') 

= f drdi" ei^(7-7'^+^A(r')B(r-r') 

fdr'ei^A(r') f dr e^B(r) 

= A(q)B(q). 

Similarly, Fourier transforms of products give convolutions: 

f dre^A{r)B{r) = f drd?6{r-r')eiï7A(r')B(r) 

-I drdr'dq'-
2TT 

-e^A^Bij) 

[ 2~i [ d7>e^'1"A(7')} [ j dré^-^Bir) 
A*B(q) 

2TT ' 

(A.34) 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 

(A.42) 

A.6 Using the Fast Fourier Transform 

The fast Fourier transform (FFT) is a rapid numerical algorithm for evaluating the 
sum 

N 

^ = £ e27rilm/NG, 
1=0 

(A.43) 

Press et al. (1992) describe the algorithm and provide source code; better and more 
elaborate routines can be obtained at h t t p : / / w w w . n e t l i b . o r g . Routines 
computing multidimensional generalizations of (A.43) are available as well. 

There are many subtleties involved in relating a discrete sum such as (A.43) 
to a continuous integral; some are discussed by Brigham (1988) and Nussbaumer 
(1982). It is risky to use the discrete transform blindly, but in cases where it is 
appropriate, here is a prescription for relating it to continuous Fourier transforms. 
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Suppose that the goal is to use a discrete transform with N points to describe 
the Fourier transform of a continuous function G(x), with the interval covered by 
the discrete transform corresponding to the interval [—xmax, xmax\. Define 

dx = 2X-^ (A.44) 
N 

and 
dk = ^ - . (A.45) 

Ndx 
Also define a function / that shuffles the index of a Fourier transform in a conven-
tional way: 

function 1 ( j) 
if ( j>(N+l)/2 ) 
{ 
return (j-N-1) 

} else { 
return (j-1) 

Next, fill an array F ( j ) with values of the function G(x) according to 

f o r j = l t h r o u g h N 
{ 

x = l ( j ) * d x 
F ( j )=G(x )*dx 

} 
After invoking a fast Fourier transform routine on the array F ( j ), the original 
F ( j ) will be overwritten with its discrete Fourier transform, and the value of 
F ( j ) will be the Fourier transform G{k), where 

k = l ( j ) * d k 

If one begins instead with G(k) rather than G{x), one has instead 

fo r j = l t h r o u g h N 
{ 

k = l ( j ) * d k 
F ( j ) = G ( k ) * d k / ( 2 * p i ) 

} 

and uses an appropriate flag in the Fourier transform routine to obtain the inverse 
transform. 

Fast Fourier transform routines exist also for multidimensional sums, and they 
obey conventions naturally generalized from those for the one-dimensional sums. 
For example, suppose one wants to carry out the sum in Eq. (7.33), 

Y^VMq-K). (A.46) 
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This sum is in the form of a convolution, so by far the fastest way to carry it out is 
to take the Fourier transform of U^, the transform of tj), multiply the two, and then 
invert the transform. Put another way, the potential energy operator is diagonal in 
real space, so it should be computed there. The bookkeeping needed to compute 
K\ i ,12,13, and load Fourier components of U and ip into N x N x N arrays is indicated 
b y ' ' 

for jl=l through N 
{ 
for j2=l through N 

{ 
for j 3=1 through N 

{ 
for m=l through 3 

{ 

K(m)=l ( jl)*bl(m)+l(j2)*b2(m)+1(j3)*b3 (m) 

Builds reciprocal lattice vector K 

kp (m) =q (m) -K (m) 
} 

, , , , / - ; i -;o AI\ —ri iv\ Loads Fourier components of potential into 
U U ( J ± , JZ, U 3 ) - U ( K ) arrayuu. 

P s \ J -L r J^-r J ~> I ~ p S l ( Kp ) Loads Fourier components of ip into array p s 
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B. Variational Techniques 

B.l Functionals and Functional Derivatives 

A functional is a rule for obtaining a number from a function. For example, the rule 
might be "integrate the function i\) over all space," in which case the functional is 

F{ip} = f df ip(rf). (B.l) 

Other examples might involve multiplying the function ip by exp(—r/2/rg) or by 
itself before integrating. 

A functional derivative describes how a functional changes when the function 
placed into it changes by a small amount. Functional derivatives can be defined 
formally by a natural extension of the definition of ordinary differentiation. Given 
the functional F {'(/>}, then the functional derivative describing how F responds to 
small alterations of xj) in the vicinity of r is 

SF{M FU(r')+e6(r'-r))-F^(r>)) 
T 7 P T = limn — " • ( B- 2 ) 

Alter ip by adding a small function peaked around r, and divide through by the 
integral of the added function. 

Example. If 

F{^(r')} = Jdr'g(^(r')), (B.3) 

where g is an ordinary function, then 

6FM I dr'gU(r') + eS(r'-r))-gN>(T> 
„ \Z! = lim l (B.4) 
6il>(r) e^o e 

dr,gU(7'))+e8'U(r'))ö(r' 
lim J- (B.5) 

_> \ Courage is needed to perform a Taylor expansion in powers of a , 
f) j ■ delta function, which is infinitely large where its argument vanishes. (B.Ô) 

More mathematically compelling accounts of this procedure can be 
found, for example, in Zeidler (1995) or Hassani (1999), Chapter 
30, pp. 973-1002. 
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B.2 Time-Independent Schrödinger Equation 

The time-independent Schrödinger equation is equivalent to a variational principle, 
a point of view that is particularly valuable in suggesting approximation schemes. 
To derive the variational rule, consider the functional 

F'u{lb\ ^ (ibl^Kllb) A functional is a rule for obtaining a number ( B . 7 ) 
from a function, in this case from the wave 
function \ip). 

and find its extrema subject to the constraint that 

<V#> = i- (B.8) 

An extremum of a functional F is a function ip causing functional derivatives 
6F/ôip(r) to vanish for all r. A function that minimizes F will be an extremum, 
but so will be a function which maximizes F, or one for which F is at a saddle 
point, such as sketched in Figure 7.4. 

There are two ways to enforce the constraint (B.8). 

• Divide the functional Fx through by (ip\ip) and take functional derivatives of 

< |̂Ä|V> 
<</#> 

(B.9) 

• 

If \I/J) is multiplied by any overall scale factor, (B.9) does not change, because 
the factor cancels between numerator and denominator. An extremum of (B.9) 
is therefore sensitive to the shape of ip, but cannot depend upon its normaliza-
tion. After finding an extremum of (B.9), one is free to set (ip\ip) — 1. 

Use the method of Lagrange multipliers. In this method, one takes the con-
straint that is supposed to be imposed, multiplies it by an arbitrary constant, 
the Lagrange multiplier, and subtracts the product from the original func-
tional. In the present case, that means finding extrema of 

£ is the Lagrange multiplier. 
(B.10) 

The simplest way to find extrema of FH; is by treating (ip\ and \tp) as indepen-
dent variables, and requiring the variation of F<x to vanish simply by writing 

n_ a wKh/>>_w> ^,jmw (B11) 
d(ip\ (V#) <V#> ' ' <V#>2 

■Mlp) = S.\lp) With £ = V , , r The method of Lagrange (ß.12) 
(lp\w) multipliers gives the same result. 

Therefore the variational procedure is equivalent to Schrödinger's equation. 
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If the steps leading to Eq. (B.12) seem unjustified, it is easy to employ the defi-
nition of functional differentiation (B.2) on the functional / dr'ip* (?') \K — E^ipif) 
and show that 

0 = WÏ7) I^V)^-£]^) <B-1 3) 
=> 0 = \0~C — £.\lb(~r) Anyone uncomfortable with treating ip and ip" as inde- ( B . 1 4 ) 

pendent functions is free to write everything out in terms 
of the real and imaginary parts of ip, differentiate with 
respect to them, and verify that the same results are ob-
tained again. 

B.3 Time-Dependent Schrödinger Equation 

The equivalence of the time-independent Schrödinger equation to extrema of the 
mean value of the Hamiltonian is well known. It is less commonly appreciated that 
the time-dependent Schrödinger equation can be obtained from a variational prin-
ciple. Like so many other formal relations in quantum mechanics, the observation 
is due to Dirac. 

The action L giving the time-dependent equation is simply 

L= f dt £, (B.15) 

where 

£ = ( # - f t j ^ ) - M % > ) . (B.16) 
Lagrange's equation are 

5L 

d dL dL 

0 (B.17) 

(B.18) 
dtd(ip\ d(ip\ 

d 
=r- ' Ä — \ip) — J~C\lp). Because there is no dependence upon (ip|, ev- ( B . 1 9 ) 

Ot erything comes from the right hand side. 

A more detailed derivation of Eq. (B.19) can be obtained by using the methods of 
functional differentiation described at the beginning of this appendix. The approxi-
mation scheme suggested by this calculation is to substitute for \ip) some restricted 
set of wave functions parameterized by a number of variables, and then to use 
Eqs. (B.16) and (B.18) to find equations of motion. 

This variational principle has great advantages when one's goal is to obtain ef-
fective equations of motion for collective coordinates. Unlike an effective Hamil-
tonian, an effective Lagrangian XL makes few demands. There is no requirement 
that one identify canonical momenta conjugate to the coordinates. One can take 
any parameterization of ip that seems handy, insert it into the Lagrangian, and ob-
tain equations of motion for the parameters. This method is employed in Section 
15.5.5 to find the dispersion relation for superfluid helium, and in Section 16.4 to 
find the equation of motion for electron wave packets. 



906 Appendix B. Variational Techniques 

B.4 Method of Steepest Descent 

Many intractable integrals can be approximated well by the method of steepest 
descent. The integrals are of the form 

I dxe~m(-x\ (B.20) 

and the approximation becomes good in the limit where the parameter ß becomes 
infinite. Find the point xo in the complex plane where H(XQ) is minimized, and 
deform the integration contour so that instead of passing necessarily along the real 
axis, the contour heads off into the complex plane and passes through XQ. If H(x) 
is singular off the real axis and deforming the contour involves picking up large 
numbers of poles, it may be advisable to settle for the point x\ on the real axis 
where H(x) is minimized. In any event, write 

/ 

H(x) « H(xo) + {X
 2

X0) H"(x0) + . . . (B.21) 

dx e"^Hi^ « e~^H^ . \ Do the Gaussian integral. (B 22Ï 
y\ßH"(x0)\' ^ } 

This method is employed in Section 16.3.1 on Zener tunneling. 
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C. Second Quantization 

C.l Rules 

C.1.1 States 

Begin with a complete orthonormal set of basis functions ipi. Any collection of 
identical particles can be described by sums of products of these functions. In the 
formalism of second quantization, one focuses upon many-body basis functions, 
which describe how many particles are in each state. For example, 

| 0 , 2 , 3 , 1 0 , . . . ) (C.l) 

means that no particles are in state ip\, two particles are in state V>2, three are in 
state fa, and so on. The integers describing the numbers of particles are called 
occupation numbers. 

C.1.2 Operators 

The operators of second quantization change the numbers of particles in these 
quantum states. There is a creation operator with index / that adds one particle 
to state / and an annihilation operator with index / that takes one particle away 
from state /. 

Fermions. The Pauli principle prohibits more than one electron from occupying 
any given quantum state, so the occupation numbers all are zero or one. The cre-
ation and annihilation operators are usually denoted by cj and c/ respectively. The 
way they operate is 

ci\n\ri2 ... ni ...) = < . „ , .r , (L.za) 
1 ' \ |m«2 • • . 0 . . .) if«/ = 1 

ti \ _ / ° ifn/ = l c\\n\ni ... ni ...) = < . , > .c „ (C.2b) 
" ' \ \n\n2 . . . 1 . . .) if ni = 0. 

The operators anticommute: 

c]c},+c],c] = 0 (C.3a) 
C[Ci> + CfCi = 0 (C.3b) 

cic], + c],ci = Su' ■ (C.3c) 
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Bosons. Bosons can inhabit any quantum state as often as they please, so the 
occupation numbers range over all non-negative integers. The creation and an-
nihilation operators are usually denoted by a[ and <3/ respectively. The way they 
operate is 

âi\n\H2 . . . ni . . .} = y/h~i\nin2 . . . « / - 1 . . .) (C.4a) 

âj|ni«2 . . . « / . . . ) = \A*/ + l|«i«2 • • • ni + l . . .). (C.4b) 

The operators commute: 

â\â], - â],â] = 0 (C.5a) 
âiâi' — âi'âi = 0 (C.5b) 
âiâj, — aj,âi = Ou' • (C.5c) 

C.1.3 Hamiltonians 

A Hamiltonian that is given as a sum of operators on single particles can be rewrit-
ten in second quantized notation as 

J-C := \ f: fj means an operator such as f(7j) that acts ( C . 6 ) 
^—? in some identical fashion upon each particle 

J j in turn. 

= y ^ c] {ipi^lfillpi' (\))ci/. The wave functions tpi and operator / all act ( C . 7 ) 
,,, on particle 1. The expression for bose opera-

tors is identical. 

The notation \ipi>(l)) means that particle number 1 is in state ipy. For example, if 
/ is the kinetic energy operator and tpi is the product of a Wannier function wi and 
a spin function Xh then 

<V>/(i)l/ihMi)> = <W / ^ i ™;(n) z U i Mn) (C.8) 
The leading delta function requires the spins of the two states to be the same. 
The Laplacian V^ acts on variable T\. 

A Hamiltonian that is given as a sum of operators on pairs of particles can be 
rewritten in second quantized notation as 

3"C = y fj:/ fjji means an operator such as / ( ? / , 7y) that ( C . 9 ) 

M/' acts in some identical fashion upon pairs of 
particles. 

= Y, e J4e / ' "e / " (^ / ( l )# (2) | / i2 |# ' ( l )#" (2) ) (C.10) 

For example, if fu is the Coulomb interaction and ipi is the product of some spatial 
wave function </>/ and a spin function xi, then 

(V/ ( l )#(2) | / i2 |# ' ( l )#"(2)> 
f e2 

= lôxtXi"0x,'Xi'" / àridr2 4>*(ri)4>Hr2)7z —><t>i"(?\)<l>i>"(?i)■ ( C l l ) 
J \r\ —>"2\ 

Often one does not write down spin sums or spin delta functions explicitly and just 
multiplies the final answer by appropriate factors of two. 
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C.2 Derivations 

C.2.1 Bosons 

A collection of Bose particles can be described by a wave function of the form 

i " i"2*3. . . )=J W L, £ n i ^ M - (ci« 
V Permutations Sj y'=l 

The function Sj gives some permutation of the integers j , and by summing over 
all permutations the wave function is guaranteed to be symmetric under interchange 
of all indices. 

The function /(_/) is some function into the positive integers. The idea is that the 
states ipi are numbered in a way that may be quite arbitrary. Suppose one decides 
to build a many-body state with one particle in state 1 and two particles in state 3. 
The function l(j) could then be 

/(1) = 3, /(2) = 1 /(3) = 3. (C.13) 

Notation of the form |?/>2(6)) means that particle number 6 is in state ip2-
The number of times a certain integer l(j) appears as j ranges from 1 to N is 

ni, so m gives the number of particles in state /. The factors of n\\ri2\ ■ ■ ■ account 
for the fact that any given term in the sum where n\ particles are in state 1 appears 
n\\ times. To illustrate that the factorials are correctly employed, suppose first of 
all that there is only one particle in each distinct state. Then there are N\ distinct 
orthogonal functions appearing in the sum (C.12), and the normalization must be 
\/y/N\. On the other hand, suppose all particles are in state ip\. Then all the N\ 
terms in the sum are identical, and the sum must be divided by AH to produce a 
normalized wave function. 

To study the behavior of this wave function, it is helpful to define the operator 

iz-/' El^(i))(#(;)l- (c.14) 

The effect of this operator is to search one at a time for each particle in state ipi> 
and move it to state ipi. 

To use this operator, consider a Hamiltonian of the form (C.6), 

^ = E fj = E \MJ))(W)\fj\MJ)){MJ)\ (c.15) 

= \ £/<_/' (lbi(\) I f\ | l /> ; / ( l ) ) . The matrix elements of the one-particle oper- ( C . 1 6 ) 
.,, ator / do not depend upon which particle is 

involved, so the label 1 can be used instead of 
j -

Let £/<_// act upon |«i«2 • • •)• If state ipi> is not occupied, the result is zero. If 
it is occupied, then in every term of (C.12), there will be precisely ni> values of j 
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for which there is a nonzero result, with the population of state /' being reduced by 
1 and the population of state / being increased by 1. The result will not be properly 
normalized because \fn[i\n\\ is in the denominator rather than y/(ni> — l)!(n/ + 1)!, 
and a factor of n^ has been acquired along the way. So 

£/<-/'lwi«2 • • •) = y «/'(«/ + 1)| . . . «// - 1 . . . n/ + 1 . . .). (C.17) 

For this reason, define 

a]\n\ 
â[\n\ 

, n2 ■ 

, n2 ■ 

■ ■) = A/«Z + 1| . . . n/ + l ■ 

. .) = y/h~i\ . . . ni - 1 . . .) 

£■ 4 -£S/^/' = a, a/i. 

(Cl 8a) 
(C.18b) 

so that 
(C.19) 

It is easy from Eq. (C.18) to check the commutation relations (C.5) by allowing 
the creation and annihilation operators to act in various orders upon general states 
\n\n2 . . .). 

C.2.2 Fermions 

The wave function describing a collection of fermions must be antisymmetric under 
interchange of arguments, and it consists of sums of terms of the form 

fT N 

* = h«2 • - •) = v^ï £ (-1)" II Mœto)>. (c.20) 
' ' Permutations Sj j=\ 

where the sum is over all permutations Sj of j = 1 . . . N, with 5 the sign of the 
permutation. In order for ^ not to equal zero, no more than one electron is allowed 
to inhabit each individual state. If an electron is in state /, then «/ is one and 
otherwise it is zero. 

Given the occupation numbers «/ for each state ipi, the wave function that can 
be formed from the collection is almost unique. There is only one ambiguity, which 
has to do with the overall sign of the wave function. The ambiguity is avoided by 
requiring that /(_/) be an increasing function of j . 

Consider again a Hamiltonian of the form (C.15), acting on antisymmetric 
wave functions ^ as in Eq. (C.20). It is sufficient to examine the behavior of a 
single term in the sum (C.15). For example, look at 

(*a\Ml))(Ml)\*b). (C21) 

(C.21) is nonzero only if in \^b) ipi' is occupied, ipi unoccupied, while in |̂ >a) 
ijj[i is unoccupied, ipi is occupied, and otherwise tya and ^>b are identical. To be 
explicitly, let 

l^>=£(-l) 'S^lVM(si)>hMs2))|V>3(s3)) (C.22) 

|^> = E(-ir-Ll^(*i)>l^(^2))|V'4(^)> (C23) 
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and look at 
(* f l |^( l))(V4( l) |**). 

The parts of the wave functions that survive are 

1 r 

(C.24) 

3! 
(^(2) | (Vi(3) | - (Vi(2) | (^(3) | 

'<V>2(l)hMl)> 

| ^ (2 ) ) | ^ (3 ) ) -|^3(2))|Vi(3)) 

(C.25) 

(C.26) 

The general lesson to learn from this example is that one must permute ipi past all 
the states below it in the ordering scheme to produce the term |Vv(l)), obtaining a 
factor of 

(_!)£;=! »^ (C.27) 

where «/ is 1 if state / is occupied in tya and zero otherwise. One also has a factor 

(-1) 
v - V - l 

(C.28) 

similarly, so that 

N ,/'-! e^lVvOm'U)!**) = (-1)^=« ^(-1)^=. "' (C.29) 
7 = 1 

if it is not zero. 
Therefore, one can again define the operator £/«_/> from Eq. (C. 14). Write wave 

functions in the occupation number representation 

| *> = |«1«2«3 � � �>, (C30) 

where each n,- can be either zero or one. In the example above, 

|* a) = |1110000. . .) 
|#fc) = | 1011000. . .). 

In acting on such a wave function 

£/<_//|«in2n3 • • •} 

= ( - i ) E U ' " > ( - l ) ^ = i njSnillönio\nin2m . . . nv - 1 . . . ni + 1 . . .). 

The creation and annihilation operators are defined so that 

(C.31) 
(C.32) 

(C.33) 

£/<_/> =0%,. (C.34) 
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More explicitly, 

Q|«in2«3 • • ■) = 5i,n,(-l) j=1 n'\n\n2m . . . rc;_i 0 « / + ] . . .) (C.35a) 

cj|«in2«3 • • ̂ ^ o . n X - 1 ) i=l y|"i"2"3 • • • "/-i 1 "/+1 • • •)• (C.35b) 

The anti-commutation relations in Eq. (C.3) can be verified explicitly from this 
definition. 

A final relation that should be verified is Eq. (C.IO). The special ordering of 
the creation and annihilation operators results from the condition j ^ / in the sum 
over particle numbers. Write 

E fjr 

= E IV'/O0)I^K/))(V'/a)#(/)l/i/l#K;>/-(/))(V'/»(i)K#»(/)l 
; / / (C.36) 

= E [\MJ)){^i"U)\] [l^'(/)><#»(/)l] {MJ)MJ')\fjjWi>iJ)rPi>»(j')) 

E <W' [\Mj)H^i'"U)\] (MJ)MJ)\fjjWi»UWi>"U)) (C.37) 

ll>l"t"' 
j / 

,,1,11,111 
j 

'{"V" 

- Y. 5 / ' / "^ /" '^ / ( l )#(2) | / i2 |# ' ( l )#»(2)> (C38) 

E c]"c///c/
t,c/»'(^/(l)#(2)|/i2|V'/"(l)#''(2)) 

E <*/'/» £/V (^(1)#(2)|/12|^/»(1)^»(2)> (C.39) 

E c/
t4c////c///(V/(l)V/'(2)|/,2|#'(l)#»(2)>. (C40) 

//'/"/ 

//'/"/" 

//'/"/'• 
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fine structure constant, 763 
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angle, 47 
Heaviside step function, 136 
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[i*, Coulomb interaction in McMillan 
theory of superconductivity, 880 

PB, Bohr magneton, 730 
chemical potential, 86 
Lamé constant, 328 
magnetic permeability, 724 
mobility, 591 

v 
critical exponent, 749 
Landau level, filling fraction, 772 
Poisson's ratio, 330 

random vector, 111 

Ç, random force, 112 
correlation length, 749 
screening length, 258 
superconducting coherence length, 845 

n 
grand potential, 164 
momentum tensor, 414 
Peltier coefficient, 498 

■K 

3.14159. . .,9 
canonical momentum, 470 

P 
mass density, 329 
resistivity, 454 

E 
dimensionless stress, 403 
sum, 48 

a 
<jaß, conductivity tensor, 493 
aaß, stress tensor, 326 
electrical conductivity, 454 
Lennard-Jones radius, 299 
scattering cross section, 46 
spin index, 236 

r 
T£ , energy-dependent relaxation time, 488 
golden mean, 135 
relaxation time, 453 

$ 
$, magnetic flux, 772 
$0> magnetic flux quantum, 772 
Phonon dynamical matrix, 346 

4> 
4>„~k, augmented plane wave basis 

function, 275 
analytic function, 403 
Hartree Fock basis functions, 236 
phase, 223 
two body potential, 15 

work function, 86 
X 

Xc, charge susceptibility, 627 
dielectric susceptibility, 398 
group character, 198 
magnetic susceptibility, 724 
spin eigenfunctions, 236 

wave function, 157 
</> 

wave function, 157 
Q, 

O, anomalous velocity, 469 
solid angle, 46 
volume of unit cell, 181 

ÜJ 

ujc, cyclotron frequency, 634 
ojp, plasma frequency, 618 
frequency, 46 

A 
A[, cohesive energy lattice sum, 300 
A, vector potential, 460 
scattering amplitude, 46 
area, 379 
Einstein A coefficient, 647 
hexagonal Brillouin zone symmetry point, 

194 
a 

â, phonon annihilation operator, 352 
aat atomic wave functions, 219 
lattice constant, 7 
neutron scattering length, 367 
primary lattice constant, 19 

A 
Richardson-Dushman constant, 572 

B 
B, magnetic induction, 456 
bulk modulus, 301 
Einstein B coefficient, 647 

b 
b, Bravais lattice primitive vectors, 51 
amplitude in BCS theory of 

superconductivity, 866 
damping constant, 112 
tertiary lattice constant, 19 

C 
Caßjg, tensor for linear elasticity, 325 
capacitance, 604 
constant, 304 
cyclic point group, 36 
extensive specific heat, 354 

c 
c, electron annihilation operator, 506 
cy, intensive specific heat, 168 
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concentration, 101 
secondary lattice constant, 19 
speed of light, 61 
speed of sound, 332 

D 
Dr, ö (£) , densities of states, 159 
D, electric displacement, 614 
dihedral point group, 36 

d 
[dk], integration incorporating density of 

states., 161 
atomic orbital, 269 
interplanar spacing, 79 
nearest neighbor spacing, 43 

T> 
diffusion constant, 98 

E 
E, Lagrangean strain tensor, 321 
E, electric field, 456 
unit matrix, 193 

e 
2.71828. . .,46 
ê, unit vector, 272 
eaß, strain tensor, 37, 325 
electron charge (positive), 61 

£ 
£/r, Fermi energy, 162 
£g, energy gap, 211 
£ T, band energies, 182 
energy, 15 

F 
FfjK, Hohenberg-Kohn functional, 246 
force, 112 
Lindhard dielectric function, 244 
scattering form factor, 54 

/ 
1//noise, 530 
/ ( £ ) , h, Fermi function, 165 
atomic orbital, 269 
scattering form factor, 46 

free energy, 101 
G 

conductance, 563 
electrochemical force, 495 
Gibbs free energy, 429 
Green's function, 536 
group element, 13 
shear modulus, 330 
wave number for ionic displacements, 310 

g 
g, metric tensor, 321 
amplitude in BCS theory of 

superconductivity, 866 

correlation function, 114 
gain in lasers, 648 
gravity, 379 
Lande g factor, 765 
probability distribution in Boltzmann 

equation, 484 
separation parameter for Ewald 

summation, 303 
H 

bec Brillouin zone symmetry point, 194 
hexagonal Brillouin zone symmetry point, 

194 
magnetic field, 473 

h 
H, h/2n, 86 
height, 379 
number of elements in group 

representation, 198 
Planck's constant, 64 

•K 
Hamiltonian, 157 

/ 
scattering intensity, 46 
stress invariants, 424 

i 
v717!, 46 
Miller index, 51 

J 
magnetic exchange coupling constant, 734 
stress invariants, 425 
total current, 87 

j 
j , current density, 98 
jl, Bessel function, 276 
integer, 68 
Miller index, 51 

K 
Kj, Josephson constant, 858 
Kj, isothermal compressibility, 748 
K, reciprocal lattice vector, 50 
fee Brillouin zone symmetry point, 193 
hexagonal Brillouin zone symmetry point, 

194 
stress intensity factor, 405 

k 
k space, 159 
k, Bloch wave vector, 182 
k ■ P method, 457 
kg, Boltzmann's constant, 43 
kF, Fermi wave vector, 159 
k, wave vector, 46 
Miller index, 51 

X 
spring constant, 43 
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LQ, Lorenz number, 496 
L, thermoelectric transport matrix, 495 
diffusion length, 594 
fee Brillouin zone symmetry point, 193 
hexagonal Brillouin zone symmetry point, 

194 
system length, 158 

/ 
lj, mean free path, 68 
integer, 48 
matrix dimensions group representation, 

198 
Miller index, 53 

M 
M, effective mass tensor, 459 
hexagonal Brillouin zone symmetry point, 

194 
ion mass, 155, 342 
large integer, 101 
magnetic dipole moment density, 723 

m 
m*, effective mass, 494 
electron mass, 86 
integer, 79 

M 
multiplicity, 73 

N 
yV-process, 527 
bec Brillouin zone symmetry point, 194 
number of particles, 48 

n 
h, director in liquid crystals, 121 
n, unit normal, 187 
it, index of refraction, 616 
n,, Bose-Einstein factor, 356 
band index, 179 
electron density, 61 
integer, 12, 79 
particle density, 66 

:N 
depolarization factor, 664 

O 
octahedral point group, 36 

0 
order parameter, 113 

P 
Pi, Legendre polynomial, 277 
P, momentum operator, 182 
P, polarization, 38 
bec Brillouin zone symmetry point, 194 
polarization factor, 61 
pressure, 126 
stacking period, 79 

p, dipole, 299 
atomic orbital, 269 
integer, 40 

probability, 124 
Q 

charge, 604 
heat, 490 

<? 
integer, 40 
particle charge, 155 
wave vector, 47 

R 
RH, resistance quantum, 548 
/?/,, muffin hole radius, 276 
R\2, transition rate, 647 
R, position operator, 176 
R, ionic position, 6 
RK, von Klitzing constant, 780 
particle size, 109 

r 
rs, radius parameter, 162 
r, position vector, 46 
radial coordinate, 46 
rational number, 40 

RH 
Hall coefficient, 502 

ft 
polymer radius of gyration, 125 
radial wave function, 269 
rotation matrix, 13 

S 
change of coordinates, 13 
entropy, 101 
spiegel point group, 36 
structure factor, 67 

s 
atomic orbital, 269 
permutation index, 236 

S 
applied stress, 330 

T 
T matrix, 538 
T[n], kinetic energy functional, 246 
Tc, Curie temperature, phase transition 

temperature, 730 
7s, translation operator, 182 
temperature, 43 
tetragonal point group, 36 

7 
time period, 469 

t 
hopping term, 226 
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tc, reduced temperature, 745 
time, 46 

U 
U, periodic potential, 175 
U-process, 527 
fee Brillouin zone symmetry point, 193 
potential energy, 86 

u 
u, Bravais lattice vector, 53 
u, displacement vector, 37, 325 
u r periodic Bloch function, 182 
amplitude in Bogoliubov theory of 

superconductivity, 870 
V 

voltage, 87 
v 

v, basis vector, 9, 53 
v r group velocity, 185 
Vf, Fermi velocity, 162 
amplitude in Bogoliubov theory of 

superconductivity, 870 
V 

volume, 50 
W 

Wrr,, scattering transition rate, 525 
fee Brillouin zone symmetry point, 193 
plastic work, 426 
wave packet, 185 
width of disorder potential, 543 

w 
Wannier function, 222 

W 
half-bandwidth, 222, 820 

X 
fee Brillouin zone symmetry point, 193 

x 
position component, 20 

Y 
Yim, spherical harmonic, 268 
Young's modulus, 43, 330 

y 
position component, 20 

Z 
conduction electrons per atom, 167 
atomic number, 64 
partition function, 164 
thermoelectric figure of merit, 498 

z 
coordination number, 114 
position component, 20 

1//noise, 530 
1 /N expansion, 807 
1-2-3 compound, 882 

2DEG, see two-dimensional electron gas 
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Abrahams, E., 547, 564, 893 
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Abrikosov, A. A., 628, 631, 848, 890 
absorption coefficient, 616, 620, 626 
acceptors, 532 

table of binding energies, 580 
accidental degeneracy, 202 
acoustic branch, 344 
acoustic phonons, see phonons, acoustic 
acoustic waves, 331 
adiabatic change, 223 
adiabatic theorem, 505 
Adler, D., 566 
adsorption, 81 
Aegerter, C M . , 566 
Ag 

de Haas-van Alphen oscillations, 473 
magnetoresistance, 503 
photoemission from, 705 
pseudopotential for, 268 
specific heat, 156, 359 

AgCu phase diagram, 103 
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incorporating spatial gradients, 487 
metallic absorption at low frequencies, 

692 
practical solution, 489 
semiconductors, 590-595 

Boltzmann factor, 165 
Boltzmann statistics, 165 
Bona, G. L., 837 
bond lengths 

table for selected molecules, 242 
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repeated zone scheme, 189, 190 
second, third, and higher, 211 
symmetry of, 202 

Brillouin, L., 779 
Brinkman, W. F., 149, 656 
brittle, 379 
brittleness versus ductility, 400 
Brock, J. D., 749 



Index 

Brockhouse, B. N., 377 
Bromberg, J. L., 656 
Broto, J. M.. 836 
Brovman, E. G., 374, 377 
Brown, R., 97,149 
Brownian motion, 70 
Brueckner, K. A., 263 
BSW, see Bouckaert-Smoluchowski-Wigner 

notation 
Buhrman, R. A., 838 
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climb, 383 
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thermal, see thermal conductivity 
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Coppersmith, S. N., 831, 836 
Corciovei, A., 757 
Corenzwit, E., 838 
corn starch, 417 
corpuscle, 567 
correlation, 67, 242, 714, 735 
correlation functions, 113 

liquids, 113-114 
radial, 114 
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Corrigan, D., 109 
Costache, G., 757 
Cottrell, A. H., 307, 308, 318 
Coulomb blockade, 605, 606 
Coulomb integral, 238 
Coulomb interaction, 234, 303 
Cowley, R. A., 367, 377 
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specific heat, 746 
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hexagonal, 32 
monoclinic, 32 
orthorhombic, 32 
rhombohedral, 32 
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table of similar compounds, 26 
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band structure energy, 311, 315 
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core-level photoemission, 711-716 
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current operator, 625 
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Debye frequency, 359 
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Debye temperature, 359, 377 

table, 360 
Debye, P., 355, 358, 377 
Debye-Scherrer method, 59 
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delta function 

Dirac and discrete related, 160 
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dendrites, 108, 109 
dense random packing, 115 
density functional theory, 242, 244-252, 709, 

711,813 
density of states, 159-163, 172 

arbitrary dimensions, 173 
0(£) , 161 
for free electrons, 161 
for phonons, 356 
for phonons in silicon, 357 
from Green's functions, 536 
in periodic potential, 185 
joint, 638 
D-k, 160 
local, 537 
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depolarization factor, 664 
DePuydt, J. M., 657 
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diamagnetism, 724, 729, 842 
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irreducible representations, 200 

phonons, 349 
residual ray, 668 
scattering, 54 
specific heat, 354, 355 
structure, 24 
two-body potentials, 314 

dielectric function, 614, 616-623 
causality, 618 
data for CdS, 667 
high frequency, 666 
insulators, 617 
Kosterlitz-Thouless, 397 
Lindhard, 628 
low frequency, 666 
metal-insulator transitions, 532, 533 
metals, 617 
sketch, 618 
superconductivity, 862 
table for ionic crystals, 670 
table for semiconductors, 577 

differential scattering cross section, neutrons, 
368 

diffusing-wave spectroscopy, 128 
diffusion, 147 
diffusion equation, 98 

derivation, 99 
diffusion length, 594 
diffusion Monte Carlo, 253 
diffusion^ 97 
diffusion-limited aggregation, 93 
Dimmock, J. O., 291 
Ding, H., 887, 891 
diode, 583-585 

cathode ray, 567 
solar cell, 645 

dipole interactions, 299 
dipole moments 

table for selected molecules, 242 
Dirac equation, 277, 761 
Dirac, P. A. M., 234, 263, 368, 377, 802, 836 
direct gap, 576 
disbelief, suspension of, 157 
dislocations, 381-399, 406 

Burgers vector, 383 
climb, 383 
core, 395 
edge, 382, 383 
energy in two dimensions, 395 
force to move, 386 
glide plane, 383 
imaged, 385 
interacting in two dimensions, 395 
screw, 382, 383 
slip plane, 383 
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tight binding model, 535 

dispersion relations 
4He, 434 
excitons, 644 
ferromagnetic spin waves, 808 
light, 615, 702 
phonons excited by cracks, 406 
phonons in one dimension, 343, 345, 376 
phonons in silicon, 351, 367 
phonons, from inelastic X-ray scattering, 
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polaritons, 666, 667, 704 
polarons, 672 
schematic for neutron scattering, 366 
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Fermi surfaces, 476 
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Drazin, P. G., 448 
Dresselhaus, G., 232, 635, 656 
Dresselhaus, M. S., 232 
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Dubonos, S. V., 150 
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dynamic light scattering, 68 
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Edwards, P. P., 534, 565 
Edwards, S. R, 417, 448, 743, 757 
EELS, see electron energy loss spectroscopy 
effective Hamiltonian, 183 
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cyclotron resonance, 636 
density of states, 579 
electrical transport, 494 
Fermi liquid, 508 
polaron, 673 
semiconductors, 577 
specific heat, 170 
table for semiconductors, 577 
theorem, 459, 477 
tight-binding model, 478 

effective particles, 170 
Egelstaff, P. A., 151 
Egri, I., 656 
Ehrenreich, H., 291, 656 
Einstein relation, 147 
Einstein, A., 147, 149, 354, 378, 631, 656, 

686 
model for phonons, 358 
photoelectric effect, 612 
specific heat of crystals, 355, 358 
transition probabilities, 373, 646 

Eisenberger, P., 74 
elastic modulus of rubber, 323 
elastic scattering, see scattering, elastic 
elasticity, 321-332 

reference state, 321 
electrical conductivity 

anomalous skin effect, 695 
cubic symmetry, 493 
cyclotron resonance, 635 
Drude model, 454 
electrons and ions combined, 861 
fluctuations, 529 
frequency dependent, 611 
Maxwell's equations, 614 
quantized, 600-602, 780, 785 
scattering theory, 523-530 
tensor, 493, 625, 629 

electrochemical force, 495 
electron density, 627 
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electron energy loss spectroscopy, 698 
electron hologram, 777, 850 
electron nuclear double resonance, 678 
electron spin resonance, 677 
electron tubes, 569 
electron-hole liquid, 645 
electrons 

elastic scattering, 63 
electron interactions, 233-258, 624, 627, 

709, 880 
group velocity, 458 
in electric field, 459, 479 
in magnetic field, 479, 769-791 
in polarizable medium, see polarons 
nearly free, 208-217 
phonon interactions, 671, 859, 880 
semiclassical dynamics, see semiclassical 

dynamics 
tightly bound, 219-227 

elementary excitations, 505 
elements 

table of cohesive energy versus density, 
314 

table of crystal structures, 19 
table of Debye temperatures, 360 
table of effective radii, 298 

Eliashberg, G. M., 880, 891 
Elliot, S. R., 149 
Elliott, R. J., 565, 656 
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Emin, D., 686 
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empty core pseudopotential, see 

pseudopotentials 
Emsley, J., 5,16, 302, 318 
Endo, J., 795, 893 
Endoh, Y., 893 
ENDOR, see electron nuclear double 

resonance 
energy bands, see band structure 
energy conservation 

inelastic light scattering, 701 
optical absorption, 640 
phonons, 364 
photoemission, 707 

energy current, 490 
energy density of states, 161 
energy gap, 277 

CoO, 711 
direct, 576 
GaAs and GaAlAs, 598 
indirect, 576, 636, 652 
nearly free electrons, 211 
semiconductors, 575, 638-641 

table for semiconductors, 577 
Urbach tails, 683 

entropy 
Boltzmann equation, 489 
generation rate, 490 
ionizing impurities, 581 
mixing, 101 
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superconductivity, 844 
two-dimensional dislocations, 396 
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Eskes, H., 719 
ESR, see electron spin resonance 
Etienne, B., 795 
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Ettenberg, M. H., 520 
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Euler's equation, 413 
Euler-Maclaurin theorem, 773 
EuO 

magnetic susceptibility, 731 
eutectic, 106 
Evans, A. G., 410 
Ewald construction, 55 

in two dimensions, 83 
Ewald sphere, 55, 58 
Ewald summation, 302-304, 316 

for metals, 306 
Ewald, P. P., 17,47,43,74 
EXAFS, see extended X-ray absorption fine 

structure 
exchange energy, 306 
exchange forces, 737 
exchange functionals, 258 
exchange integral, 238 
exchange interaction, 243, 803 
excitons, 576, 641-645 

Frenkel, 644, 654, 656 
GaAs, 640 
Mott-Wannier, 641-644 

experiments 
bad ideas for, 55, 86, 312, 413, 433 

extended states, 540 
extended X-ray absorption fine structure, 67 
extended zone scheme, 188, 209 
external charges, 613 
extinctions, 54, 71, 218 

F centers, 676 
absorption and emission peaks, 677 



Index 927 

charge density surrounding, 678 
F2 center, 679 
Faber, T. E., 448 
Fabian, Jaroslav, 837 
face-centered cubic, see lattices 
faceting, 92 
Fadeev, L. D., 836 
Fahey, P. M, 607 
Fairbank, W. M., 850, 852, 891 
Fan, Y., 639 
Faraday balance, 729 
Faraday rotation, 674, 684 
fast Fourier transform, 274, 900-902 
Fawcett, E., 757 
fee, see lattices, face-centered cubic 
Fe 

ferromagnetism, 736, 814 
Mössbauer effect, 375 
magnetic anisotropy, 738 
magnetic superlattices, 815 
magnetic transition, 730 
specific heat, 731 

Fe3C, 102 
Fedorov, E., 17,47 
Feher, G., 678, 686 
Feigel'man, M. V., 890 
Feigl, F. J., 607 
Fermi energy, 162 

table for selected metals, 167 
Fermi function, 165,173 

graph, 165 
experimental measurement, 705 
graph of derivative, 168 
superconductivity, 872 

Fermi level, 162 
Fermi liquid parameters, 511-512 

table for 3He, 515 
Fermi liquid theory, 504-516, 520 

backflow, 510 
effective mass, 508 
effective mass relation, 512 
first sound, 512 
Landau parameters, 511 
magnetic susceptibility, 833 
scattering time, 506 
specific heat, 510 
zero sound, 514 

Fermi sea, 505, 863 
Fermi sphere, 159 
Fermi surface, 162, 228 

determined from Kohn anomalies, 374 
determined from anomalous skin effect, 

695 

determined from de Haas-van Alphen 
effect, 474-476 

divergence of scattering time, 506 
extremal section, 474 
nearly free electrons, 215 
nearly free electrons, bec, 217 
nearly free electrons, fee, 216 
nearly free electrons, hexagonal, 218 
open and closed orbits, 470, 471 

Fermi temperature, 166 
table for selected metals, 167 

Fermi velocity, 162 
table for selected metals, 167 

Fermi wave vector, 159 
table for selected metals, 167 

Fermi's Golden Rule, 368, 506, 525 
Fermi-Dirac statistics, 166 
fermion sign problem, 253 
Ferrante, J., 318 
ferrimagnetism, 731-732 

compensation in rare earth garnets, 733 
table of data, 732 

ferroelectrics, 659-661 
ferromagnetism, 730-731 

ground state, 832 
table of data, 732 
transition metals, 811-815 
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Fert, A., 836 
Fetter, A., 628, 631 
Feynman, R. P., 448, 686, 836 

nodeless ground states, 800 
polaron theory, 674 
superfluid structure factor, 442 
superfluid wave function, 440 

FFT, see fast Fourier transform 
Fibonacci sequence, 134 
Fick's law, 98 
field ion microscopy, 85 
Field, S. B., 255, 263 
filled bands, 494 
filling fraction, 789 
FIM, see field ion microscopy 
Fineberg, J., 410 
Fiorito, R. B., 449 
Firsov, A. A., 150 
first Brillouin zone, 184 
first principles, 257 
first sound, 512 
Fischer, O., 891 
Fisher, D. S., 757, 836 
Fisher, M. E., 448, 757 

critical phenomena, 743 



928 Index 

superfluid vortices, 439 
Fisher, M. P. A., 565 
Fisher-Essam relation, 753 
Fisk, Z., 837 
Fiszdon, W., 449 
Flannery, B. P., 902 
Fleming, J. A., 567 
flicker noise, 530 
flint, 233 
Flores, F, 263 
flow stress, 425 
fluctuation dissipation theorem, 112, 419 
fluids 

critical phenomena, 749 
dilute polymeric solutions, 417 
incompressible, 414 
mechanics, 413^143 
Newtonian, 415 
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Grubin, H. L., 607 
Grüneisen parameter, 362 
Grüner, G., 311, 318,836 
Guerrier, P., 74 
Guggenheim, E. A., 749, 757 
Guild, L. J., 565 
Guinea, R., 318 
Gunn effect, 653 
Gunnarsson, O., 263, 891 
Gunshor, R. L., 657 
Gurevich, A. V., 891 
Gurney, R. W., 675, 686 
Gustafsson, T., 719 

H(hydrogen) 
bound states, 643 
binding energy, 531 
excited state lifetimes, 652 
stability of atom, 250 
unbound states, 644 

Haas, C, 720 
Haasen, P., 150, 409 
habit, see crystal habit 
Häglund, J. H., 318 
Hafner, J., xxii, 281, 282, 285, 297, 313, 318 
Hahn, T., 36,41, 61,74 
Hakonen, P., 448 
Haldane, F. D. M, 565 
Hales, T.C., 115,750 
halides 

table of electron affinities, 302 
Hall coefficient, 502 
Hall effect, 500-504, 519, see also quantum 

Hall effect 
anomalous, 503-504 

Hall, E. H., 500, 520 
Halperin, B. I., 392, 410, 758 
Hamann, D. R., 574, 607, 835 
Hamilton's equations, 483 
Hamilton, W. C, 73 
Hamiltonian 

Anderson model for magnetic impurity, 
820 

atom in magnetic field, 761 
Bardeen-Cooper-Schrieffer, 865 
Bose gas, 446 
correlated transition metal oxide, 713 
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tight-binding in magnetic field, 777 

Hanmura, E., 657 
Hanna, S. S., 378, 758 
Hansen, J., 891 
Hansen, M., 103,150 
hard spheres, 116 
Harrison construction, 215 
Harrison, W. A., 215 
Hartree equation, 234, 258 
Hartree, D. R., 232, 234, 263 
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fountain effect, 428 
ground state, 427 
ions in, 435 
neutron scattering, 434 
phase as superfluid velocity, 437 
rotation, 437 
second sound, 431^434 
second sound experiment, 433 
structure factor, 442 
superfluid, 427-442 

thermal gradients, 430 
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reservoirs, 601 
residual ray, 355, 668 
residual resistivity ratio, 529 
resistance minima, 819-820 

explained by scaling theory, 828 
resistance quantum, 548 
resistivity tensor, 502 
Resta, R., 661,687 
Restrahl, see residual ray 
return-point memory, 756 
reverse bias, 596 
Reynolds, C. A., 858, 859, 893 
Reynolds, D. C , 657 
RHEED, see reflection high-energy electron 

diffraction 
Rice, T. M, 645, 656, 657, 893 
Rich, D. H., 710, 720 
Richardson, R. C , 443, 449 
Richardson-Dushman equation, 572, 703 
Richter, A., 831,537 

Rigden, J. S., 758 
Rinzler, A. G., 565 
Ritchie, R. H., 263 
Robaszkiewicz, S., 892 
Roberts, V., 657 
Robinson, R. A., 838 
Roche, S., 291 
rocksalt, see NaCl 
rods, 83 
Röntgen, W. C, 674, 687 
Röpke, G., 837 
Roger, M., 837 
Rohrer, H., 86,91,94 
Roitburd, A. L., 311,318 
Rokhsar, D. S., 151 
Rose, J. H., 318 
Rosenbaum, T. F., 263, 533, 534, 566 
Rosenblum, E. S., 657 
Rosi, F. D., 520 
Rossat-Mignod, J., 893 
Rossiter, B. W., 94 
rotating crystal method, 57 
Roth, S., 16 
Rothman, D. H., 151 
roton, 434 
Rottman, C , 92, 94 
Roukes, M. L., 838 
Rouse model, 419 
Rouse, P.E., 419, 420, 449 
Rowe, D. M., 520 
Rowell, J. M., 853, 890, 893 
Rozenberg, M. J., 831, « 6 
RPE, see renormalized perturbation expansion 
RRR, see residual resistivity ratio 
RSJ, see superconductivity,resistively shunted 

junction model 
rubber elasticity, 322-325, 338 
Ruckenstein, A. E., 893 
Rudigier, H., 837 
Rushbrooke relation, 752 
Russel-Saunders coupling, 763 
Ruthemann, G., 697, 720 

saddle point, 188,439 
Sadovskii, M. V., 566 
Saghi-Szabö, G., 687 
Saito, R., 232 
Sales, B., 521 
Salomaa, M. M., 449 
Salomon, C, 480, 481 
salt, see NaCl 
Samara, G. A., 687 
Saminadayar, L., 790, 791, 795 
sand, 116,335 
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Sander, L. M., 93, 95 
Sandercock, J. R., 703, 720 
Sanz, E., 151 
Sarachik, M., 820, 838 
Sarker.S., 831 
SARW, see self-avoiding random walk 
Saurenbach, F., 836 
Sawatzky, G. A., 719, 720 
se, see lattices, simple cubic 
scaling theory, 562,563 

Bloch's theorem, 180 
critical phenomena, 744, 750-754, 756 
Kondo problem, 824-828 
Kosterlitz-Thouless, 398 
localization, 547-553 

scanning tunneling microscopy, 86-90, 850 
scattering 

rotating crystal method, 57 
accuracy of structure determination, 66 
dynamic, 68 
elastic, 46 
form factor, 47 
from one-dimensional quasicrystal, 137 
inelastic, 47, 363-376, 698, 702, 703 
Laue method, 56, 72 
particles used for, 60 
powder method, 59, 73 
time in Fermi liquid, 506 
time measured in Fermi liquid, 515 
two-phonon, 377 

scattering length, 367 
Schawlow, A. L., 646, 657 
Scheffler, M., xxn, 291, 319 
Schiff, L., 46, 64, 74, 86, 94, 182, 206, 521, 

657, 687, 838 
Schiffer, P., 449 
Schlosser, H., 318 
Schlüter, M., 263 
Schmitt, R. W., 743, 758 
Schmitt-Rink, S., 893 
Schnatterly, S. E., 698, 720 
Schneider, W. D., 720 
Schönflies notation, 36 
Schönflies, A., 17, 41, 341 
Schottky barrier, 570-572 
Schottky diode, 583-585 
Schottky effect, 572 
Schottky pair, 676 
Schottky, W., 572, 574, 608 
Schrieffer, J. R., 686, 839, 865, 890 
Schroeder, P. A., 565 
Schulte, F. K., 570, 608, 705, 719 
Schumacher, W., 831 
Schuster, A., 574, 608 

Schwartz, B. B., 873, 892 
Schwartz, L. M., 291 
Schwartz, U., 90 
Schwarz, K. W., 448 
Schwarz, U. D., 94 
Schweizer, J., 893 
Schwendmann, T. C , 94 
Schwinger representation, 805 
Schwinger, J., 805, 838 
screening, 244, 258, 630 
screening length, 258, 286 
screw axis, 12, 36, 39 
Sears, V. F., 449 
second quantization, 907-912 

BCS Hamiltonian, 865 
excitons, 654 
Hartree-Fock theory, 236 
Heisenberg model, 803 
Hubbard model, 829 
polarons, 672 

second sound, see He, second sound 
secondary alloys, 103 
Seebeck effect, 497-498 
Seidel, H., 678, 687 
Seitz, F., 265, 292 
self-avoiding random walk, 125 
Sellmyer, D. J., 291 
selvage, 77 
semiclassical dynamics, 455-459, 516 

anomalous velocity, 469 
breakdown, 469 
cyclotron resonance, 634 
Hamiltonian, 470 
rules, 455 
wave packets, 465 

semiconductors, 574—583 
band structure, 283 
Boltzmann equation, 590-595 
defined in single-electron theory, 278 
degenerate, 583 
extrinsic, 581 
intrinsic, 580, 606 
junctions, 587-590 
nondegenerate, 578 
optical absorption, 576, 620 
optical properties, 633-656 
Pauli's opinion, 279 
photoemission, 709 
pure, 575 
removing impurities, 102 
surface states, 586-587 
surfaces, 583 
table of impurity binding energies, 580 
table of properties, 577 
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thermopower, 606 
Zener tunneling, 465 

semi metal s 
defined in single-electron theory, 279 

Senatore, G., 263 
separation parameter, 303 
Serin, B., 893 
Shahar, D., 795 
Sham, L. J., 255, 263, 264 
Shankar, R., 838 
Shapiro, A. P., 720 
Sharp, J., 4, 521 
Sharvin, Y. V., 836 
Shaulov, A., 894 
Shaw, T. M., 890 
shear modulus, 330 

complex, 423 
Shechtman, D., 133, 134,75/ 
Sheel, K., 893 
Shen, Z., 891 
Sheng, P., 566 
Shi, J., 521 
Shina, S., 881,894 
Shockley equation, 595 
Shockley, W., 608, 837 
Shoenberg, D., 473, 481 
short-range order, 113 
shot noise, 530, 790 
Shraiman, B. I., 149 
Shull, C. G., 63, 74, 378 
Si 

band structure, 285 
cyclotron resonance, 636 
doped with phosphorus, 531 
energy bands and photoemission, 710 
form of effective mass, 577, 636 
holes, 638 
indirect gap, 576, 639, 652 
irreducible representations, 200 
perfection of, 530 
phonon density of states, 357 
phonon dispersion relation, 367 
quantum Hall effect, 780 
reconstruction of ( 111 ) surface, 89 
theoretical strength, 381 

Si:P,metal-insulator transition, 532-534 
SiC 

spiral growth on, 385 
Siedentop, H., 263 
Siegbahn, K., 74 
Siegel, R. W., 608 
Siegert relation, 69, 129 
Sienko, M. J., 534, 565 
SiGe 

thermoelectric, 498 
Sigrist, M., 838, 893 
silicon 

amorphous, 120 
Simon, R., 893 
simple cubic, see lattices 
Singh, J., 657 
single electron model, 157 
single mode approximation, 440 
single-electron model, 155-173, 266 
singlet, 798 
singular continuous spectrum, 137 
Singwi, K. S., 838 
Si02, 119 
Sivia, D. S., 838 
Sivola, E., 521 
skin depth, 693 
Skriver, H., xxii 
Slack, G. A., 363, 378 
Slater determinant, 236 
Slater type Orbitals, N Gaussians, 240 
Slater, J. C., 235, 257, 264, 265, 271, 291, 292 
Slater-Koster parameters, 271 
Sleight, A. W., 893 
Slichter, C. P., 758 
Slick, P. I., 732, 758 
slip plane, 383, 424 
Slonczewski, J. C., 838 
SlonczewskiJ. C., 816 
Smalley, R. E., 143, 151, 565 
smectics, 121 
Smit, J., 521 
Smith, E. N., 449 
Smith, H. I., 608 
Smith, J. L., 837 
Smith, J. R., 318 
Smith, N. V., 719, 720 
Smith, R. J., 720 
Smoluchowski, R., 201, 206 
Sn 

flux quantization, 852 
gray, 283 
superconducting weak link, 854 
white, 283 

soap cells, 145 
sodium chloride, see NaCl 

table of similar compounds, 25 
Sohncke, L., 17,47 
Sokolnikoff, I. S., 339 
solar cells, 645 
Solovij, J. P., 263 
Sommerfeld expansion, 166-171,172 
Sommerfeld parameter, 170, 360 

table for selected metals, 171 
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Sommerfeld, A., 173, 893 
Bohr-Sommerfeld quantization, 471 
Sommerfeld expansion, 166 
superconductivity, 839 
X-ray scattering, 43 

Sondhi, S. L., 795 
Song, K., 94 
Sonin, E. B., 449 
Sood, A. K., 470 
Sordi, G., 831, 838 
sound waves, 331, 337 

Bose gas, 447 
first sound, 432 
second sound, 431-434 
zero sound, 514-516, 520 

Souza, I, 521 
space group, 12 
Spaepen, F., 150, 151 
spaghetti diagrams, 279 
sparks, 233 
specific heat 

critical behavior in ferromagnetic salts, 
747 

effective mass, 170 
Fermi liquid theory, 510 
free electrons, 168 
magnetic phase transition, 731 
near phase transition, 746 
noninteracting electrons, 163 
paradox, 156 
phonons, 354 
relative contributions of electrons and 

phonons, 170, 360 
table for selected metals at low 

temperatures, 171 
Spence,J.C.H.,91,94,37 9 
sphere 

fluid flow around, 416 
spherical harmonics, 268 
Spicer, W. E., 711,720 
spin glasses, 743 
spin valve, 815 
spin waves, 805-811,833 

antiferromagnets, 808-811 
bound states, 808 
dispersion relations, 808, 811 

spin-orbit coupling, 218, 281, 763 
spinodal decomposition, 108 
spintronics, 469 
spontaneous emission, 648 
spontaneous magnetization, 730, 733, 745 
spontaneous symmetry breaking, 736 
square lattice, see lattices 

SQUID, see superconductivity, 
superconducting quantum interference 
device 

Sr 
Fermi surface, 281 

Sreenivasan, K. R., 449 
Srinivasan, R., 378 
Störzer, M., 566 
stability of matter, 249-252 
stacking fault, 81 
stacking period, 79 
Stajic, J., 891 
Stampanomi, M., 837 
Starace, A. F, 719 
Starks, D. R., 448 
static structure factor, 67 
Steams, M. B., 838 
steel, 424 
steepest descents, 361, 465, 906 
Steinfink, H., 58 
Steinhardt, P. J., 134,750 
Steno, N., 3,16 
Stephen, M. J., 757 
Stern, F, 794 
Stewart, G. R., 171,173, 360, 378 
Stewart, K. H., 758 
Stiles, M. D., 837 
Stillinger, F. H., 319 
stimulated emission, 646 
STM, see scanning tunneling microscopy 
Stornier, H. L., 786, 795 
Stokes drag, 420 
Stokes flow, 444 
Stokes scattering, 702 
Stokes shift, 677, 682 
Stokes, G. G., 449 
Stolovitzky, G., 449 
Stone, J. L., 657 
Stoner model, 811-813 

Fermi liquid theory, 833 
Stoner, E. C , 812, 838 
Stoney, G. J., 567 
STONG, see Slater type orbitals, TV Gaussians 
storage modulus, 423 
Stout, G. H., 75 
strain invariants, 324 
strain tensor, 37 
Straley,J. P., 151,837 
Strandburg, K. J., 410 
Straub, D., 709, 710, 720 
Strauser, W. A., 74 
Streda, P., 781, 795 
Streetman, B. G., 608 
strength 
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ideal, 402 
practical, 380, 381 

stress intensity factor, 405, 406 
stress invariants, 424 
stress tensor 

for ideal fluid, 414 
for polymeric solution, 418-419 
for solids, 326 
for viscous fluids, 415 
physical interpretation in fluids, 414 
physical interpretation in solids, 329 
plastic flow, 424 

Stroud, D., 339, 565 
structure factors 

for 4He, 442 
inelastic, 369, 525 
liquid and amorphous nickel, 115 
liquid and crystalline sulphur, 115 
liquid and crystalline water, 115 
static, 67 
weak scattering conductivity, 527, 528 

Stuckes, A. D., 527 
Stumpf, R.,xxii, 291, 319 
Sturge, M. D., 640, 657 
Su, W. P., 686 
sublattices, 742 
substitutional alloy, 102 
Suematsu, Y., 657 
Suhl, H., 837 
sum rules, 621-623 
sums 

arising in scattering from lattices, 
897-900 

converting to integrals, 160 
Sundaram, G., 466, 481 
superconductivity, 839-888 

Abrikosov lattice, 850 
AC Josephson effect, 853 
Bardeen-Cooper-Schrieffer model, 

865-872, 889 
Bogoliubov equations, 873-879 
Bogoliubov transformation, 870 
boundary conditions, 841, 845 
coherence length, 845, 847, 878, 883 
Cooper pair, 863, 869 
Cooper problem, 863-865 
critical temperature, 881 
d-wave, 885-887 
d-wa\e experiment, 887 
DC Josephson effect, 853 
density of states, 881 
diamagnetism, 840 
dielectric function, 862 
effective charge, 850-851 

effective electron interaction, 862 
electron-ion interaction, 859-862 
entropy, 844 
excitation energy sketch, 872 
Fermi function sketch, 872 
flux penetration, 848 
flux quantization, 850-851 
flux quantization experiment, 852 
Fraunhofer diffraction experiment, 854, 

887 
gap equation, 868, 872 
gap function, 867, 878 
gauge invariance, 841, 843, 850, 853, 857, 

876, 885, 886, 889 
gauge symmetry breaking, 857 
high-temperature, 881-888 
high-temperature superconductor phase 

diagram, 882-885 
isotope effect, 858, 859 
Josephson effect, 852-858, 889 
Josephson junction, 853, 854, 888 
Josephson junction circuits, 854-856 
Lagrangian, 857-858 
Landau-Ginzburg equations, 844-851 
last word on high Tc, 887 
latent heat, 844 
London equation, 879 
London gauge, 876, 889 
macroscopic wave function, 844, 852 
McMillan theory, 881 
mean field theory, 869 
Meissner effect, 839, 841, 843, 876-879, 

889 
occupation number sketch, 872 
order parameter, 885-887 
pairing instability, 865 
penetration depth, 840, 848 
persistent currents, 839 
phenomenological free energy, 841-843 
photoemission, 887 
pseudogap, 885 
resistively shunted junction model, 854 
i-wave, 885-887 
specific heat experiment, 880 
spin relaxation experiment, 880 
superconducting quantum interference 

device, 855-856 
surface energy, 848-850, 888 
table of critical temperatures and fields, 

846 
table of energy gaps and specific heats, 

873 
thermodynamics, 843-844, 869-872 
type I, 848 
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type II, 848, 883 
vortices, 850 
washboard potential, 855 
weak link, 852 

superexchange, 804 
superfluids, 427^43 
superlattices, 103-104 

alloy phase transformations, 740-743 
magnetic, 815 
surfaces, 79, 91 

surface energy, 80 
surface sound waves, 337 
surface states 

semiconductors, 586-587 
surfaces 

Coulomb energy of, 303 
experimental techniques, 82-91 
geometrical description, 77-81 
growth from spiral dislocation, 384 
reconstruction, 77 

Sutton, A. P., 307, 319, 566 
Suzuki, M., 893 
Svensson, E. C , 442, 449 
Swinney, H. L., 70, 449 
symmetry 

discrete rotational, 192 
discrete translational, 175 
icosahedral, 142 
impossibility of five-fold, 15, 36 
phonons, 348 
possibility of fivefold, 141 
transport equations, 490-492 

symmorphic, 36 
synchrotron, 62, 704, 710 
Szabo, A., 264 
Sze, S. M., 481, 608, 656 

table 
alkali halide cohesive energies, 305 
alkali halide electron affinities and 

ionization potentials, 302 
anomalous Hall effect, 504 
bond dipole moments of selected 

molecules, 242 
bond lengths of selected molecules, 242 
calculated magnetic moments, 814 
cesium chloride compounds, 26 
cohesive energy parameterized for 

selected elements, 314 
critical exponents, 750 
critical temperatures and fields of 

superconducting materials, 846 
crystal structure of elements, 19 
Debye temperatures, 360 

diamagnetic susceptibilities, 728 
dielectric properties of ionic crystals, 670 
effective radii of elements, 298 
elastic constants of cubic crystals, 327 
elastic moduli for isotropic materials, 331 
energies of atoms, Hartree-Fock versus 

local density approximation, 257 
F center absorption and emission peaks, 

677 
failure under tension, 381 
Fermi liquid parameters of He, 515 
ferromagnets and antiferromagnets, 

magnetic ordering, 732 
fluorite structures, 27 
free-electron parameters for selected 

metals, 167 
ionization potentials of selected 

molecules, 242 
lattice sums for noble gases, 301 
Lennard-Jones parameters, 300 
low-temperature specific heats of metals, 

171 
Madelung constant for metals, 307 
Madelung constants for ionic crystals, 304 
magnetic susceptibilities of metals, 775 
mean free path in liquid metals, 526 
metallic densities from pseudopotentials, 

308 
noble gas magnetic susceptibilities, 769 
perovskite structures, 29 
plastic flow onset under shear, 380 
polarization, 662 
radiation scattering, 61 
rare earth magnetic moments, 768 
reciprocal lattices, 52 
semiconductor impurity binding energies, 

580 
semiconductor properties, 577 
sodium chloride structures, 25 
superconducting energy gap and specific 

heat, 873 
thermoelectric data, 499 
transition metal magnetic moments, 768 
vacancy energies, 676 
viscosity of selected fluids, 416 
work functions of selected compounds, 

705 
wurtzite structures, 28 
zincblende structures, 28 

Takahashi, T., 887, 891 
Takhtajan, L. A., 836 
Tan, S., 891 
Tanabe, Y., 720 
Tanaka, M., 893 
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Tasset, F., 893 
Tauer, K. J., 757 
Taylor, G.I., 381,4// 
Taylor, R. E., 378 
Teichmann, J., 41 
Tesanovic, Z., 893 
tessellation, 10 
Testardi, L. R., 893 
Teukolsky, S. A., 902 
thermal conductivity, 363, 496, 517 

Drude model, 454 
thermal expansion, 361-363 
thermal fluctuations, 529 
thermal neutrons, 63 
thermionic emission, 571, 585 
thermoelectric figure of merit, 498, 517 
thermoelectric phenomena, 492-504 

table, 499 
thermopower, 497^198, 606 
Thèye, M. L., 701,720 
Thole, B.T.,74 
Thomas, G. A., 656 
Thomas-Fermi theory, 247-249, 259, 260 
Thomas-Fermi-Dirac theory, 248 
Thomson effect, 498, 518 
Thomson, J. J., xxii, 3, 16, 156, 168, 173, 453, 

481,567,611,631 
Thomson, R., 400, 405, 409, 411 
Thorne,R.E., 311,3/9 
Thornton, S. T., 12, 16 
Thouless, D. J., 392, 410 
three-body potentials, 314 
tight binding 

graphene band structure, 229 
tight binding model, 207 
tight-binding method, 478, 535-551 

Fermi surfaces, 476 
tight-binding model, 219, 226, 230, 317, 420, 

456,561,777,810 
tightly bound electrons, 219-227 
tiling, 10 
Tilley, D. R., 449 
Tilley, J., 449 
tilt boundary, 81 
Timoshenko, S., 339 
Tinkham, M., 16, 193, 206, 893 
i-J model, 835 
Tjeng, H., 719 
Tl2Ba2Cu06+x , 884 
T12201, see Tl2Ba2Cu06+x 

Tolstov, G. P., 206 
Tomonaga, S., 553, 566 
Tong, B. Y., 264 
Tonks, L., 264 

Tonomura, A., 776, 777, 795, 850, 893 
Torng, C. J., 893 
Tortonese, M., 90 
Tosi, M. P., 92, 95, 298, 319, 838 
Touloukian, Y. S., 355, 359, 363, 378 
Townes, C. H., 646, 657 
Toyozawa, Y, 657 
transfer matrix, 561, 563, 778 
transistor, 595-598 
transition metals 

band structure, 284 
Fermi surfaces, 476 
ferromagnetism, 731, 736, 811-815 
Friedel model for cohesive energy, 317 
magnetic structure in oxides, 733 
oxides, 711 
table of magnetic moments, 768 

translation group, 12 
translation operators, 182 
transverse light waves, 616, 667, 693 
transverse phonon mode, 348, 702 
transverse sound waves, 331 
Treger, D. M., 838 
Treloar, L. R. G., 324, 339 
Tremblay, A.-M. S., 831, 838 
trial wave function 

for fractional quantum Hall effect, 788 
for tightly bound electrons, 220 

triangular lattice, see lattices, 376 
Triantafyllopoulos, 75, 151 
triaxial test, 335 
Trigg, G., 150 
triode, 568 
triplet, 798 
Tsong, T. T., 85, 95 
Tsuda, K., 893 
Tsui, D. C , 786, 795 
Tsunetsugu, H., 838 
tungsten anode, 56 
twin boundary, 81 
twinning, 312 
two-body potentials, 314 
two-dimensional electron gas, 599-605, 780, 

785 
two-fluid hydrodynamics, 430^34 
two-fluid model, 428 
two-particle correlation function, 66 

UBei3, 828, 829 
Ueda, K., 838, 893 
Ueta, M., 644, 657 
Umklapp, 527 
unit cell, see also Wigner-Seitz cell 

conventional, 20 
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nonprimitive, 11 
primitive, 9 

units 
SI versus cgs, 724 

universality classes, 744, 750 
UPS, see photoemission, ultraviolet 

photoemission spectroscopy 
UPt3, 828 
Urbach tails, 683, 685 
Urbach, F., 687 

V (vanadium) 
band structure, 285 
superconducting specific heat, 880 

vacancies, 424, 530, 675 
table of energies, 676 

vacuum tubes, 569 
Vainshtein, B. K., 36, 41, 75 
Valatin, J. G., 870, 893 
Vamanu, D., 757 
van Alphen, P. M., 473 
van Dam, H., 838 
Van Dau, R, 836 
van den Berg, G. J., 836 
van der Laan, G., 715, 720 
van der Marel, D., 608 
van der Waals interaction, 299, 316, 427 
van der Waerden, B. L., 378, 657 
van Elp, J., 779 
van Harlingen, D. J., 893 
van Houten, H., 601,60« 
van Hove correlation function, 66 
van Hove singularities, 186-188, 281-285, 

356, 638, 639 
Van Hove, L., 75 
van Kârmân, T., 341 
van Leeuwen's theorem, 759 
van Leeuwen, H.-J., 759, 795 
van Vleck paramagnetism, 769 
van Vleck, J. H., 758, 759, 768, 795 
van Wees, B. J., 600, 608 
Vanderbilt, D, 686 
Vanderbilt, D., 74, 232, 318, 521 
Vanderkooy, J., 481 
variational Monte Carlo, 253 
variational principles, 210, 235, 260, 866, 

904-906 
Varma, C. M, 885, 893 
VASP, 281 
Vaterlaus, A., 837 
Vedernikov, M. V., 520 
Vega, C , 151 
Venkatasubramanian, R., 521 
Verlet algorithm, 112,143 

Verlet, L., 112,151 
Vespignani, A., 94 
Vetterling, W. T., 902 
Vettier, C , 893 
Vicentini-Missoni, ML, 750, 754, 758 
Vinen, W. R, 438, 449 
Vinokur, V. M., 890 
virial expansion, 126 
viscosity, 443 

due to polymers, 422 
dynamic, 415 
table for selected fluids, 416 

VK center, 679 
VO 

insulator, 711 
Vogel-Fulcher law, 117 
Vogtenhuber, D., 687 
Vollhardt, D., 521 
Volovik, G. E„ 449 
volume expansion coefficient, 363 
von Klitzing constant, 780 
von Klitzing, K., 780, 795 
von Laue, M., 43, 74, 341 
von Meyenn, K., 292 
von Molnâr, S., 838 
von Neumann's law, 145 
von Neumann, J., 146 
vortices, 445 

classical, 438 
in 4He, 437^139 
in superconductors, 849, 850 
quantized, 438, 850-851 

Vugmeister, B. E., 687 
vulcanized rubber, 322 
Vuorio, M., 837 

W (tungsten) 
Fermi surface, 476 

Wachs, A. L., 709, 720 
Wagner, H., 391,470 
Wahl, R., 687 
Walecka, J. D., 628, 631 
Wallis, R. R, 377, 378 
Wang, X., 521 
Wang, Y. Q., 893 
Wanklyn, B. M., 835 
Wannier functions, 222, 230, 231, 654, 803 

ambiguity, 223 
Peierls substitution, 792 
polarization, 661 

Wannier, G. H., 232 
Mott-Wannier excitons, 641 
Wannier functions, 207 
Wannier-Stark ladders, 472 
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Wannier-Stark ladders, 472 
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Fundamental physical constants 

Quantity 
Electron charge 
Permittivity of vacuum 
Speed of light 
Planck's constant 

Electron mass 
Neutron mass 
Boltzmann's constant 

Avogadro's constant 
Rydberg 

Bohr radius 

Bohr magneton 

Fine structure constant 

Magnetic flux quantum 

von Klitzing constant 

Josephson constant 

e 
£0 
c 
h 

h 

m 
m„ 
kB 

NA 

/?oo 

a0 

ßB 

a 

$ 0 

RK 

KJ 

CGS 
4.803 207-10" lu 

2.997 925 • 1010 

1.054 572-10"27 

6.582 118-10"16 

6.626 069-10"27 

4.135 667-10"'5 

9.109 382- 10"28 

1.674 927 10~24 

1.380 650-10-'6 

8.617 385-10"5 

6.022 141 -1023 

13.605 692 

h /me2 

0.529 177- 10"8 

eh/2mc 
9.274 009- 10"21 

e2/Hc 
7.297 353 • 10"3 

hc/e 
4.135 667-10"7 

h/e1 

2.872 062 -10"8 

2e/h 
1.449 790-1017 

esu 

cm s - ' 
ergs 
eVs 
ergs 
eVs 
gm 
gm 
ergK"1 

eVK"' 
mol - ' 
eV 

cm 

e rgG - ' 

Gem2 

statohm 

esu erg"' s 

SI 
1.602 176 10- |V 

8.854 187-10"'2 

2.997 925 • 108 

1.054 572-10"34 

6.582 118-lO"'6 

6.626 069-10"34 

4.135 667- lO"15 

9.109 382-10"31 

1.674 927-10"27 

1.380 650-10"23 

8.617 385- lO"5 

6.022 141 • 1023 

13.605 692 

4ireoh/1/me2 

0.529 177-10"10 

eh/lm 
9.274 009 -lO"24 

e2/4weohc 
7.297 353 • 10"3 

h/e 
4.135 667-10"15 

h/e2 

2.581 281-104 

2e/h 
- ' 4.835 979-10'4 

C 
C 2 J- 'm- ' 
m s - 1 

Js 
eVs 
Js 
eVs 
kg 
kg 
J K - ' 

evr' 
mol"' 
eV 

m 

JT~ ' 

Tm2 

n 
HzV"' 

Source: P. J. Mohr, B. N. Taylor, and D. B. Newell (2008), CODATA recommended values 
of the fundamental physical constants: 2006, Reviews of Modern Physics, 80 633-730; see 
also p h y s i c s . n i s t . go v / con s t a n t s 

Various conversion factors 

8.987 554 
3.335 640 
1.602 177-
4.184-107 

10~8 

1 s cm- '/statohm 
1 cm erg/esu2 

1 G/(ergcm - ' 
10" fi/statohm 
10"'° C/esu 
10"'2 erg/eV 

erg/cal 
cm/Â 

esu ') 
1.112 650-10~ 
2.997 925 • 109 

6.242 197-10' 
2.390-10"8 

108 

1 
1 
1 

12 

statohm/(s cm"') 
esu2/(cm erg) 
erg cm"' esu_ ' /G 
statohm/fi 
esu/C 
eV/erg 
cal/erg 
A/cm 

All entries in the table equal unity. 
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